1
|
Mohammed YH, Namjoshi SN, Telaprolu KC, Jung N, Shewan HM, Stokes JR, Benson HAE, Grice JE, Raney SG, Rantou E, Windbergs M, Roberts MS. Impact of Different Packaging Configurations on A Topical Cream Product. Pharm Res 2024; 41:2043-2056. [PMID: 39349693 PMCID: PMC11530498 DOI: 10.1007/s11095-024-03772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE The objective of this study was to investigate whether different dispensing processes can alter the physicochemical and structural (Q3) attributes of a topical cream product, and potentially alter its performance. METHODS Acyclovir cream, 5% (Zovirax®) is sold in the UK and other countries in a tube and a pump packaging configurations. The structural attributes of the cream dispensed from each packaging configuration were analyzed by optical microscopy, confocal Raman microscopy and cryo-scanning electron microscopy. Rheological behavior of the products was also evaluated. Product performance (rate and extent of skin delivery) was assessed by in vitro permeation tests (IVPT) using heat-separated human epidermis mounted in static vertical (Franz-type) diffusion cells. RESULTS Differences in Q3 attributes and IVPT profiles were observed with creams dispensed from the two packaging configurations, even though the product inside each packaging appeared to be the same in Q3 attributes. Visible globules were recognized in the sample dispensed from the pump, identified as dimethicone globules by confocal Raman microscopy. Differences in rheological behaviour could be attributed to these globules as products not dispensed through the pump, demonstrated a similar rheological behaviour. Further, IVPT confirmed a reduced rate and extent to delivery across human epidermis from the product dispensed through a pump. CONCLUSIONS Different methods of dispensing topical semisolid products can result in metamorphosis and Q3 changes that may have the potential to alter the bioavailability of an active ingredient. These findings have potential implications for product developers and regulators, related to the manufacturing and comparative testing of reference standard and prospective generic products dispensed from different packaging configurations.
Collapse
Affiliation(s)
- Yousuf H Mohammed
- Therapeutics Research Centre, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
- School of Pharmacy, The University of Queensland, Brisbane, 2102, Australia.
| | - S N Namjoshi
- Therapeutics Research Centre, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - K C Telaprolu
- Therapeutics Research Centre, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - N Jung
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - H M Shewan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - J R Stokes
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - H A E Benson
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - J E Grice
- Therapeutics Research Centre, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - S G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - E Rantou
- Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| | - Michael S Roberts
- Therapeutics Research Centre, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia.
| |
Collapse
|
2
|
Choe C, Pak GJ, Ascencio SM, Darvin ME. Quantification of skin penetration of caffeine and propylene glycol applied topically in a mixture by tailored multivariate curve resolution-alternating least squares of depth-resolved Raman spectra. JOURNAL OF BIOPHOTONICS 2023; 16:e202300146. [PMID: 37556739 DOI: 10.1002/jbio.202300146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
The quantitative determination of topically applied substances in the skin is severely limited and represents a challenging task. The porcine skin ex vivo was topically treated with a gel containing caffeine (CF) and propylene glycol (PG), and depth-resolved Raman spectra were recorded with two confocal Raman microscopes. We applied a novel tailored multivariate curve resolution-alternating least squares method to the selected spectral regions (512-604 and 778-1148 cm-1 ) of gel-treated skin and quantitatively determined the concentrations of CF and PG in the stratum corneum (SC). The highest concentration of CF (181 mg/cm3 ) was found at the surface, while PG (384 mg/cm3 ) was found at 10% SC depth, indicating the formation of a reservoir at the superficial SC. The concentrations of CF and PG decreased monotonically and reached the detection limit at ≈60% and ≈80% SC depth, respectively, indicating that neither permeate the SC.
Collapse
Affiliation(s)
- ChunSik Choe
- Biomedical Materials Division, Faculty of Material Science, Kim Il Sung University, Pyongyang, DPR Korea
| | - Gyong Jin Pak
- Biomedical Materials Division, Faculty of Material Science, Kim Il Sung University, Pyongyang, DPR Korea
| | - Saul Mujica Ascencio
- Photonic Engineering, Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME Zacatenco) del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Kichou H, Bonnier F, Dancik Y, Bakar J, Michael-Jubeli R, Caritá AC, Perse X, Soucé M, Rapetti L, Tfayli A, Chourpa I, Munnier E. Strat-M® positioning for skin permeation studies: A comparative study including EpiSkin® RHE, and human skin. Int J Pharm 2023; 647:123488. [PMID: 37805151 DOI: 10.1016/j.ijpharm.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the development and optimization of dermatological products, In Vitro Permeation Testing (IVPT) is pivotal for controlled study of skin penetration. To enhance standardization and replicate human skin properties reconstructed human skin and synthetic membranes are explored as alternatives. Strat-M® is a membrane designed to mimic the multi-layered structure of human skin for IVPT. For instance, in Strat-M®, the steady-state fluxes (JSS) of resorcinol in formulations free of permeation enhancers were found to be 41 ± 5 µg/cm2·h for the aqueous solution, 42 ± 6 µg/cm2·h for the hydrogel, and 40 ± 6 µg/cm2·h for the oil-in-water emulsion. These results were closer to excised human skin (5 ± 3, 9 ± 2, 13 ± 6 µg/cm2·h) and surpassed the performance of EpiSkin® RHE (138 ± 5, 142 ± 6, and 162 ± 11 µg/cm2·h). While mass spectrometry and Raman microscopy demonstrated the qualitative molecular similarity of EpiSkin® RHE to human skin, it was the porous and hydrophobic polymer nature of Strat-M® that more faithfully reproduced the skin's diffusion-limiting barrier. Further validation through similarity factor analysis (∼80-85%) underscored Strat-M®'s significance as a reliable substitute for human skin, offering a promising approach to enhance realism and reproducibility in dermatological product development.
