1
|
Abdelaziz SA, Ahmed EM, Sadek M. Synthesis of homologous series of surfactants from renewable resources, structure-properties relationship, surface active performance, evaluation of their antimicrobial and anticancer potentialities. Sci Rep 2024; 14:13201. [PMID: 38851845 PMCID: PMC11162424 DOI: 10.1038/s41598-024-62905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.
Collapse
Affiliation(s)
- Shimaa A Abdelaziz
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| | - Entesar M Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt
| | - M Sadek
- Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt.
| |
Collapse
|
2
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
3
|
Ahmmed F, Al-Mijalli SH, Abdallah EM, Eissa IH, Ali F, Bhat AR, Jamalis J, Ben Hadda T, Kawsar SMA. Galactoside-Based Molecule Enhanced Antimicrobial Activity through Acyl Moiety Incorporation: Synthesis and In Silico Exploration for Therapeutic Target. Pharmaceuticals (Basel) 2023; 16:998. [PMID: 37513910 PMCID: PMC10385442 DOI: 10.3390/ph16070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a series of galactoside-based molecules, compounds of methyl β-d-galactopyranoside (MDGP, 1), were selectively acylated using 2-bromobenzoyl chloride to obtain 6-O-(2-bromobenzoyl) substitution products, which were then transformed into 2,3,4-tri-O-6-(2-bromobenzoyl) compounds (2-7) with various nontraditional acyl substituents. The chemical structures of the synthesized analogs were characterized by spectroscopic methods and physicochemical and elemental data analyses. The antimicrobial activities of the compounds against five human pathogenic bacteria and two phyto-fungi were evaluated in vitro and it was found that the acyl moiety-induced synthesized analogs exhibited varying levels of antibacterial activity against different bacteria, with compounds 3 and 6 exhibiting broad-spectrum activity and compounds 2 and 5 exhibiting activity against specific bacteria. Compounds 3 and 6 were tested for MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) based on their activity. The synthesized analogs were also found to have potential as a source of new antibacterial agents, particularly against gram-positive bacteria. The antifungal results suggested that the synthesized analogs could be a potential source of novel antifungal agents. Moreover, cytotoxicity testing revealed that the compounds are less toxic. A structure-activity relationship (SAR) investigation revealed that the lauroyl chain [CH3(CH2)10CO-] and the halo-aromatic chain [3(/4)-Cl.C6H4CO-] in combination with sugar, had the most potent activity against bacterial and fungal pathogens. Density functional theory (DFT)-calculated thermodynamic and physicochemical parameters, and molecular docking, showed that the synthesized molecule may block dengue virus 1 NS2B/NS3 protease (3L6P). A 150 ns molecular dynamic simulation indicated stable conformation and binding patterns in a stimulating environment. In silico ADMET calculations suggested that the designed (MDGP, 1) had good drug-likeness values. In summary, the newly synthesized MDGP analogs exhibit potential antiviral activity and could serve as a therapeutic target for dengue virus 1 NS2B/NS3 protease.
Collapse
Affiliation(s)
- Faez Ahmmed
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad M Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 116884, Egypt
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur 440033, India
| | | | - Taibi Ben Hadda
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda 60000, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
4
|
Snoch W, Jarek E, Milivojevic D, Nikodinovic-Runic J, Guzik M. Physicochemical studies of novel sugar fatty acid esters based on ( R)-3-hydroxylated acids derived from bacterial polyhydroxyalkanoates and their potential environmental impact. Front Bioeng Biotechnol 2023; 11:1112053. [PMID: 36845180 PMCID: PMC9947713 DOI: 10.3389/fbioe.2023.1112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar fatty acids esters are popular compounds widely used in both the nutritional, cosmetic and pharmaceutical industries due to their amphiphilic structure and consequent ability to reduce the surface tension of solutions. Furthermore, an important aspect in the implementation of any additives and formulations is their environmental impact. The properties of the esters depend on the type of sugar used and the hydrophobic component. In this work, selected physicochemical properties of new sugar esters based on lactose, glucose and galactose and hydroxy acids derived from bacterial polyhydroxyalkanoates are shown for the first time. Values for critical aggregation concentration, surface activity and pH make it possible that these esters could compete with other commercially used esters of similar chemical structure. The investigated compounds showed moderate emulsion stabilization abilities presented on the example of water-oil systems containing squalene and body oil. Their potential environmental impact appears to be low, as the esters are not toxic to Caenorhabditis elegans even at concentrations much higher than the critical aggregation concentration.
