1
|
Khodir WKWA, Ismail MW, Hamid SA, Daik R, Susanti D, Taher M, Guarino V. Synthesis and Characterization of Ciprofloxacin Loaded Star-Shaped Polycaprolactone-Polyethylene Glycol Hydrogels for Oral Delivery. MICROMACHINES 2023; 14:1382. [PMID: 37512693 PMCID: PMC10383659 DOI: 10.3390/mi14071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The administration of poorly water-soluble drugs represents a relevant problem due to the low body fluids transport efficiency through hydrophilic hydrogels. Star-shaped co-polymers, i.e., amphiphilic polymers such as those with a hydrophobic core and a hydrophilic outer shell, can be used to improve weak interactions with drugs, with relevant benefits in terms of administration and controlled delivery. In this work, two different co-polymers, four-arm star-shaped PCL-PEG and six-arm star-shaped PCL-PEG, were synthesized via ring-opening polymerization to be loaded with ciprofloxacin. 1H-NMR and FTIR analyses confirmed that PCL arms were successfully grafted to the mPEG backbone, while DSC analysis indicated similar crystallinity and melting point, ranging from 56 to 60 °C, independent of the different co-polymer architecture. Therefore, both star-shaped PCL-PEGs were investigated as cargo device for ciprofloxacin. No significant differences were observed in terms of drug entrapment efficiency (>95%) and drug release, characterized by a pronounced burst followed by a slow sustained release, only slightly affected by the co-polymer architecture. This result was also confirmed with curve fitting via the Korsmeyer-Peppas model. Lastly, good antibacterial properties and biocompatibility exhibited in both star-shaped PCL-PEG co-polymers suggest a promising use for oral delivery applications.
Collapse
Affiliation(s)
- Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- Synthetic and Functional Materials Research Group (SYNTOF), Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohamad Wafiuddin Ismail
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- Synthetic and Functional Materials Research Group (SYNTOF), Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Rusli Daik
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
2
|
Dattilo M, Patitucci F, Prete S, Parisi OI, Puoci F. Polysaccharide-Based Hydrogels and Their Application as Drug Delivery Systems in Cancer Treatment: A Review. J Funct Biomater 2023; 14:55. [PMID: 36826854 PMCID: PMC9966105 DOI: 10.3390/jfb14020055] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel's material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Lately, research has been focused on hydrogels from natural sources. Polysaccharides have drawn attention in recent years as a promising material for biological applications, due to their biocompatibility, biodegradability, non-toxicity, and excellent mechanical properties. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects. This review summarizes hydrogels' classification, properties, and synthesis methods. Furthermore, it also covers several important natural polysaccharides (chitosan, alginate, hyaluronic acid, cellulose, and carrageenan) widely used as hydrogels for drug delivery and, in particular, their application in cancer treatment.
Collapse
Affiliation(s)
- Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
3
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
4
|
Li Q, Gong S, Yao W, Yu Y, Liu C, Wang R, Pan H, Wei M. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:345-353. [PMID: 33784224 DOI: 10.1080/21691401.2021.1879104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
PEG-interpenetrated dual-sensitive hydrogels that load nano lipid carrier (NLC) were researched and developed for topical drug administration. Natural antioxidant α-lipoic acid (ALA) was selected as our model drug. The α-lipoic acid (ALA) nano lipid carrier was successfully prepared by hot melt emulsification and ultrasonic dispersion method, and the physicochemical properties of the nano lipid carrier were investigated, including morphology, particle distribution, polydispersity coefficient, zeta potential and encapsulation efficiency. Carboxymethyl chitosan and poloxamer 407 contributed to pH- and temperature-sensitive properties in the hydrogel, respectively. Natural non-toxic cross-linking agent genipin reacted with carboxymethyl chitosan to form the hydrogel. Poly ethylene glycol (PEG), a polymer compound with good water solubility and biocompatibility, interpenetrated the hydrogel and influenced the mechanical strength and drug release behaviour. FI-IR test verified the successful synthesis of the hydrogel. The rheological parameters indicated that the mechanical strength of the hydrogel was positively correlated with the amount of PEG, and the in vitro dissolution profiles demonstrated that the increasement of PEG could accelerate the drug release rate. The compatibility of the drug delivery system was verified with cells and mice model. Topical delivery of ALA in solution, NLC and NLC-gel was investigated in-vitro.