Collapse
Affiliation(s)
- Hichem Kichou
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- LVMH Recherche, 185 Av. de Verdun, 45800 Saint-Jean-de-Braye, France
| | - Yuri Dancik
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2B1, UK
| | - Joudi Bakar
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Rime Michael-Jubeli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Amanda C Caritá
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Xavier Perse
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Martin Soucé
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Laetitia Rapetti
- Alphenyx, 430 avenue du Maréchal Lattre de Tassigny, 13009 Marseille, France
| | - Ali Tfayli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France.
| |
Collapse
|
4
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
5
|
Goel A, Tsikritsis D, Belsey NA, Pendlington R, Glavin S, Chen T. Measurement of chemical penetration in skin using Stimulated Raman scattering microscopy and multivariate curve resolution - alternating least squares. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122639. [PMID: 36989692 DOI: 10.1016/j.saa.2023.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The mechanistic understanding of skin penetration underpins the design, efficacy and risk assessment of many high-value products including functional personal care products, topical and transdermal drugs. Stimulated Raman scattering (SRS) microscopy, a label free chemical imaging tool, combines molecular spectroscopy with submicron spatial information to map the distribution of chemicals as they penetrate the skin. However, the quantification of penetration is hampered by significant interference from Raman signals of skin constituents. This study reports a method for disentangling exogeneous contributions and measuring their permeation profile through human skin combining SRS measurements with chemometrics. We investigated the spectral decomposition capability of multivariate curve resolution - alternating least squares (MCR-ALS) using hyperspectral SRS images of skin dosed with 4-cyanophenol. By performing MCR-ALS on the fingerprint region spectral data, the distribution of 4-cyanophenol in skin was estimated in an attempt to quantify the amount permeated at different depths. The reconstructed distribution was compared with the experimental mapping of CN, a strong vibrational peak in 4-cyanophenol where the skin is spectroscopically silent. The similarity between MCR-ALS resolved and experimental distribution in skin dosed for 4 h was 0.79 which improved to 0.91 for skin dosed for 1 h. The correlation was observed to be lower for deeper layers of skin where SRS signal intensity is low which is an indication of low sensitivity of SRS. This work is the first demonstration, to the best of our knowledge, of combining SRS imaging technique with spectral unmixing methods for direct observation and mapping of the chemical penetration and distribution in biological tissues.
Collapse
Affiliation(s)
- Anukrati Goel
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Dimitrios Tsikritsis
- Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Natalie A Belsey
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK; Chemical & Biological Sciences Department, National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ruth Pendlington
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | - Stephen Glavin
- Unilever Safety & Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | - Tao Chen
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
6
|
Pereira MN, Nogueira LL, Cunha-Filho M, Gratieri T, Gelfuso GM. Methodologies to Evaluate the Hair Follicle-Targeted Drug Delivery Provided by Nanoparticles. Pharmaceutics 2023; 15:2002. [PMID: 37514188 PMCID: PMC10383440 DOI: 10.3390/pharmaceutics15072002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Nanotechnology has been investigated for treatments of hair follicle disorders mainly because of the natural accumulation of solid nanoparticles in the follicular openings following a topical application, which provides a drug "targeting effect". Despite the promising results regarding the therapeutic efficacy of topically applied nanoparticles, the literature has often presented controversial results regarding the targeting of hair follicle potential of nanoformulations. A closer look at the published works shows that study parameters such as the type of skin model, skin sections analyzed, employed controls, or even the extraction methodologies differ to a great extent among the studies, producing either unreliable results or precluding comparisons altogether. Hence, the present study proposes to review different skin models and methods for quantitative and qualitative analysis of follicular penetration of nano-entrapped drugs and their influence on the obtained results, as a way of providing more coherent study protocols for the intended application.
Collapse
Affiliation(s)
- Maíra N Pereira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Luma L Nogueira
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
7
|
Krombholz R, Fressle S, Nikolić I, Pantelić I, Savić S, Sakač MC, Lunter D. ex vivo-in vivo comparison of drug penetration analysis by confocal Raman microspectroscopy and tape stripping. Exp Dermatol 2022; 31:1908-1919. [PMID: 36055759 DOI: 10.1111/exd.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
When it comes to skin penetration analysis of a topically applied formulation, the number of suitable methods is limited, and they often lack in spatial resolution. In vivo studies are pivotal, especially in the approval of a new product, but high costs and ethical difficulties are limiting factors. For that reason, good ex vivo models for testing skin penetration are crucial. In this study, caffeine was used as a hydrophilic model drug, applied as a 2% (w/w) hydrogel, to compare different techniques for skin penetration analysis. Confocal Raman microspectroscopy (CRM) and tape stripping with subsequent HPLC analysis were used to quantify caffeine. Experiments were performed ex vivo and in vivo. Furthermore, the effect of 5% (w/w) 1,2-pentanediol on caffeine skin penetration was tested, to compare those methods regarding their effectiveness in detecting differences between both formulations.
