1
|
Alphonse N, Sécher T, Heuzé-Vourc'h N. A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview. Expert Opin Drug Deliv 2025; 22:197-218. [PMID: 39711323 DOI: 10.1080/17425247.2024.2446608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods. AREAS COVERED This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed. EXPERT OPINION Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Thomas Sécher
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université de Tours, Centre d'Etude des Pathologies Respiratoires, Tours, France
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
| |
Collapse
|
2
|
Cheng N, Zhang X, Wang J, Li D, Li L, Hu H, Qu T. Effect of atomization on the composition and structure of recombinant humanized collagen type III. J Appl Biomater Funct Mater 2024; 22:22808000241261904. [PMID: 38907595 DOI: 10.1177/22808000241261904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways. Currently, a great number of therapeutic proteins such as alpha-1 antitrypsin and Dornase alfa are effective. Recombinant humanized collagen type III (rhCol III) as a therapeutic protein is widely used in the biomedical field, but atomization is not a common route of administration for rhCol III, presenting great potential for development. However, the structural stability of recombinant humanized collagen after atomization needs further investigation. This study demonstrated that the rhCol III subjected to atomization through compressed air had retained its original molecular weights, triple helical structures, and the ability to promote cell adhesion. In other words, the rhCol III can maintain its stability after undergoing atomization. Although more research is required to determine the efficacy and safety of the rhCol III after atomization, this study can lay the groundwork for future research.
Collapse
Affiliation(s)
| | | | - Jian Wang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Danfeng Li
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Ling Li
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Shanxi, China
| | - Huan Hu
- Shanxi Medical University, Shanxi, China
| | - Tingli Qu
- Shanxi Medical University, Shanxi, China
| |
Collapse
|
3
|
Mayor A, Thibert B, Huille S, Bensaid F, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled IgG1 antibodies: The buffering system is an important driver of stability during mesh-nebulization. Eur J Pharm Biopharm 2022; 181:173-182. [PMID: 36395981 DOI: 10.1016/j.ejpb.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
In the past decade, oral inhalation has been a thriving focus of research to administer antibody directly to the lungs as an aerosol, for local treatment of respiratory diseases. Formulation of inhaled antibodies is central for the stability of antibody, lung safety and to ensure inhaler performances. Surfactants have already been shown to prevent antibody degradation during aerosolization, but little is known about the impact of other components of liquid formulations on the structural stability of antibodies. Here, we report for the first time to the best of our knowledge, a significant effect of the buffering system on monoclonal antibodies stability, during mesh-nebulization. While the monoclonal antibody extensively aggregated in citrate buffer after nebulization and required high concentration of polysorbate 80 (PS80) to maintain protein integrity, acetate and histidine buffers resulted in a slight to moderate aggregation without PS80 and low concentration of PS80 was sufficient to stabilize antibody during mesh-nebulization.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France; Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Fethi Bensaid
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Renaud Respaud
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France
| | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Université François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032 Tours, France; University of Tours, Tours, France.
| |
Collapse
|
4
|
Reinders LMH, Noelle D, Klassen MD, Jaeger M, Schmidt TC, Tuerk J, Teutenberg T. Development and validation of a method for airborne monoclonal antibodies to quantify workplace exposure. J Pharm Biomed Anal 2022; 221:115046. [PMID: 36152489 DOI: 10.1016/j.jpba.2022.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Modern therapy strategies are based on patient-specific treatment where the drug and dose are optimally adapted to the patient's needs. In recent drugs, monoclonal antibodies (mAbs) are increasingly used as active ingredients. Their patient-specific formulations are not part of the pharmaceutical industry's manufacturing process but are prepared from concentrates by pharmaceutical personnel. During the manufacturing process, however, active pharmaceutical ingredients are released in trace amounts or, in the case of accidents and spills, also in high concentrations. Regardless of the source of entry, mAbs can become airborne, be inhaled, and cause undesirable side-effects such as sensitization. To assess the risk for pharmaceutical personnel, a personal air sampling method was developed and validated for bevacizumab, cetuximab, daratumumab, omalizumab, rituximab and trastuzumab. The method is based on the combination of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The analytical method achieves a limit of detection of 0.30-8.8 ng mL-1, recoveries of 83-96 % (intra-day assay) and 75-89 % (inter-day assay), with no detectable carry-over. A polycarbonate filter proved suitable for sampling airborne monoclonal antibodies, as it achieved 80-104 % recovery across all mAbs. It also showed concentration-independent desorption efficiency. The sampling duration can be up to 480 min without negatively affecting the recovery. MAbs are stable on the polycarbonate filter at 5 °C for 3 days (recovery: 94 % ± 5 %) and at - 20 °C for 14 days (recovery: 97 % ± 4 %). Our method demonstrated that there is a potential for release when handling monoclonal antibodies. However, this can be reduced below the limit of detection by using pressure equalization systems (spikes).