Collapse
Affiliation(s)
- Wojciech Snoch
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Maciej Guzik
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland,*Correspondence: Maciej Guzik,
| |
Collapse
|
5
|
Verboni M, Perinelli DR, Qiu CY, Tiboni M, Aluigi A, Lucarini S, Lam JKW, Duranti A. Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers. Pharmaceuticals (Basel) 2023; 16:223. [PMID: 37259370 PMCID: PMC9964938 DOI: 10.3390/ph16020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 10/28/2023] Open
Abstract
The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure-property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Carol Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
6
|
Verboni M, Sisti M, Campana R, Benedetti S, Palma F, Potenza L, Lucarini S, Duranti A. Synthesis and Biological Evaluation of 6- O-Sucrose Monoester Glycolipids as Possible New Antifungal Agents. Pharmaceuticals (Basel) 2023; 16:136. [PMID: 37259288 PMCID: PMC9966131 DOI: 10.3390/ph16020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 10/28/2023] Open
Abstract
A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| | | |
Collapse
|
7
|
Fernandes DA. Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging. Technol Cancer Res Treat 2023; 22:15330338231191493. [PMID: 37642945 PMCID: PMC10467409 DOI: 10.1177/15330338231191493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 08/31/2023] Open
Abstract
Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.
Collapse
|
8
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|
9
|
Verboni M, Benedetti S, Campana R, Palma F, Potenza L, Sisti M, Duranti A, Lucarini S. Synthesis and Biological Characterization of the New Glycolipid Lactose Undecylenate (URB1418). Pharmaceuticals (Basel) 2022; 15:456. [PMID: 35455453 PMCID: PMC9030338 DOI: 10.3390/ph15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6′-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 μg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a “green” procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (M.V.); (S.B.); (R.C.); (F.P.); (L.P.); (M.S.); (S.L.)
| | | |
Collapse
|
10
|
Tiboni M, Elmowafy E, El-Derany MO, Benedetti S, Campana R, Verboni M, Potenza L, Palma F, Citterio B, Sisti M, Duranti A, Lucarini S, Soliman ME, Casettari L. A combination of sugar esters and chitosan to promote in vivo wound care. Int J Pharm 2022; 616:121508. [PMID: 35123002 DOI: 10.1016/j.ijpharm.2022.121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/β-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/β-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lucia Potenza
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt; Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy.
| |
Collapse
|
11
|
Zhu JP, Liang MY, Ma YR, White LV, Banwell MG, Teng Y, Lan P. Enzymatic synthesis of an homologous series of long- and very long-chain sucrose esters and evaluation of their emulsifying and biological properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. MATERIALS 2022; 15:ma15051676. [PMID: 35268903 PMCID: PMC8910958 DOI: 10.3390/ma15051676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022]
Abstract
Bacterial colonization of polyurethane (PU) ureteral stents usually leads to severe and challenging clinical complications. As such, there is an increasing demand for an effective response to this unmet medical challenge. In this study, we offer a strategy based on the functionalization of PU stents with chitosan-fatty acid (CS-FA) derivatives to prevent bacterial colonization. Three different fatty acids (FAs), namely stearic acid (SA), oleic acid (OA), and linoleic acid (LinA), were successfully grafted onto chitosan (CS) polymeric chains. Afterwards, CS-FA derivatives-based solutions were coated on the surface of PU stents. The biological performance of the modified PU stents was evaluated against the L929 cell line, confirming negligible cytotoxicity of the developed coating formulations. The antibacterial potential of coated PU stents was also evaluated against several microorganisms. The obtained data indicate that the base material already presents an adequate performance against Staphylococcus aureus, which slightly improved with the coating. However, the performance of the PU stents against Gram-negative bacteria was markedly increased with the surface functionalization approach herein used. As a result, this study reveals the potential use of CS-FA derivatives for surface functionalization of ureteral PU stents and allows for conjecture on its successful application in other biomedical devices.