Collapse
Affiliation(s)
- Richard Krombholz
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Stefanie Fressle
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade, Belgrade, Serbia
| | - Milkica Crevar Sakač
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
8
|
Bielfeldt S, Bonnier F, Byrne H, Chourpa I, Dancik Y, Lane M, Lunter D, Munnier E, Puppels G, Tfayli A, Ziemons E. Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Delrue C, Speeckaert MM. The Potential Applications of Raman Spectroscopy in Kidney Diseases. J Pers Med 2022; 12:jpm12101644. [PMID: 36294783 PMCID: PMC9604710 DOI: 10.3390/jpm12101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Raman spectroscopy (RS) is a spectroscopic technique based on the inelastic interaction of incident electromagnetic radiation (from a laser beam) with a polarizable molecule, which, when scattered, carries information from molecular vibrational energy (the Raman effect). RS detects biochemical changes in biological samples at the molecular level, making it an effective analytical technique for disease diagnosis and prognosis. It outperforms conventional sample preservation techniques by requiring no chemical reagents, reducing analysis time even at low concentrations, and working in the presence of interfering agents or solvents. Because routinely utilized biomarkers for kidney disease have limitations, there is considerable interest in the potential use of RS. RS may identify and quantify urinary and blood biochemical components, with results comparable to reference methods in nephrology.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
- Correspondence: ; Tel.: +32-9-332-4509
| |
Collapse
|
10
|
Lunter D, Klang V, Kocsis D, Varga-Medveczky Z, Berkó S, Erdő F. Novel aspects of Raman spectroscopy in skin research. Exp Dermatol 2022; 31:1311-1329. [PMID: 35837832 PMCID: PMC9545633 DOI: 10.1111/exd.14645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The analytical technology of Raman spectroscopy has an almost 100‐year history. During this period, many modifications and developments happened in the method like discovery of laser, improvements in optical elements and sensitivity of spectrometer and also more advanced light detection systems. Many types of the innovative techniques appeared (e.g. Transmittance Raman spectroscopy, Coherent Raman Scattering microscopy, Surface‐Enhanced Raman scattering and Confocal Raman spectroscopy/microscopy). This review article gives a short description about these different Raman techniques and their possible applications. Then, a short statistical part is coming about the appearance of Raman spectroscopy in the scientific literature from the beginnings to these days. The third part of the paper shows the main application options of the technique (especially confocal Raman spectroscopy) in skin research, including skin composition analysis, drug penetration monitoring and analysis, diagnostic utilizations in dermatology and cosmeto‐scientific applications. At the end, the possible role of artificial intelligence in Raman data analysis and the regulatory aspect of these techniques in dermatology are briefly summarized. For the future of Raman Spectroscopy, increasing clinical relevance and in vivo applications can be predicted with spreading of non‐destructive methods and appearance with the most advanced instruments with rapid analysis time.
Collapse
Affiliation(s)
- Dominique Lunter
- University of Tübingen, Department of Pharmaceutical Technology, Institute of Pharmacy and Biochemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, Vienna, Austria
| | - Dorottya Kocsis
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Zsófia Varga-Medveczky
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Szilvia Berkó
- University of Szeged, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, Szeged, Hungary
| | - Franciska Erdő
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.,University of Tours EA 6295 Nanomédicaments et Nanosondes, Tours, France
| |
Collapse
|
11
|
Permeation Effect Analysis of Drug Using Raman Spectroscopy for Iontophoresis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Iontophoresis technology could improve the efficiency of transdermal drug delivery through the skin and be a promising prospective tool for clinical drug therapy in the near future. Surface-enhanced Raman spectroscopy (SERS) was used to analyze the concentration distribution of penicillin sodium in the skin of a mice model, and the iontophoresis delivery efficiency of drug percutaneous permeation was evaluated with various times and concentrations of penicillin sodium through Raman spectra. The results showed both the action time and drug concentration for iontophoresis can deeply influence transdermal drug delivery effects, and the Raman spectrum might be an effective method to evaluate transdermal drug delivery efficiency.
Collapse
|
12
|
Dev K, Ho CJH, Bi R, Yew YW, S DU, Attia ABE, Moothanchery M, Guan STT, Olivo M. Machine Learning Assisted Handheld Confocal Raman Micro-Spectroscopy for Identification of Clinically Relevant Atopic Eczema Biomarkers. SENSORS 2022; 22:s22134674. [PMID: 35808168 PMCID: PMC9269422 DOI: 10.3390/s22134674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin dermatosis condition due to skin barrier dysfunction that causes itchy, red, swollen, and cracked skin. Currently, AD severity clinical scores are subjected to intra- and inter-observer differences. There is a need for an objective scoring method that is sensitive to skin barrier differences. The aim of this study was to evaluate the relevant skin chemical biomarkers in AD patients. We used confocal Raman micro-spectroscopy and advanced machine learning methods as means to classify eczema patients and healthy controls with sufficient sensitivity and specificity. Raman spectra at different skin depths were acquired from subjects’ lower volar forearm location using an in-house developed handheld confocal Raman micro-spectroscopy system. The Raman spectra corresponding to the skin surface from all the subjects were further analyzed through partial least squares discriminant analysis, a binary classification model allowing the classification between eczema and healthy subjects with a sensitivity and specificity of 0.94 and 0.85, respectively, using stratified K-fold (K = 10) cross-validation. The variable importance in the projection score from the partial least squares discriminant analysis classification model further elucidated the role of important stratum corneum proteins and lipids in distinguishing two subject groups.