Collapse
Affiliation(s)
- Qijun Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yibin Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Renjun Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
6
|
Tomas-Egea JA, Fito PJ, Colom RJ, Castro-Giraldez M. New Sensor to Measure the Microencapsulated Active Compounds Released in an Aqueous Liquid Media Based in Dielectric Properties in Radiofrequency Range. SENSORS 2021; 21:s21175781. [PMID: 34502671 PMCID: PMC8434393 DOI: 10.3390/s21175781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
In recent years, the general and scientific interest in nutrition, digestion, and what role they play in our body has increased, and there is still much work to be carried out in the field of developing sensors and techniques that are capable of identifying and quantifying the chemical species involved in these processes. Iron deficiency is the most common and widespread nutritional disorder that mainly affects the health of children and women. Iron from the diet may be available as heme or organic iron, or as non-heme or inorganic iron. The absorption of non-heme iron requires its solubilization and reduction in the ferric state to ferrous that begins in the gastric acid environment, because iron in the ferric state is very poorly absorbable. There are chemical species with reducing capacity (antioxidants) that also have the ability to reduce iron, such as ascorbic acid. This paper aims to develop a sensor for measuring the release of encapsulated active compounds, in different media, based on dielectric properties measurement in the radio frequency range. An impedance sensor able to measure the release of microencapsulated active compounds was developed. The sensor was tested with calcium alginate beads encapsulating iron ions and ascorbic acid as active compounds. The prediction and measurement potential of this sensor was improved by developing a thermodynamic model that allows obtaining kinetic parameters that will allow suitable encapsulation design for subsequent release.
Collapse
Affiliation(s)
- Juan Angel Tomas-Egea
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.A.T.-E.); (M.C.-G.)
| | - Pedro J. Fito
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.A.T.-E.); (M.C.-G.)
- Correspondence:
| | - Ricardo J. Colom
- Instituto de Instrumentación para Imagen Molecular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Marta Castro-Giraldez
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (J.A.T.-E.); (M.C.-G.)
| |
Collapse
|
7
|
Sun Y, Chen X, Liu H, Liu S, Yu H, Wang X, Qin Y, Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules 2021; 26:3265. [PMID: 34071584 PMCID: PMC8199121 DOI: 10.3390/molecules26113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.
Collapse
Affiliation(s)
- Yuhao Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Hong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
8
|
Raghav S, Jain P, Kumar D. Alginates: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Hu Y, Hu S, Zhang S, Dong S, Hu J, Kang L, Yang X. A double-layer hydrogel based on alginate-carboxymethyl cellulose and synthetic polymer as sustained drug delivery system. Sci Rep 2021; 11:9142. [PMID: 33911150 PMCID: PMC8080826 DOI: 10.1038/s41598-021-88503-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
A new double-layer, pH-sensitive, composite hydrogel sustained-release system based on polysaccharides and synthetic polymers with combined functions of different inner/outer hydrogels was prepared. The polysaccharides inner core based on sodium alginate (SA) and carboxymethyl cellulose (CMC), was formed by physical crosslinking with pH-sensitive property. The synthetic polymer out-layer with enhanced stability was introduced by chemical crosslinking to eliminate the expansion of inner core and the diffusion of inner content. The physicochemical structure of the double-layer hydrogels was characterized. The drug-release results demonstrated that the sustained-release effect of the hydrogels for different model drugs could be regulated by changing the composition or thickness of the hydrogel layer. The significant sustained-release effect for BSA and indomethacin indicated that the bilayer hydrogel can be developed into a novel sustained delivery system for bioactive substance or drugs with potential applications in drugs and functional foods.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China. .,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Sheng Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Siyi Dong
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Kang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China. .,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
10
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
11
|
Modulating Gliclazide Release and Bioavailability Utilizing Multiparticulate Drug Delivery Systems. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Prabhu S, S. G. B, Gudennavar SB. Sodium alginate/bismuth (
III
) oxide composites for γ‐ray shielding applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.50369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Srilakshmi Prabhu
- Department of Physics and Electronics CHRIST (Deemed to be University), Bangalore Central Campus Bengaluru India
| | - Bubbly S. G.