Collapse
|
13
|
6'- O-Lactose Ester Surfactants as an Innovative Opportunity in the Pharmaceutical Field: From Synthetic Methods to Biological Applications. Pharmaceuticals (Basel) 2021; 14:ph14121306. [PMID: 34959706 PMCID: PMC8706069 DOI: 10.3390/ph14121306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/27/2023] Open
Abstract
Glycolipid surfactants are biocompatible and biodegradable compounds characterized by potential applications in various sectors including pharmaceuticals, cosmetics, agriculture, and food production. A specific overview regarding synthetic methodologies and properties of 6′-lactose-based surfactants is presented herein, particularly all the synthetic approaches to this class of lactose esters, such as enzymatic and traditional organic syntheses. Moreover, detailed descriptions of physicochemical data and biocompatibility properties of these molecules, that is, surface tension, critical micelle concentration, emulsifying ability, foaming, particle size distribution, biocompatibility, and safety, are described. Biological applications with a focus on permeability enhancing, antimicrobial activity, and antibiofilm properties of 6′-lactose-based esters are also reported.
Collapse
|
14
|
Chemical Reactivity Descriptors and Molecular Docking Studies of Octyl 6-O-hexanoyl-β-D-glucopyranosides. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3727.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study describes different chemical reactivity predictions of 6-O-hexanoylation of octyl β-D-glucopyranosides prepared from octyl β-D-glucopyranoside (OBG). Also, molecular docking of the OBGs was conducted against SARS-CoV-2 main protease (6LU7), urate oxidase (Aspergillus flavus; 1R51) and glucoamylase (Aspergillus niger; 1KUL). DFT optimization indicated that glucoside 1 and its ester derivatives 2-7 exist in 4C1 conformation with C1 symmetry. Interestingly, the addition of ester group(s) decreased the HOMO-LUMO gap (Δԑ) of glucosides indicating their good chemical reactivities, whereas the other chemical reactivity descriptors indicated their moderate reactive nature. This fact of moderate reactivity was confirmed by their molecular docking with 6LU7, 1R51 and 1KUL. All the esters showed a moderate binding affinity with these three proteins. More importantly, incorporation of the ester group(s) increased binding affinity with 6LU7 and 1R51, whereas decreased with 1KUL as compared to non-ester OBG 1.
Collapse
|
15
|
DEVİ P, MATİN MM, BHUİYAN MMH, HOSSAİN ME. Synthesis, and Spectral Characterization of 6-O-Octanoyl-1,2-O-isopropylidene-α-D-glucofuranose Derivatives. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.929996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Snoch W, Wnuk D, Witko T, Staroń J, Bojarski AJ, Jarek E, Plou FJ, Guzik M. In Search of Effective Anticancer Agents-Novel Sugar Esters Based on Polyhydroxyalkanoate Monomers. Int J Mol Sci 2021; 22:7238. [PMID: 34281292 PMCID: PMC8268987 DOI: 10.3390/ijms22137238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the deadliest illness globally. Searching for new solutions in cancer treatments is essential because commonly used mixed, targeted and personalized therapies are sometimes not sufficient or are too expensive for common patients. Sugar fatty acid esters (SFAEs) are already well-known as promising candidates for an alternative medical tool. The manuscript brings the reader closer to methods of obtaining various SFAEs using combined biological, chemical and enzymatic methods. It presents how modification of SFAE's hydrophobic chains can influence their cytotoxicity against human skin melanoma and prostate cancer cell lines. The compound's cytotoxicity was determined by an MTT assay, which followed an assessment of SFAEs' potential metastatic properties in concentrations below IC50 values. Despite relatively high IC50 values (63.3-1737.6 μM) of the newly synthesized SFAE, they can compete with other sugar esters already described in the literature. The chosen bioactives caused low polymerization of microtubules and the depolymerization of actin filaments in nontoxic levels, which suggest an apoptotic rather than metastatic process. Altogether, cancer cells showed no propensity for metastasis after treating them with SFAE. They confirmed that lactose-based compounds seem the most promising surfactants among tested sugar esters. This manuscript creates a benchmark for creation of novel anticancer agents based on 3-hydroxylated fatty acids of bacterial origin.
Collapse
Affiliation(s)
- Wojciech Snoch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Jakub Staroń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.S.); (A.J.B.)