Collapse
Affiliation(s)
- Kapil Dev
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Chris Jun Hui Ho
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Renzhe Bi
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Yik Weng Yew
- National Skin Centre, Singapore 308205, Singapore
| | - Dinish U S
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Amalina Binte Ebrahim Attia
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Mohesh Moothanchery
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | | | - Malini Olivo
- Translational Biophotonics Lab, Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| |
Collapse
|
13
|
Estimating the Analytical Performance of Raman Spectroscopy for Quantification of Active Ingredients in Human Stratum Corneum. Molecules 2022; 27:molecules27092843. [PMID: 35566190 PMCID: PMC9105701 DOI: 10.3390/molecules27092843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/16/2023] Open
Abstract
Confocal Raman microscopy (CRM) has become a versatile technique that can be applied routinely to monitor skin penetration of active molecules. In the present study, CRM coupled to multivariate analysis (namely PLSR—partial least squares regression) is used for the quantitative measurement of an active ingredient (AI) applied to isolated (ex vivo) human stratum corneum (SC), using systematically varied doses of resorcinol, as model compound, and the performance is quantified according to key figures of merit defined by regulatory bodies (ICH, FDA, and EMA). A methodology is thus demonstrated to establish the limit of detection (LOD), precision, accuracy, sensitivity (SEN), and selectivity (SEL) of the technique, and the performance according to these key figures of merit is compared to that of similar established methodologies, based on studies available in literature. First, principal components analysis (PCA) was used to examine the variability within the spectral data set collected. Second, ratios calculated from the area under the curve (AUC) of characteristic resorcinol and proteins/lipids bands (1400–1500 cm−1) were used to perform linear regression analysis of the Raman spectra. Third, cross-validated PLSR analysis was applied to perform quantitative analysis in the fingerprint region. The AUC results show clearly that the intensities of Raman features in the spectra collected are linearly correlated to resorcinol concentrations in the SC (R2 = 0.999) despite a heterogeneity in the distribution of the active molecule in the samples. The Root Mean Square Error of Cross-Validation (RMSECV) (0.017 mg resorcinol/mg SC), The Root Mean Square of Prediction (RMSEP) (0.015 mg resorcinol/mg SC), and R2 (0.971) demonstrate the reliability of the linear regression constructed, enabling accurate quantification of resorcinol. Furthermore, the results have enabled the determination, for the first time, of numerical criteria to estimate analytical performances of CRM, including LOD, precision using bias corrected mean square error prediction (BCMSEP), sensitivity, and selectivity, for quantification of the performance of the analytical technique. This is one step further towards demonstrating that Raman spectroscopy complies with international guidelines and to establishing the technique as a reference and approved tool for permeation studies.
Collapse
|
14
|
Sun Q, Purvis CG, Iqbal SN, Emmerich VK, Feldman SR, Maibach H. Percutaneous egression: What do we know? Skin Pharmacol Physiol 2022; 35:187-195. [PMID: 35325893 DOI: 10.1159/000523795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The process by which drugs leave the bloodstream to enter the skin compartments is important in determining appropriate routes of delivery and developing more efficacious medications. We conducted a general literature review on percutaneous egression mechanisms. SUMMARY Studies demonstrate that the stratum corneum (SC) is a compartment for systemically delivered drugs. Upon reviewing the available literature, it became apparent that there may be multiple mechanisms of percutaneous egression dependent upon drug physiochemical properties. These mechanisms include, but are not limited to, desquamation, sebum secretion, sweat transport and passive diffusion. While drugs often utilize one major pathway, it is possible that all mechanisms may play a role to varying extents. KEY MESSAGES Available literature suggests that hydrophilic substances tended to travel from blood to the upper layers of the skin via sweat, whereas lipophilic substances utilized sebum secretion to reach the SC. Upon reaching the skin surface, the drugs spread laterally before penetrating back into the skin as if they were topically administered. More data are warranted to identify additional percutaneous egression mechanisms, precise drug action sites and accelerate drug development.
Collapse
Affiliation(s)
- Qisi Sun
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin G Purvis
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sahir N Iqbal
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Veronica K Emmerich
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Dermatology, University of Southern Denmark, Odense, Denmark
| | - Howard Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
15
|
Iguchi R, Nishi Y, Ogihara T, Ito T, Matsuoka F, Misawa K. Time-course quantitative mapping of caffeine within the epidermis, using high-contrast pump-probe stimulated Raman scattering microscopy. Skin Res Technol 2021; 28:47-53. [PMID: 34618986 PMCID: PMC9291957 DOI: 10.1111/srt.13088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/13/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022]
Abstract
Background An assessment of the drug penetration and distribution profiles within the skin is essential in dermatology and cosmetology. Recent advances in label‐free imaging technologies have facilitated the direct detection of unlabeled compounds in tissues, with high resolution. However, it remains challenging to provide quantitative time‐course distribution maps of drugs within the complex skin tissue. The present study aims at acquiring the real‐time quantitative skin penetration profiles of topically applied caffeine, by means of a combination of pump–probe phase‐modulated stimulated Raman scattering (PM‐SRS) and confocal reflection microscopy. The recently developed PM‐SRS microscopy is a unique imaging tool that can minimize strong background signals through a pulse‐shaping technique, while providing high‐contrast images of small molecules in tissues. Materials and methods Reconstructed human skin epidermis models were used in order to analyze caffeine penetration in tissues. The penetration profiles of caffeine in an aqueous solution, an oil‐in‐water gel, and a water‐in‐oil gel were examined by combining PM‐SRS and confocal reflection microscopy. Results The characteristic Raman signal of caffeine was directly detected in the skin model using PM‐SRS. Integrating PM‐SRS and confocal reflection microscopy allowed real‐time concentration maps of caffeine to be obtained from formulation samples, within the skin model. Compared with the conventional Raman detection method, PM‐SRS lowered the background tissue‐oriented signals and supplied high‐contrast images of caffeine. Conclusion We successfully established real‐time skin penetration profiles of caffeine from different formulations. PM‐SRS microscopy proved to be a powerful, non‐invasive, and real‐time depth‐profile imaging technique for use in quantitative studies of topically applied drugs.