- Department of Physics and Electronics CHRIST (Deemed to be University), Bangalore Central Campus Bengaluru India
| | - Shivappa B. Gudennavar
- Department of Physics and Electronics CHRIST (Deemed to be University), Bangalore Central Campus Bengaluru India
| |
Collapse
|
13
|
Probing the release of the chronobiotic hormone melatonin from hybrid calcium alginate hydrogel beads. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:527-538. [PMID: 32412433 DOI: 10.2478/acph-2020-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 01/19/2023]
Abstract
A variety of commonly used hydrogels were utilized in the preparation of calcium alginate beads, which incorporate the chronobiotic hormone melatonin (MLT). The in vitro release of the hormone in aqueous media at pH 1.2 and 6.8 was probed in the conjunction with the swelling of the beads and their thermal degradation properties. It has been found that the release of MLT from the beads was reversibly proportional to the extent of their expansion, which depends on the molecular mass/viscosity of the biopolymers present in the beads; the higher the molecular mass/viscosity of the hydrogels the greater the beads swelling and the less the MLT's release. Thermogravimetric analysis (TGA) data support the presence of the components in the hybrid hydrogel beads and elucidate their effects on the thermal stability of the systems. Thus, the physicochemical properties of the biopolymers used, along with their stereoelectronic features modulate the release of MLT from the beads, providing formulations able to treat sleep onset related problems or dysfunctions arising from poor sleep maintenance.
Collapse
|
14
|
Alginate-chitosan/MWCNTs nanocomposite: a novel approach for sustained release of Ibuprofen. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
16
|
Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, Li C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front Chem 2020; 8:53. [PMID: 32117879 PMCID: PMC7028759 DOI: 10.3389/fchem.2020.00053] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury originating from trauma or osteoarthritis is a common joint disease that can bring about an increasing social and economic burden in modern society. On account of its avascular, neural, and lymphatic characteristics, the poor migration ability of chondrocytes, and a low number of progenitor cells, the self-healing ability of cartilage defects has been significantly limited. Natural hydrogels, occurring abundantly with characteristics such as high water absorption, biodegradation, adjustable porosity, and biocompatibility like that of the natural extracellular matrix (ECM), have been developed into one of the most suitable scaffold biomaterials for the regeneration of cartilage in material science and tissue engineering. Notably, natural hydrogels derived from sources such as animal or human cadaver tissues possess the bionic mechanical behaviors of physiological cartilage that are required for usage as articular cartilage substitutes, by which the enhanced chondrogenic phenotype ability may be achieved by facilely embedding living cells, controlling degradation profiles, and releasing stimulatory growth factors. Hence, we summarize an overview of strategies and developments of the various kinds and functions of natural hydrogels for cartilage tissue engineering in this review. The main concepts and recent essential research found that great challenges like vascularity, clinically relevant size, and mechanical performances were still difficult to overcome because the current limitations of technologies need to be severely addressed in practical settings, particularly in unpredictable preclinical trials and during future forays into cartilage regeneration using natural hydrogel scaffolds with high mechanical properties. Therefore, the grand aim of this current review is to underpin the importance of preparation, modification, and application for the high performance of natural hydrogels for cartilage tissue engineering, which has been achieved by presenting a promising avenue in various fields and postulating real-world respective potentials.