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Francisco J. Plou
- Instituto de Catalisis y Petroleoquimica, CSIC (Spanish National Research Council), Calle de Marie Curie, 2, 28049 Madrid, Spain;
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| |
Collapse
|
17
|
McCartney F, Perinelli DR, Tiboni M, Cavanagh R, Lucarini S, Filippo Palmieri G, Casettari L, Brayden DJ. Permeability-enhancing effects of three laurate-disaccharide monoesters across isolated rat intestinal mucosae. Int J Pharm 2021; 601:120593. [PMID: 33857587 DOI: 10.1016/j.ijpharm.2021.120593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Laurate (C12)-sucrose esters are established intestinal epithelial permeation enhancers (PEs) with potential for use in oral delivery. Most studies have examined blends of ester rather than specific monoesters, with little variation on the sugar moiety. To investigate the influence of varying the sugar moiety on monoester performance, we compared three monoesters: C12-sucrose, C12-lactose, and C12-trehalose. The assays were: critical micellar concentration (CMC) in Krebs-Henseleit buffer, MTS and lactate dehydrogenase assays in Caco-2 cells, transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [14C] mannitol across isolated rat intestinal mucosae, and tissue histology. For CMC, the rank order was C12-trehalose (0.21 mM) < C12-sucrose (0.34 mM) < C12-lactose (0.43 mM). Exposure to Caco-2 cells for 120 min produced TC50 values in the MTS assay from 0.1 to 0.4 mM. Each ester produced a concentration-dependent decrease in TEER across rat mucosae with 80% reduction seen with 8 mM in 5 min, but C12-trehalose was less potent. C12-sucrose and C12-lactose increased the Papp of [14C] mannitol across mucosae with similar potency and efficacy, whereas C12-trehalose was not as potent or efficacious, even though it still increased flux. In the presence of the three esters, gross intestinal histology was unaffected except at 8 mM for C12-sucrose and C12-lactose. In conclusion, the three esters enhanced permeability likely via tight junction modulation in rat intestinal tissue. C12-trehalose was not quite as efficacious, but neither did it damage tissue to the same extent. All three can be considered as potential PEs to be included in oral formulations.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Diego R Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Robert Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | | | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Enzymatic Synthesis of Glucose Fatty Acid Esters Using SCOs as Acyl Group-Donors and Their Biological Activities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062700] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sugar fatty acid esters, especially glucose fatty acid esters (GEs), have broad applications in food, cosmetic and pharmaceutical industries. In this research, the fatty acid moieties derived from polyunsaturated fatty acids containing single-cell oils (SCOs) (i.e., those produced from Cunninghamella echinulata, Umbelopsis isabellina and Nannochloropsis gaditana, as well as from olive oil and an eicosapentaenoic acid (EPA) concentrate) were converted into GEs by enzymatic synthesis, using lipases as biocatalysts. The GE synthesis was monitored using thin-layer chromatography, FTIR and in situ NMR. It was found that GE synthesis carried out using immobilized Candida antarctica B lipase was very effective, reaching total conversion of reactants. It was shown that EPA-GEs were very effective against several pathogenic bacteria and their activity can be attributed to their high EPA content. Furthermore, C. echinulata-GEs were more effective against pathogens compared with U. isabellina-GEs, probably due to the presence of gamma linolenic acid (GLA) in the lipids of C. echinulata, which is known for its antimicrobial activity, in higher concentrations. C. echinulata-GEs also showed strong insecticidal activity against Aedes aegypti larvae, followed by EPA-GEs, olive oil-GEs and N. gaditana-GEs. All synthesized GEs induced apoptosis of the SKOV-3 ovarian cancer cell line, with the apoptotic rate increasing significantly after 48 h. A higher percentage of apoptosis was observed in the cells treated with EPA-GEs, followed by C. echinulata-GEs, U. isabellina-GEs and olive oil-GEs. We conclude that SCOs can be used in the synthesis of GEs with interesting biological properties.