Collapse
Affiliation(s)
- Risa Iguchi
- R&D Department, Matsumoto Trading Co., Ltd., Tokyo, Japan
| | - Yoji Nishi
- R&D Department, Matsumoto Trading Co., Ltd., Tokyo, Japan
| | | | - Terumasa Ito
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiaki Matsuoka
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuhiko Misawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
16
|
Ito T, Iguchi R, Matsuoka F, Nishi Y, Ogihara T, Misawa K. Label-free skin penetration analysis using time-resolved, phase-modulated stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6545-6557. [PMID: 34745755 PMCID: PMC8548008 DOI: 10.1364/boe.436142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Skin penetration analysis of topically applied drugs or active compounds is essential in biomedical applications. Stimulated Raman scattering (SRS) microscopy is a promising label-free skin penetration analysis tool. However, conventional SRS microcopy suffers from limited signal contrast owing to strong background signals, which prevents its use in low-concentration drug imaging. Here, we present a skin penetration analysis method of topical agents using recently developed phase-modulated SRS (PM-SRS) microscopy. PM-SRS uses phase modulation and time-resolved signal detection to suppress both nonlinear background signals and Raman background signals from a tissue. A proof-of-concept experiment with a topically applied skin moisturizing agent (ectoine) in an in vitro skin tissue model revealed that PM-SRS with 1.7-ps probe delay yields a signal contrast 40 times higher than that of conventional amplitude-modulated SRS (AM-SRS). Skin penetration measurement of a topical therapeutic drug (loxoprofen sodium) showed that the mean drug concentration at the tissue surface layer after 240 min was 47.3 ± 4.8 mM. The proposed PM-SRS microscopy can be employed to monitor the spatial and temporal pharmacokinetics of small molecules in the millimolar concentration regime.
Collapse
Affiliation(s)
- Terumasa Ito
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Risa Iguchi
- Matsumoto Trading Co., Ltd., 1-13-7 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-0022, Japan
| | - Fumiaki Matsuoka
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoji Nishi
- Matsumoto Trading Co., Ltd., 1-13-7 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-0022, Japan
| | - Tsuyoshi Ogihara
- Matsumoto Trading Co., Ltd., 1-13-7 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-0022, Japan
| | - Kazuhiko Misawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
17
|
Vibrational Spectroscopy in Assessment of Early Osteoarthritis-A Narrative Review. Int J Mol Sci 2021; 22:ijms22105235. [PMID: 34063436 PMCID: PMC8155859 DOI: 10.3390/ijms22105235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease, and there is currently no effective medicine to cure it. Early prevention and treatment can effectively reduce the pain of OA patients and save costs. Therefore, it is necessary to diagnose OA at an early stage. There are various diagnostic methods for OA, but the methods applied to early diagnosis are limited. Ordinary optical diagnosis is confined to the surface, while laboratory tests, such as rheumatoid factor inspection and physical arthritis checks, are too trivial or time-consuming. Evidently, there is an urgent need to develop a rapid nondestructive detection method for the early diagnosis of OA. Vibrational spectroscopy is a rapid and nondestructive technique that has attracted much attention. In this review, near-infrared (NIR), infrared, (IR) and Raman spectroscopy were introduced to show their potential in early OA diagnosis. The basic principles were discussed first, and then the research progress to date was discussed, as well as its limitations and the direction of development. Finally, all methods were compared, and vibrational spectroscopy was demonstrated that it could be used as a promising tool for early OA diagnosis. This review provides theoretical support for the application and development of vibrational spectroscopy technology in OA diagnosis, providing a new strategy for the nondestructive and rapid diagnosis of arthritis and promoting the development and clinical application of a component-based molecular spectrum detection technology.
Collapse
|
18
|
Abstract
Many dermatological studies have had limited success in revealing skin function because conventional histological methods are known to affect skin components. Recent progress in non-invasive optical imaging has enabled non-invasive visualization of the structure of each skin layer. However, it remains difficult to identify individual skin components. Alternatively, it is possible to obtain molecular vibrational signatures using spontaneous Raman scattering microscopy. Spontaneous Raman scattering microscopy requires long acquisition times and is rarely applied to skin imaging, especially because skin components, such as water and transepidermal agents, undergo relatively rapid changes. Consequently, non-linear Raman microscopies, such as coherent anti-Stokes Raman scattering and stimulated Raman scattering, have gradually been applied to acquire molecular imaging of skin tissue. In this review, the applications of Raman microscopies used to evaluate skin and research trends are presented. The applications of spontaneous Raman microscopy to in vivo human skin evaluation are first demonstrated with typical applications. Finally, the latest application of coherent Raman scattering microscopy to visualize 3D intracellular morphologies in the human epidermis during differentiation is described.