Collapse
Affiliation(s)
- Wuren Bao
- School of Nursing, Inner Mongolia University for Nationalities, Tongliao, China
| | - Menglu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanyu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- College of Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yi Wan
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Bi
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunlin Li
- Orthopaedic Department, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Wu D, Liang Y, Pei Y, Li B, Liang H. Plant exine capsules based encapsulation strategy: A high loading and long-term effective delivery system for nobiletin. Food Res Int 2019; 127:108691. [PMID: 31882107 DOI: 10.1016/j.foodres.2019.108691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/28/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
The properties of high loading capacity and long-term absorption are of great significance in the field of nutraceuticals or drugs delivery. Herein, we developed an innovative method to achieve these expected effects using plant exine capsules, a kind of natural pollen grains, which could provide large internal cavities for loading and robust exine against harsh conditions. In our work, we firstly made a soluble mixture of glycerol monostearate (GM) and nobiletin (NOB) inside the cavities of plant exine capsules by ultrasound with high temperature to obtain a supersaturated state of NOB, which could be characterized by XRD, DSC and FTIR. After that, the loaded capsules were cooled to room temperature. Alginate hydrogels were then selected for encapsulating and further controlling NOB release in simulated gastric and intestinal conditions. As a result, it demonstrated that our approach was able to reach an extremely high NOB loading capacity of 770 ± 40 mg/g using sunflower pollen grains (SPGs). Meanwhile, the existence of GM, SPGs and alginate hydrogels all retarded the release of the NOB synergistically, thus taking a slow release effect in the stomach while a long-term effective absorption in the intestine. Taken together, our processing method of encapsulating hydrophobic nutraceuticals provides an important insight for broadening the applications of nutraceutical or drug encapsulation and delivery.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Youyan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqiong Pei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
18
|
Abstract
Microparticles, microspheres, and microcapsules are widely used constituents of multiparticulate drug delivery systems, offering both therapeutic and technological advantages. Microparticles are generally in the 1–1000 µm size range, serve as multiunit drug delivery systems with well-defined physiological and pharmacokinetic benefits in order to improve the effectiveness, tolerability, and patient compliance. This paper reviews their evolution, significance, and formulation factors (excipients and procedures), as well as their most important practical applications (inhaled insulin, liposomal preparations). The article presents the most important structures of microparticles (microspheres, microcapsules, coated pellets, etc.), interpreted with microscopic images too. The most significant production processes (spray drying, extrusion, coacervation, freeze-drying, microfluidics), the drug release mechanisms, and the commonly used excipients, the characterization, and the novel drug delivery systems (microbubbles, microsponges), as well as the preparations used in therapy are discussed in detail.
Collapse
|
19
|
Ngamekaue N, Chitprasert P. Effects of beeswax-carboxymethyl cellulose composite coating on shelf-life stability and intestinal delivery of holy basil essential oil-loaded gelatin microcapsules. Int J Biol Macromol 2019; 135:1088-1097. [DOI: 10.1016/j.ijbiomac.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/17/2023]
|
20
|
Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, Xu J, Wu J, Shi D, Zhu L, Wang X, Jiang Q. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J Orthop Translat 2019; 17:26-41. [PMID: 31194006 PMCID: PMC6551352 DOI: 10.1016/j.jot.2018.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels, consisting of hydrophilic polymers, can be used as films, scaffolds, nanoparticles and drug carriers. They are one of the hot research topics in material science and tissue engineering and are widely used in the field of biomedical and biological sciences. Researchers are seeking for a type of material that is similar to human tissues and can partially replace human tissues or organs. The hydrogel has brought possibility to solve this problem. It has good biocompatibility and biodegradability. After entering the body, it does not cause immune and toxic reactions. The degradation time can be controlled, and the degradation products are nontoxic and nonimmunogenic; the final metabolites can be excreted outside the body. Owing to the lack of blood vessels and poor migration ability of chondrocytes, the self-healing ability of damaged cartilage is limited. Tissue engineering has brought a new direction for the regeneration of cartilage. Drug carriers and scaffolds made of hydrogels are widely used in cartilage tissue engineering. The present review introduces the natural hydrogels, which are often used for cartilage tissue engineering with respect to synthesis, modification and application methods. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the natural hydrogels that are often used in cartilage tissue engineering with respect to synthesis, modification and application methods. Furthermore, the essential concepts and recent discoveries were demonstrated to illustrate the achievable goals and the current limitations. In addition, we propose the putative challenges and directions for the use of natural hydrogels in cartilage regeneration.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Zixu Wang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Asnani GP, Bahekar J, Kokare CR. Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Yu Y, Feng R, Yu S, Li J, Wang Y, Song Y, Yang X, Pan W, Li S. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int J Biol Macromol 2018; 114:462-469. [PMID: 29578017 DOI: 10.1016/j.ijbiomac.2018.03.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop a novel nanostructured lipid carrier (NLC) based dual-responsive hydrogel for ocular drug delivery of quercetin (QN). NLC loaded with quercetin (QN-NLC) was prepared using melt-emulsification combined with ultra-sonication technique. A three-factor five-level central composite design (CCD) was employed to optimize the formulation of QN-NLC. The optimized QN-NLC presented a particle size of 75.54nm with narrow size distribution and high encapsulation efficiency (97.14%).QN-NLC was characterized by TEM and DSC. In addition, a pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407(F127) was constructed by a cross-linking reaction with a naturally occurring nontoxic crosslinking agent genipin (GP). FT-IR was employed to demonstrate that F127/CMCS hydrogel was successfully synthesized. The results of SEM analysis and swelling experiments indicated that F127/CMCS hydrogel was both temperature-responsive and pH-responsive. From the results of In vitro release studies, dual temperature and pH responsiveness of the hydrogel was demonstrated, and 80.52% of total quercetin was released from the QN-NLC based hydrogel (QN-NLC-Gel) within 3days, revealing QN-NLC-Gel released drug sustainably. Taken together, the developed NLC-based hydrogel is a promising drug delivery system for the ophthalmic application.