Collapse
|
19
|
Total Synthesis of Natural Disaccharide Sambubiose. Pharmaceuticals (Basel) 2020; 13:ph13080198. [PMID: 32824527 PMCID: PMC7465796 DOI: 10.3390/ph13080198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023] Open
Abstract
A practical and robust synthetic method to obtain the natural disaccharide sambubiose (2-O-β-D-xylopyranosyl-D-glucopyranose) is reported, exploring the key step in the synthesis, i.e., stereoselective O-glycosylation. Specifically, the best combinations of glycoside donors and acceptors were identified, stereospecific control of the reaction was achieved by screening several catalysts and protection/deprotection steps were evaluated and improved. The best result was obtained by coupling allyl 3,5,6-tri-O-benzyl-β-D-glucofuranoside with 2,3,4-tri-O-acetyl-D-xylopiranosyl-α-trichloro acetimidate in the presence of trimethylsilyl triflate as a catalyst giving the corresponding protected target compound as a correct single isomer. The latter was transformed accordingly into the desired final product by deprotection steps (deallylation, deacetylation, and debenzylation). Sambubiose was synthesized into a satisfactory and higher overall yield than previously reported and was also characterized.
Collapse
|
20
|
Lan P, Du M, Teng Y, Banwell MG, Nie H, Reaney MJT, Wang Y. Structural Modifications of a Flaxseed Lignan in Pursuit of Higher Liposolubility: Evaluation of the Antioxidant and Permeability Properties of the Resulting Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14152-14159. [PMID: 31747278 DOI: 10.1021/acs.jafc.9b06264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While lignans and their biogenetic precursors can have various health benefits, the poor liposolubilities of such phenolic systems have restricted their application as antioxidants in the food industry. The research reported here was aimed at addressing these matters through derivatizing certain forms of such compounds and then assessing their properties as potential nutraceuticals. In particular, crude flaxseed lignan was purified to afford secoisolariciresinol diglucoside (SDG, 1) that was then subjected to structural modification. By such means, the SDG long-chain fatty acid esters 4-9 and 11-13, the fully acetylated SDG 10, secoisolariciresinol (SECO, 2), and anhydrosecoisolariciresinol (ASECO, 14) were obtained. The antioxidant activities of these derivatives were determined while their permeability properties were evaluated. Such studies revealed that certain SDG derivatives possessing useful liposolubilities also retained their antioxidative properties, as well as being capable of permeating Caco-2 cell monolayers while being nontoxic to them. SDG fatty acid esters 4-9 and 11-13 could be developed into emulsifiers with enhanced health benefits, especially considering their improved antioxidative (ca. <11 000 μmol Trolox/g) and permeability properties. This study thus highlights strategies for the structural modification of SDG so as to generate derivatives with superior properties in terms of their utility in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Muxiang Du
- National R&D Center for Freshwater Fish Processing , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | | | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | | | - Martin J T Reaney
- Department of Plant Sciences , University of Saskatchewan , 51 Campus Dr. , Saskatoon , Saskatchewan S7N 5A8 , Canada
| | | |
Collapse
|
21
|
Campana R, Merli A, Verboni M, Biondo F, Favi G, Duranti A, Lucarini S. Synthesis and Evaluation of Saccharide-Based Aliphatic and Aromatic Esters as Antimicrobial and Antibiofilm Agents. Pharmaceuticals (Basel) 2019; 12:ph12040186. [PMID: 31861227 PMCID: PMC6958352 DOI: 10.3390/ph12040186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/23/2022] Open
Abstract
A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Duranti
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| | - Simone Lucarini
- Correspondence: (A.D.); (S.L.); Tel.: +39-0722-303501 (A.D.); +39-0722-303333 (S.L.)
| |
Collapse
|
22
|
Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24214010. [PMID: 31694341 PMCID: PMC6864828 DOI: 10.3390/molecules24214010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
This work presents a synthesis method for new surfactants based on lactose. The compounds obtained belong to the homologous series of O-β-D-Galactopyranosyl-(1→4)-N-alkyl-(3-sulfopropyl)-D-glucosamine hydrochloride, containing 12 and 14 carbon atoms in the alkyl chain, and they may serve as an example of cationic surfactants. The newly synthesized compounds exhibit good surface properties, low value of CMC (Critical Micelle Concentration) and good wetting properties. These surfactants' ability to produce foam is considerably higher than in the commercial surfactants. Moreover, antibacterial and fungistatic activity was carried out by well diffusion assay against the selected bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa), yeasts (Candida albicans) and filamentous fungi (Fusarium graminearum, F. avenaceum, F. oxysporum, F. culmorum, F. equiseti, Alternaria alternata and Botrytis cinerea). It was shown that the resulting quaternary salts significantly inhibit the growth of tested microorganisms. Antibacterial and fungistatic activity of the surfactant compounds varied depending on the species of bacteria or fungi. The results of antimicrobial activity of new lactose derivatives indicate that the compounds exhibit larger or similar antagonistic activity against tested bacteria and fungi than typical cationic surfactant cetylpyridinium chloride.