Collapse
Affiliation(s)
- Mariko Egawa
- Shiseido Global Innovation Center, 1-2-11, Takashima, Nishi-ku, Yokohama, Kanagawa 220-0011, Japan.
| |
Collapse
|
19
|
Bratchenko LA, Bratchenko IA, Khristoforova YA, Artemyev DN, Konovalova DY, Lebedev PA, Zakharov VP. Raman spectroscopy of human skin for kidney failure detection. JOURNAL OF BIOPHOTONICS 2021; 14:e202000360. [PMID: 33131189 DOI: 10.1002/jbio.202000360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The object of this paper is in vivo study of skin spectral-characteristics in patients with kidney failure by conventional Raman spectroscopy in near infrared region. The experimental dataset was subjected to discriminant analysis with the projection on latent structures (PLS-DA). Application of Raman spectroscopy to investigate the forearm skin in 85 adult patients with kidney failure (90 spectra) and 40 healthy adult volunteers (80 spectra) has yielded the accuracy of 0.96, sensitivity of 0.94 and specificity of 0.99 in terms of identifying the target subjects with kidney failure. The autofluorescence analysis in the near infrared region identified the patients with kidney failure among healthy volunteers of the same age group with specificity, sensitivity, and accuracy of 0.91, 0.84, and 0.88, respectively. When classifying subjects by the presence of kidney failure using the PLS-DA method, the most informative Raman spectral bands are 1315 to 1330, 1450 to 1460, 1700 to 1800 cm-1 . In general, the performed study demonstrates that for in vivo skin analysis, the conventional Raman spectroscopy can provide the basis for cost-effective and accurate detection of kidney failure and associated metabolic changes in the skin.
Collapse
Affiliation(s)
| | - Ivan A Bratchenko
- Department of Laser and Biotechnical Systems, Samara University, Samara, Russia
| | | | - Dmitry N Artemyev
- Department of Laser and Biotechnical Systems, Samara University, Samara, Russia
| | - Daria Y Konovalova
- Department of Internal Medicine, Samara State Medical University, Samara, Russia
| | - Peter A Lebedev
- Department of Internal Medicine, Samara State Medical University, Samara, Russia
| | - Valery P Zakharov
- Department of Laser and Biotechnical Systems, Samara University, Samara, Russia
| |
Collapse
|
20
|
Krombholz R, Lunter D. A New Method for In-Situ Skin Penetration Analysis by Confocal Raman Microscopy. Molecules 2020; 25:E4222. [PMID: 32942565 PMCID: PMC7571176 DOI: 10.3390/molecules25184222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/25/2022] Open
Abstract
In the development of dermal drug formulations and cosmetics, understanding the penetration properties of the active ingredients is crucial. Given that widespread methods, including tape stripping, lack in spatial resolution, while being time- and labour-intensive, Confocal Raman Microscopy is a promising alternative. In optimizing topically applied formulations, or the development of generic formulations, comparative in-situ measurements have a huge potential of saving time and resources. In this work, we show our approach to in-situ skin penetration analysis by confocal Raman Microscopy. To analyse feasibility of the approach, we used caffeine solutions as model vehicles and tested the effectiveness of 1,2-pentanediol as a penetration enhancer for delivery to the skin.
Collapse
Affiliation(s)
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany;
| |
Collapse
|
21
|
Zhang D, Bian Q, Zhou Y, Huang Q, Gao J. The application of label-free imaging technologies in transdermal research for deeper mechanism revealing. Asian J Pharm Sci 2020; 16:265-279. [PMID: 34276818 PMCID: PMC8261078 DOI: 10.1016/j.ajps.2020.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products, such as sunscreen and hair growth products. Researchers have tried to illustrate the transdermal process with diversified theories and technologies. Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach. Unfortunately, fluorescence labeling imaging, which is commonly used in biochemical research, is limited for transdermal research for most topical substances with a molecular mass less than 500 Da. Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes, no tissue destruction and an extensive substance detection capability, which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis, such as skin samples. Through the specific identification of topical substances and endogenous tissue components, label-free imaging technologies can provide abundant tissue distribution information, enrich theoretical and practical guidance for transdermal drug delivery systems. In this review, we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present, compare their advantages and disadvantages, and forecast development prospects.
Collapse
Affiliation(s)
- Danping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaoling Huang
- The Third People's Hospital of Hangzhou, Hangzhou 310012, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou 213000, China
- Corresponding author.
| |
Collapse
|
22
|
Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020; 12:E684. [PMID: 32698388 PMCID: PMC7407329 DOI: 10.3390/pharmaceutics12070684] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Johanna M. Brandner
- Department of Dermatology and Venerology, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (C.G.); (C.M.); (S.W.S.); (V.H.)
| |
Collapse
|
23
|
Jung N, Windbergs M. Raman spectroscopy in pharmaceutical research and industry. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the fast-developing fields of pharmaceutical research and industry, the implementation of Raman spectroscopy and related technologies has been very well received due to the combination of chemical selectivity and the option for non-invasive analysis of samples. This chapter explores established and potential applications of Raman spectroscopy, confocal Raman microscopy and related techniques from the early stages of drug development research up to the implementation of these techniques in process analytical technology (PAT) concepts for large-scale production in the pharmaceutical industry. Within this chapter, the implementation of Raman spectroscopy in the process of selection and optimisation of active pharmaceutical ingredients (APIs) and investigation of the interaction with excipients is described. Going beyond the scope of early drug development, the reader is introduced to the use of Raman techniques for the characterization of complex drug delivery systems, highlighting the technical requirements and describing the analysis of qualitative and quantitative composition as well as spatial component distribution within these pharmaceutical systems. Further, the reader is introduced to the application of Raman techniques for performance testing of drug delivery systems addressing drug release kinetics and interactions with biological systems ranging from single cells up to complex tissues. In the last part of this chapter, the advantages and recent developments of integrating Raman technologies into PAT processes for solid drug delivery systems and biologically derived pharmaceutics are discussed, demonstrating the impact of the technique on current quality control standards in industrial production and providing good prospects for future developments in the field of quality control at the terminal part of the supply chain and various other fields like individualized medicine.