Collapse
Affiliation(s)
- Yibin Yu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ruoxi Feng
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shihui Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyu Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yuanyuan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiming Song
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
23
|
Polo Fonseca L, Trinca RB, Felisberti MI. Amphiphilic polyurethane hydrogels as smart carriers for acidic hydrophobic drugs. Int J Pharm 2018; 546:106-114. [DOI: 10.1016/j.ijpharm.2018.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
24
|
pH-responsive polymeric nanoassemblies encapsulated into alginate beads: morphological characterization and swelling studies. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1519-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Self-aggregation behavior of hydrophobic sodium alginate derivatives in aqueous solution and their application in the nanoencapsulation of acetamiprid. Int J Biol Macromol 2018; 106:418-424. [DOI: 10.1016/j.ijbiomac.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
|
26
|
Investigations on “near perfect” poly(2-oxazoline) based amphiphilic polymer conetworks with a crystallizable block. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Liu G, Zhou H, Wu H, Chen R, Guo S. Preparation of alginate hydrogels through solution extrusion and the release behavior of different drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1808-1823. [DOI: 10.1080/09205063.2016.1237452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Hongxun Zhou
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Rong Chen
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Segale L, Mannina P, Giovannelli L, Muschert S, Pattarino F. Formulation and Coating of Alginate and Alginate-Hydroxypropylcellulose Pellets Containing Ranolazine. J Pharm Sci 2016; 105:3351-3358. [PMID: 27653554 DOI: 10.1016/j.xphs.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 01/31/2023]
Abstract
The formulation and the coating composition of biopolymeric pellets containing ranolazine were studied to improve their technological and biopharmaceutical properties. Eudragit L100 (EU L100) and Eudragit L30 D-55-coated alginate and alginate-hydroxypropylcellulose (HPC) pellets were prepared by ionotropic gelation using 3 concentrations of HPC (0.50%, 0.65%, and 1.00% wt/wt) and applying different percentages (5%, 10%, 20%, and 30% wt/wt) of coating material. The uncoated pellets were regular in shape and had mean diameter between 1490 and 1570 μm. The rate and the entity of the swelling process were affected by the polymeric composition: increasing the HPC concentration, the structure of the pellets became more compact and slowed down the penetration of fluids. Coated alginate-HPC formulations were able to control the drug release at neutral pH: a higher quantity of HPC in the system determined a slower release of the drug. The nature of the coating polymer and the coating level applied affected the drug release in acidic environment: EU L100 gave better performance than Eudragit L30 D-55 and the best coating level was 20%. The pellets containing 0.65% of HPC and coated with 20% EU L100 represented the best formulation, able to limit the drug release in acidic environment and to control it at pH 6.8.