Collapse
Affiliation(s)
- Lars M H Reinders
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany; University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstr. 5, 45141 Essen, Germany
| | - Dennis Noelle
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany
| | - Martin D Klassen
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Martin Jaeger
- Hochschule Niederrhein (University of Applied Science), Reinarzstr. 49, 47805 Krefeld, Germany
| | - Torsten C Schmidt
- University Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstr. 5, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany.
| |
Collapse
|
5
|
Mayor A, Thibert B, Huille S, Respaud R, Audat H, Heuzé-Vourc'h N. Inhaled antibodies: formulations require specific development to overcome instability due to nebulization. Drug Deliv Transl Res 2021; 11:1625-1633. [PMID: 33768475 PMCID: PMC7993445 DOI: 10.1007/s13346-021-00967-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Abstract Respiratory infections are life-threatening and therapeutic antibodies (Ab) have a tremendous opportunity to benefit to patients with pneumonia due to multidrug resistance bacteria or emergent virus, before a vaccine is manufactured. In respiratory infections, inhalation of anti-infectious Ab may be more relevant than intravenous (IV) injection-the standard route-to target the site of infection and improve Ab therapeutic index. One major challenge associated to Ab inhalation is to prevent protein instability during the aerosolization process. Ab drug development for IV injection aims to design a high-quality product, stable to different environment stress. In this study, we evaluated the suitability of Ab formulations developed for IV injection to be extended for inhalation delivery. We studied the aerosol characteristics and the aggregation profile of three Ab formulations developed for IV injection after nebulization, with two mesh nebulizers. Although the formulations for IV injection were compatible with mesh nebulization and deposition into the respiratory tract, the Ab were more unstable during nebulization than exposition to a vigorous shaking. Overall, our findings indicate that Ab formulations developed for IV delivery may not easily be repurposed for inhalation delivery and point to the requirement of a specific formulation development for inhaled Ab. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13346-021-00967-w.
Collapse
Affiliation(s)
- Alexie Mayor
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France
- University of Tours, Tours, France
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Béatrice Thibert
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Sylvain Huille
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | | | - Héloïse Audat
- Sanofi, Formulation and Process Development, Impasse Des Ateliers, 94400, Vitry-sur-Seine, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre D'Etude Des Pathologies Respiratoires, Universite François Rabelais de Tours, 10 Boulevard Tonnellé, U1100F-37032, Tours, France.
- University of Tours, Tours, France.