On the way from the active drug molecule (API) in the research laboratory to the marketed medicine in the pharmacy, therapeutic efficacy of the active molecule and safety of the final medicine for the patient are of utmost importance. For each step, strict regulatory requirements apply which demand for suitable analytical techniques to acquire robust data to understand and control design, manufacturing and industrial large-scale production of medicines. In this context, Raman spectroscopy has come to the fore due to the combination of chemical selectivity and the option for non-invasive analysis of samples. Following the technical advancements in Raman equipment and analysis software, Raman spectroscopy and microscopy proofed to be valuable methods with versatile applications in pharmaceutical research and industry, starting from the analysis of single drug molecules as well as complex multi-component formulations up to automatized quality control during industrial production.
Collapse
|
24
|
Alonso C, Carrer V, Barba C, Coderch L. Caffeine delivery in porcine skin: a confocal Raman study. Arch Dermatol Res 2018; 310:657-664. [PMID: 30105449 DOI: 10.1007/s00403-018-1854-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Confocal Raman microscopy is a novel optical method for studies of pro-drug and drug delivery. This method is a promising technique that enables non-destructive measurement of the permeation profile through skin layers. Peaks of compounds are usually normalised to skin peaks (amino-acid and amide I) for semi-quantitative evaluation. The present study seeks to optimise a methodology for complete quantitative measurement of the amount of an active compound at different depths. Caffeine was used as a tracer to evaluate compound's skin penetration using confocal Raman microscopy. A semi-quantitative depth profile of caffeine was obtained with normalisation of the Raman intensities. These ratios of Raman intensities were correlated with the caffeine concentration using an external calibration curve. The calibration curve was carried out with porcine skin incubated in different concentrations of caffeine; afterwards, each skin sample was analysed by confocal Raman microscopy and HPLC to determine the relation between the Raman signal intensity and the caffeine concentration per skin mass and to create a depth profile. These correlation curves allow the full quantification of the caffeine in skin from Raman intensity ratios at different depths.
Collapse
Affiliation(s)
- Cristina Alonso
- Department of Chemicals and Surfactants Technology, Advanced Chemical Institute of Catalonia, (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - V Carrer
- Department of Chemicals and Surfactants Technology, Advanced Chemical Institute of Catalonia, (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - C Barba
- Department of Chemicals and Surfactants Technology, Advanced Chemical Institute of Catalonia, (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L Coderch
- Department of Chemicals and Surfactants Technology, Advanced Chemical Institute of Catalonia, (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
25
|
Bakonyi M, Gácsi A, Kovács A, Szűcs MB, Berkó S, Csányi E. Following-up skin penetration of lidocaine from different vehicles by Raman spectroscopic mapping. J Pharm Biomed Anal 2018. [PMID: 29524770 DOI: 10.1016/j.jpba.2018.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The application of local anesthetics, usually administered by subcutaneous injection, is common in the course of diagnostic, therapeutic, and cosmetic dermatology procedures. The effective dermal delivery of lidocaine could offer a solution to many adverse effects caused by needle insertion, such as pain, local reactions or toxicity, and additionally, it avoids the disruption of anatomical landmarks. Therefore, novel dermal formulations of local anesthetics are needed to overcome the barrier function of the skin and provide sufficient and prolonged anesthesia. In our study, we aimed to investigate and compare the penetration profiles of four different lidocaine containing formulations (hydrogel, oleogel, lyotropic liquid crystal and nanostructured lipid carrier) by Raman microscopic mapping of the drug. The application of Raman spectroscopy provided information about the spatial distribution of lidocaine in the skin ex vivo. The penetration of lidocaine from lyotropic liquid crystal and nanostructured carrier reached deeper skin layers and a higher amount of the drug was diffused into the skin, compared with hydrogel and oleogel. This study confirmed that nanostructured carriers can improve skin penetration properties of lidocaine and proved the applicability of Raman spectroscopy in the research of dermatological preparations ex vivo as a nondestructive, relatively easy and fast technique.
Collapse
Affiliation(s)
- Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária-Budai Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary.
| |
Collapse
|
26
|
Confocal Raman spectroscopy: In vivo measurement of physiological skin parameters - A pilot study. J Dermatol Sci 2017; 88:280-288. [PMID: 28826690 DOI: 10.1016/j.jdermsci.2017.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vivo application of confocal Raman spectroscopy (CRS) allows non-invasive depth measurement of the skin. Thereby obtained knowledge of the skin composition is essential to reliably assess the actual skin state. Besides other components, the skin cholesterol concentration is of interest; however, little is known about its connection to the cholesterol concentration quantified in venous blood. OBJECTIVE In this study, the skin composition of the volar forearm was characterised in vivo using CRS. In particular, the potential of CRS as a non-invasive method to determine cholesterol levels was validated. METHODS Raman spectra of the volar forearm of 15 participants were recorded twice within two weeks. Depth concentration profiles for major skin components were generated. Stratum corneum (SC) thickness was calculated from water concentration profiles. In order to examine the usability of dermal CRS for cholesterol level determination, results were compared to fasting total cholesterol values in venous blood as determined by an enzymatic method. RESULTS Depth concentration profiles for the skin components of interest showed a comparable curve progression for the participants. It was possible to link changes in concentration to physiological processes. Moreover, age-related differences could be found. Several novel mathematical approaches for the comparison of the skin cholesterol content and the blood cholesterol concentration have been developed. However, no correlation passed the Bonferroni multiple testing correction. CONCLUSION CRS serves as useful tool for the in vivo monitoring of skin components and hydration. Concentration depth profiles provide information about the current skin condition. No distinct correlation between the skin and blood cholesterol concentration was found within the scope of the present study. Concerning this matter, the heterogeneous distribution of cholesterol in the skin may be a factor influencing these results.