Collapse
Affiliation(s)
- Lorena Segale
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara 28100, Italy.
| | - Paolo Mannina
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara 28100, Italy
| | - Lorella Giovannelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara 28100, Italy
| | - Susanne Muschert
- College of Pharmacy, Univ. Lille Nord de France, Lille 59006, France; INSERM U 1008, Lille 59006, France
| | - Franco Pattarino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara 28100, Italy
| |
Collapse
|
29
|
Self-emulsifying excipient platform for improving technological properties of alginate–hydroxypropylcellulose pellets. Int J Pharm 2016; 499:74-80. [DOI: 10.1016/j.ijpharm.2015.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/19/2022]
|
30
|
Taktak F, Bütün V. Novel zwitterionic ABA-type triblock copolymer for pH- and salt-controlled release of risperidone. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1099100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Jabeen S, Chat OA, Maswal M, Ashraf U, Rather GM, Dar AA. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen. Carbohydr Polym 2015; 133:144-53. [DOI: 10.1016/j.carbpol.2015.06.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 11/29/2022]
|
32
|
Huh HW, Zhao L, Kim SY. Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr Polym 2015; 126:130-40. [DOI: 10.1016/j.carbpol.2015.03.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
33
|
Xie H, Liu H, Xie Y, Yang M, Guo S, Zhou Z, Xu H. Fabrication of a novel immobilization system and its application for removal of anthracene from soil. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Amphiphilic polymer conetworks with defined nanostructure and tailored swelling behavior for exploring the activation of an entrapped lipase in organic solvents. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Segale L, Mannina P, Giovannelli L, Pattarino F. Calcium alginate multi-unit oral dosage form for delayed release of celecoxib. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhang B, He D, Fan Y, Liu N, Chen Y. Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One 2014; 9:e86064. [PMID: 24465870 PMCID: PMC3897602 DOI: 10.1371/journal.pone.0086064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Exenatide is an FDA-approved glucose-lowering peptide drug for the treatment of type 2 diabetes by subcutaneous injection. To address the issues on the inconvenience for patient use and the difficulty of oral administration of peptide drugs, chemical cross-linking of two pH-responsive biomaterials, alginate and hyaluronate, was carried out to prepare a new material for the encapsulation of exenatide as a form of microspheres. The exenatide-loaded microspheres exhibited spherical structures with excellent loading and release behaviors in the simulated gastrointestinal tract environments. After oral administration of the microspheres in db/db mice, maximum plasma concentration of exenatide appeared at 4 hours, and blood glucose was effectively reduced to a normal level within 2 hours and maintained for another 4 hours. The bioavailability of the exenatide-loaded microspheres, relative to subcutaneous injection of exenatide, reached 10.2%. Collectively, the present study demonstrated the feasibility of orally delivering exenatide with the new cross-linked biomaterial and formulation, and showed therapeutic potential for clinical applications.
Collapse
Affiliation(s)
- Baojie Zhang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Dongyang He
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Yu Fan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- * E-mail: (NL); (YC)
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- * E-mail: (NL); (YC)
| |
Collapse
|
37
|
Josef E, Barat K, Barsht I, Zilberman M, Bianco-Peled H. Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater 2013; 9:8815-22. [PMID: 23816647 DOI: 10.1016/j.actbio.2013.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/24/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
Many vitamins, bioactive lipids and over 40% of newly developed drugs are hydrophobic, and their poor water solubility limits their delivery using conventional formulations. In this work we investigated a composite gel system formulated from microemulsions embedded in alginate hydrogels, and showed that it is capable of loading several hydrophobic compounds with a wide range of aqueous solubility. All gels were clear, with no precipitations, indicating the solubility of the drugs in the gels. The release behavior was similar for different microemulsion formulations, various drugs and increasing concentrations of a drug. These findings indicate that our system could potentially act as a generic system, where the properties of the release do not depend on the drug but rather on the attributes of the gel. The structure of composite gels was investigated using small-angle scattering of X-rays and neutrons (SAXS and SANS, respectively). SANS showed more sensitivity to the structure of the microemulsion in the composite gel than SAXS did. SAXS and SANS plots of the composite gels show that both the droplets and the gel network preserve their structure when mixed together.