| |
Collapse
|
6
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Sala V, Murabito A, Ghigo A. Inhaled Biologicals for the Treatment of Cystic Fibrosis. ACTA ACUST UNITED AC 2020; 13:19-26. [PMID: 30318010 PMCID: PMC6751348 DOI: 10.2174/1872213x12666181012101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Background: Cystic Fibrosis (CF), one of the most frequent genetic diseases, is characterized by the production of viscous mucus in several organs. In the lungs, mucus clogs the airways and traps bacteria, leading to recurrent/resistant infections and lung damage. For cystic fibrosis patients, respiratory failure is still lethal in early adulthood since available treatments display incomplete efficacy. Objective: The objective of this review is to extend the current knowledge in the field of available treat-ments for cystic fibrosis. A special focus has been given to inhaled peptide-based drugs. Methods: The current review is based on recent and/or relevant literature and patents already available in various scientific databases, which include PubMed, PubMed Central, Patentscope and Science Direct. The information obtained through these diverse databases is compiled, critically interpreted and presented in the current study. An in-depth but not systematic approach to the specific research question has been adopted. Results: Recently, peptides have been proposed as possible pharmacologic agents for the treatment of respiratory diseases. Of note, peptides are suitable to be administered by inhalation to maximize efficacy and reduce systemic side effects. Moreover, innovative delivery carriers have been developed for drug administration through inhalation, allowing not only protection against proteolysis, but also a prolonged and controlled release. Conclusion: Here, we summarize newly patented peptides that have been developed in the last few years and advanced technologies for inhaled drug delivery to treat cystic fibrosis.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.,S.C. Medicina d'Urgenza, A.O.U. Città della Salute e della Scienza, Molinette Hospital, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Making Concentrated Antibody Formulations Accessible for Vibrating-Mesh Nebulization. J Pharm Sci 2019; 108:2588-2592. [DOI: 10.1016/j.xphs.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 03/08/2019] [Indexed: 01/03/2023]
|
9
|
Surasarang SH, Sahakijpijarn S, Florova G, Komissarov AA, Nelson CL, Perenlei E, Fukuda S, Wolfson MR, Shaffer TH, Idell S, Williams RO. Nebulization of Single-Chain Tissue-Type and Single-Chain Urokinase Plasminogen Activator for Treatment of Inhalational Smoke-Induced Acute Lung Injury. J Drug Deliv Sci Technol 2018; 48:19-27. [PMID: 30123328 DOI: 10.1016/j.jddst.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Single-chain tissue-type plasminogen activator (sctPA) and single-chain urokinase plasminogen activator (scuPA) have attracted interest as enzymes for the treatment of inhalational smoke-induced acute lung injury (ISALI). In this study, the pulmonary delivery of commercial human sctPA and lyophilized scuPA and their reconstituted solution forms were demonstrated using vibrating mesh nebulizers (Aeroneb® Pro (active) and EZ Breathe® (passive)). Both the Aeroneb® Pro and EZ Breathe® vibrating mesh nebulizers produced atomized droplets of protein solution of similar size of less than about 5 μm, which is appropriate for pulmonary delivery. Enzymatic activities of scuPA and of sctPA were determined after nebulization and both remained stable (88.0% and 93.9%). Additionally, the enzymatic activities of sctPA and tcuPA were not significantly affected by excipients, lyophilization or reconstitution conditions. The results of these studies support further development of inhaled formulations of fibrinolysins for delivery to the lungs following smoke-induced acute pulmonary injury.