Collapse
|
27
|
Ören T, Anık Ü. Carboxylic acid functionalized multi-walled carbon nanotube assisted centri-voltammetry as a new approach for caffeine detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj02506h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Centri-voltammetry provides centrifugation and voltammetry in a single cell and was applied to the caffeine detection for the first time.
Collapse
Affiliation(s)
- Tuğba Ören
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli/Muğla
- Turkey
| | - Ülkü Anık
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli/Muğla
- Turkey
| |
Collapse
|
28
|
Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242:89-104. [PMID: 27612408 DOI: 10.1016/j.jconrel.2016.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
For preclinical testing of novel therapeutics, predictive in vitro models of the human skin are required to assess efficacy, absorption and safety. Simple as well as more sophisticated three-dimensional organotypic models of the human skin emerged as versatile and powerful tools simulating healthy as well as diseased skin states. Besides addressing the demands of research and industry, such models serve as valid alternative to animal testing. Recently, the acceptance of several models by regulatory authorities corroborates their role as important building block for preclinical development. However, valid assessment of readout parameters derived from these models requires suitable analytical techniques. Standard analytical methods are mostly destructive and limited regarding in-depth investigation on molecular level. The combination of adequate in vitro models with modern non-invasive analytical modalities bears a great potential to address important skin drug delivery related questions. Topics of interest are for instance the assessment of repeated dosing effects and xenobiotic biotransformation, which cannot be analyzed by destructive techniques. This review provides a comprehensive overview of current in vitro skin models differing in functional complexity and mimicking healthy as well as diseased skin states. Further, benefits and limitations regarding analytical evaluation of efficacy, absorption and safety of novel drug carrier systems applied to such models are discussed along with a prospective view of anticipated future directions. In addition, emerging non-invasive imaging modalities are introduced and their significance and potential to advance current knowledge in the field of skin drug delivery is explored.
Collapse
Affiliation(s)
- Viktoria Planz
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
29
|
Ruela ALM, Perissinato AG, Lino MEDS, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000300018] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
30
|
Mujica Ascencio S, Choe C, Meinke MC, Müller RH, Maksimov GV, Wigger-Alberti W, Lademann J, Darvin ME. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm 2016; 104:51-8. [PMID: 27108784 DOI: 10.1016/j.ejpb.2016.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin.
Collapse
Affiliation(s)
- Saul Mujica Ascencio
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Centro de Investigación e Innovación Tecnológica (CIITEC) del Instituto Politécnico Nacional (IPN), Cerrada de Cecati S/N, Col. Santa Catarina Azcapotzalco, México D.F. CP: 02250, Mexico
| | - ChunSik Choe
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rainer H Müller
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - George V Maksimov
- M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie Gory, 1-12, 119991 Moscow, Russia
| | | | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
31
|
From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis 2016; 8:1077-103. [PMID: 27079546 DOI: 10.4155/bio-2015-0030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.
Collapse
|
32
|
Lunter DJ. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles. Skin Pharmacol Physiol 2016; 29:92-101. [PMID: 27054960 DOI: 10.1159/000444806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). METHODS Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. RESULTS Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. CONCLUSION Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles.
Collapse
Affiliation(s)
- Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Faculty of Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Franzen L, Windbergs M. Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv Drug Deliv Rev 2015; 89:91-104. [PMID: 25868454 DOI: 10.1016/j.addr.2015.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 11/29/2022]
Abstract
In the field of skin research, confocal Raman microscopy is an upcoming analytical technique. Substantial technical progress in design and performance of the individual setup components like detectors and lasers as well as the combination with confocal microscopy enables chemically selective and non-destructive sample analysis with high spatial resolution in three dimensions. Due to these advantages, the technique bears tremendous potential for diverse skin applications ranging from the analysis of physiological component distribution in skin tissue and the diagnosis of pathological states up to biopharmaceutical investigations such as drug penetration kinetics within the different tissue layers. This review provides a comprehensive introduction about the basic principles of Raman microscopy highlighting the advantages and considering the limitations of the technique for skin applications. Subsequently, an overview about skin research studies applying Raman spectroscopy is given comprising various in vitro as well as in vivo implementations. Furthermore, the future perspective and potential of Raman microscopy in the field of skin research are discussed.
Collapse
Affiliation(s)
- Lutz Franzen
- Saarland University, Department of Biopharmaceutics and Pharmaceutical Technology, Saarbruecken, Germany
| | - Maike Windbergs
- Saarland University, Department of Biopharmaceutics and Pharmaceutical Technology, Saarbruecken, Germany; Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery, Saarbruecken, Germany; PharmBioTec GmbH, Saarbruecken, Germany.
| |
Collapse
|