Collapse
|
38
|
Kaygusuz H, Erim F. Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013; 65:1148-71. [PMID: 23639519 DOI: 10.1016/j.addr.2013.04.016] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022]
Abstract
Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
40
|
Schoenfeld I, Dech S, Ryabenky B, Daniel B, Glowacki B, Ladisch R, Tiller JC. Investigations on diffusion limitations of biocatalyzed reactions in amphiphilic polymer conetworks in organic solvents. Biotechnol Bioeng 2013; 110:2333-42. [PMID: 23532873 DOI: 10.1002/bit.24906] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
The use of enzymes as biocatalysts in organic media is an important issue in modern white biotechnology. However, their low activity and stability in those media often limits their full-scale application. Amphiphilic polymer conetworks (APCNs) have been shown to greatly activate entrapped enzymes in organic solvents. Since these nanostructured materials are not porous, the bioactivity of the conetworks is strongly limited by diffusion of substrate and product. The present manuscript describes two different APCNs as nanostructured microparticles, which showed greatly increased activities of entrapped enzymes compared to those of the already activating membranes and larger particles. We demonstrated this on the example of APCN particles based on PHEA-l-PDMS loaded with α-Chymotrypsin, which resulted in an up to 28,000-fold higher activity of the enzyme compared to the enzyme powder. Furthermore, lipase from Rhizomucor miehei entrapped in particles based on PHEA-l-PEtOx was tested in n-heptane, chloroform, and substrate. Specific activities in smaller particles were 10- to 100-fold higher in comparison to the native enzyme. The carrier activity of PHEA-l-PEtOx microparticles was tenfold higher with some 25-50-fold lower enzyme content compared to a commercial product.
Collapse
Affiliation(s)
- Ina Schoenfeld
- Department of Bio- and Chemical Engineering, TU Dortmund, Emil-Figge-Strasse 66, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Krumm C, Konieczny S, Dropalla GJ, Milbradt M, Tiller JC. Amphiphilic Polymer Conetworks Based on End Group Cross-Linked Poly(2-oxazoline) Homo- and Triblock Copolymers. Macromolecules 2013. [DOI: 10.1021/ma4004665] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Krumm
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stefan Konieczny
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Georg J. Dropalla
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc Milbradt
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Joerg C. Tiller
- Biomaterials and Polymer Science,
Department of Biochemical
and Chemical Engineering, TU Dortmund,
Emil-Figge-Straße 66, 44227 Dortmund, Germany
| |
Collapse
|
42
|
Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2013. [PMID: 23184739 DOI: 10.1002/adhm.201200197] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern synthetic biomaterials are being designed to integrate bioactive ligands within hydrogel scaffolds for cells to respond and assimilate within the matrix. These advanced biomaterials are only beginning to be used to simulate the complex spatio-temporal control of the natural healing microenvironment. With increasing understanding of the role of growth factors and cytokines and their interactions with components of the extracellular matrix, novel biomaterials are being developed that more closely mimic the natural healing environments of tissues, resulting in increased efficacy in applications of tissue repair and regeneration. Herein, the important aspects of the healing microenvironment, and how these features can be incorporated within innovative hydrogel scaffolds, are presented.
Collapse
Affiliation(s)
- Jeffrey J Rice
- Institute for Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Microwave-induced synthesis of alginate–graft-poly(N-isopropylacrylamide) and drug release properties of dual pH- and temperature-responsive beads. Eur J Pharm Biopharm 2012; 82:316-31. [DOI: 10.1016/j.ejpb.2012.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
|
44
|
Alginate grafted with poly(ε-caprolactone): effect of enzymatic degradation on physicochemical properties. POLYM INT 2012. [DOI: 10.1002/pi.4232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
|
46
|
Wang K, Fu Q, Chen X, Gao Y, Dong K. Preparation and characterization of pH-sensitive hydrogel for drug delivery system. RSC Adv 2012. [DOI: 10.1039/c2ra20989f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Abstract
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
Collapse
|
48
|
Rheology and nanostructure of hydrophobically modified alginate (HMA) gels and solutions. Carbohydr Polym 2012; 87:524-530. [DOI: 10.1016/j.carbpol.2011.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/21/2022]
|
49
|
Uesugi Y, Kawata H, Saito Y, Tabata Y. Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator. J Drug Target 2011; 20:224-34. [DOI: 10.3109/1061186x.2011.633259] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|