Collapse
Affiliation(s)
- Soraya Hengsawas Surasarang
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Sawittree Sahakijpijarn
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Galina Florova
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Andrey A Komissarov
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Christina L Nelson
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Enkhbaatar Perenlei
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Satoshi Fukuda
- The University of Texas Medical Branch, Translational Intensive Care Unit, Galveston, TX, USA
| | - Marla R Wolfson
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA
| | - Thomas H Shaffer
- Lewis Katz School of Medicine at Temple University, Departments of Physiology, Thoracic Medicine and Surgery, Pediatrics, Philadelphia, PA, USA.,Jefferson Medical College/Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA, USA
| | - Steven Idell
- The University of Texas Health Science Center at Tyler, School of Medical Biological Sciences, Tyler, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| |
Collapse
|
10
|
Hengsawas Surasarang S, Florova G, Komissarov AA, Shetty S, Idell S, Williams RO. Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis. Drug Dev Ind Pharm 2017; 44:184-198. [PMID: 28835128 DOI: 10.1080/03639045.2017.1371736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A caveolin-1 scaffolding domain, CSP7, is a newly developed peptide for the treatment of idiopathic pulmonary fibrosis. To develop a CSP7 formulation for further use we have obtained, characterized and compared a number of lyophilized formulations of CSP7 trifluoroacetate with DPBS and in combination with excipients (mannitol and lactose at molar ratios 1:5, 70 and 140). CSP7 trifluoroacetate was stable (>95%) in solution at 5 and 25 °C for up to 48 h and tolerated at least 5 freeze/thaw cycles. Lyophilized cakes of CSP7 trifluoroacetate with excipients were stable (>96%) for up to 4 weeks at room temperature (RT), and retained more than 98% of the CSP7 trifluoroacetate in the solution at 8 h after reconstitution at RT. The lyophilized CSP7 formulations were stable for up to 10 months at 5 °C protected from moisture. Exposure of the lyophilized cakes of CSP7 to 75% relative humidity (RH) resulted in an increase in the absorbed moisture, promoted crystallization of the excipients and induced reversible formation of CSP7 aggregates. Increased molar ratio of mannitol slightly affected formation of the aggregates. In contrast, lactose significantly decreased (up to 20 times) aggregate formation with apparent saturation at the molar ratio of 1:70. The possible mechanisms of stabilization of CSP7 trifluoroacetate in solid state by lactose include physical state of the bulking agent and the interactions between lactose and CSP7 trifluoroacetate (e.g. formation of a Schiff base with the N-terminal amino group of CSP7). Finally, CSP7 trifluoroacetate exhibited excellent stability during nebulization of formulations containing mannitol or lactose.
Collapse
Affiliation(s)
| | - Galina Florova
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Andrey A Komissarov
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Sreerama Shetty
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Steven Idell
- b School of Medical Biological Sciences , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Robert O Williams
- a Division of Pharmaceutics , College of Pharmacy, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
11
|
Röhm M, Carle S, Maigler F, Flamm J, Kramer V, Mavoungou C, Schmid O, Schindowski K. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm 2017; 532:537-546. [PMID: 28917988 DOI: 10.1016/j.ijpharm.2017.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold.
Collapse
Affiliation(s)
- Martina Röhm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefan Carle
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Applied Sciences Sigmaringen, Faculty of Life Sciences, Anton-Günther-Strasse 51, 72488 Sigmaringen, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Viktoria Kramer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
12
|
Abstract
Historically, the inhaled route has been used for the delivery of locally-acting drugs for the treatment of respiratory conditions, such as asthma, COPD, and airway infections. Targeted delivery of substances to the lungs has some key advantages over systemic administration, including a more rapid onset of action, an increased therapeutic effect, and, depending on the agent inhaled, reduced systemic side effects since the required local concentration in the lungs can be obtained with a lower dose. Fortunately, when designed properly, inhaled drug delivery devices can be very effective and safe for getting active agents directly to their site of action.
Collapse
Affiliation(s)
| | - Ben Forbes
- King's College London, London, SEI 9NH, UK.
| |
Collapse
|
13
|
Carvalho TC, McConville JT. The function and performance of aqueous aerosol devices for inhalation therapy. ACTA ACUST UNITED AC 2016; 68:556-78. [PMID: 27061412 DOI: 10.1111/jphp.12541] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In this review paper, we explore the interaction between the functioning mechanism of different nebulizers and the physicochemical properties of the formulations for several types of devices, namely jet, ultrasonic and vibrating-mesh nebulizers; colliding and extruded jets; electrohydrodynamic mechanism; surface acoustic wave microfluidic atomization; and capillary aerosol generation. KEY FINDINGS Nebulization is the transformation of bulk liquids into droplets. For inhalation therapy, nebulizers are widely used to aerosolize aqueous systems, such as solutions and suspensions. The interaction between the functioning mechanism of different nebulizers and the physicochemical properties of the formulations plays a significant role in the performance of aerosol generation appropriate for pulmonary delivery. Certain types of nebulizers have consistently presented temperature increase during the nebulization event. Therefore, careful consideration should be given when evaluating thermo-labile drugs, such as protein therapeutics. We also present the general approaches for characterization of nebulizer formulations. SUMMARY In conclusion, the interplay between the dosage form (i.e. aqueous systems) and the specific type of device for aerosol generation determines the effectiveness of drug delivery in nebulization therapies, thus requiring extensive understanding and characterization.
Collapse
Affiliation(s)
- Thiago C Carvalho
- Bristol-Myers Squibb, Drug Product Science & Technology, New Brunswick, NJ, USA
| | - Jason T McConville
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res 2016; 33:1337-50. [PMID: 26887679 DOI: 10.1007/s11095-016-1875-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. METHODS Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. RESULTS For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. CONCLUSIONS The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.
Collapse
Affiliation(s)
- Lucas Engelhardt
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| | - Martina Röhm
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany. .,Faculty of Medicine, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Annette Schafmeister
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Ulrich Simon
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| |
Collapse
|
15
|
Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev 2015; 93:79-94. [PMID: 25312674 DOI: 10.1016/j.addr.2014.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 08/22/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation.
Collapse
|
16
|
Generation of tailored aerosols for inhalative drug delivery employing recent vibrating-mesh nebulizer systems. Ther Deliv 2015; 6:621-36. [DOI: 10.4155/tde.15.18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Direct drug delivery to the lungs is considered the gold standard for the treatment of a variety of respiratory diseases, owing to the increased therapeutic selectivity of the inhalative approach. Airborne formulations with defined size characteristics are required to improve the deposition pattern within the airways. In this respect, different nebulizer systems have been conceived, which has enabled the generation of respirable medicament mists. Here, vibrating-mesh technology revealed significant potential to overcome the main shortcomings associated with ‘traditional’ devices. Tailored orifice dimensions and defined formulation characteristics are of special interest for the generation of suitable aerosol droplets for inhalative purposes. Ongoing developments in device and formulation design will optimize the clinical outcome of inhalative drug delivery under application of vibrating-mesh technology.
Collapse
|
17
|
Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv 2015; 12:1027-39. [DOI: 10.1517/17425247.2015.999039] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Respaud R, Marchand D, Parent C, Pelat T, Thullier P, Tournamille JF, Viaud-Massuard MC, Diot P, Si-Tahar M, Vecellio L, Heuzé-Vourc'h N. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs 2014; 6:1347-55. [PMID: 25517319 DOI: 10.4161/mabs.29938] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most monoclonal antibodies (mAbs) are administered to patients intravenously to ensure high bioavailability as rapidly as possible. The airways, however, are an attractive delivery route for mAbs for the treatment of lung diseases, making it possible to increase their concentration in the target organ while limiting their systemic passage. Several challenges must be overcome for translation into clinical practice. For example, the drug and device must be paired for the efficient and reliable deposition of a pharmacologically active and safe mAb in the lung region of interest. Mesh nebulizers appear to be the most effective aerosol-producing devices for delivering large amounts of biopharmaceutical while limiting protein instability during nebulization. We used metrological and analytic methods to analyze the effect of both antibody concentration and surfactant addition on aerosol performance and antibody integrity. These two factors had a limited effect on aerosol performance, but affected antibody aggregation. The addition of surfactants to antibody formulations at concentrations appropriate for lung administration markedly reduced the formation of medium or large aggregates, as shown by dynamic light scattering and fluorescence microscopy. Aggregation was also dependent on the type of mesh nebulizer, highlighting the need to optimize drug and device together.
Collapse
Affiliation(s)
- Renaud Respaud
- a Génétique, Immunothérapie, Chimie et Cancer; UMR 7292/EA6306 ; Tours , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
That’s cool! – Nebulization of thermolabile proteins with a cooled vibrating mesh nebulizer. Eur J Pharm Biopharm 2014; 87:357-65. [DOI: 10.1016/j.ejpb.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 11/18/2022]
|