Collapse
|
23
|
Jumina J, Mutmainah M, Purwono B, Kurniawan YS, Syah YM. Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives. Molecules 2019; 24:molecules24203692. [PMID: 31615093 PMCID: PMC6832165 DOI: 10.3390/molecules24203692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial infections remains a serious challenge in food industries due to their resistance to some of the well-known antibacterial and antifungal agents. In this work, a novel monomyristoyl ester (fructosyl monomyristate) and two other derivatives (i.e., glucosyl and galactosyl monomyristates) were successfully synthesized from myristic acid and monosaccharides in two-step reactions. First, the myristic acid was converted to myristoyl chloride, and then the myristoyl chloride was reacted with fructose, glucose and galactose separately to produce the corresponding monosaccharide monomyristate derivatives. The structures of the synthesized products were confirmed by Fourier transform infrared (FTIR), proton and carbon nuclear magnetic resonance (1H- and 13C-NMR), and mass spectral (MS) data. The monomyristates esters were obtained in reaction yields of 45.80%-79.49%. The esters were then evaluated for their antimicrobial activity using the disc diffusion test. It was found that the esters exhibited a medium antibacterial activity against gram-positive bacteria; however, they showed a weak antibacterial activity against gram-negative bacteria. Amongst the esters, galactosyl myristate yielded the highest antibacterial activity against Salmonella typhimurium, Staphylococcus aureus and Bacillus subtilis, while glucosyl monomyristate exhibited the highest antibacterial activity only against Escherichia coli. Additionally, all products showed remarkable antifungal activity against Candida albicans. These findings demonstrate that monosaccharide monomyristate derivatives are promising for use as biocompatible antimicrobial agents in the future.
Collapse
Affiliation(s)
- Jumina Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Mutmainah Mutmainah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Bambang Purwono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Yana Maolana Syah
- Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| |
Collapse
|
24
|
Nguyen PC, Nguyen MTT, Lee CK, Oh IN, Kim JH, Hong ST, Park JT. Enzymatic synthesis and characterization of maltoheptaose-based sugar esters. Carbohydr Polym 2019; 218:126-135. [DOI: 10.1016/j.carbpol.2019.04.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
|
25
|
Influence of Chemical Modifications of Polyhydroxyalkanoate-Derived Fatty Acids on Their Antimicrobial Properties. Catalysts 2019. [DOI: 10.3390/catal9060510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sugar esters are bioactive compounds derived from renewable resources. They consist of a sugar moiety with attached non-polar part – usually a fatty acid. These compounds find uses in cosmetic, food and pharmaceutical industries as surfactants due to their physicochemical and antimicrobial activities. In this study we have produced fatty acids for sugar ester synthesis from bacterially derived polyesters, namely polyhydroxyalkanoates (PHAs). We have developed methodology to decorate PHA monomers with a fluorinated moiety. With aid of biocatalysis a series of glucose esters was created with unmodified and modified PHA monomers. All synthesised compounds showed moderate antimicrobial activity.
Collapse
|
26
|
Aprodu A, Mantaj J, Raimi-Abraham B, Vllasaliu D. Evaluation of a Methylcellulose and Hyaluronic Acid Hydrogel as a Vehicle for Rectal Delivery of Biologics. Pharmaceutics 2019; 11:pharmaceutics11030127. [PMID: 30893796 PMCID: PMC6471061 DOI: 10.3390/pharmaceutics11030127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022] Open
Abstract
Biologics have changed the management of Inflammatory Bowel Disease (IBD), but there are concerns regarding unexpected systemic toxicity and loss of therapeutic response following administration by injection. Local delivery of biologics directly to the inflamed mucosa via rectal enema administration addresses the problems associated with systemic administration. Hydrogels are potentially useful delivery vehicles enabling rectal administration of biologics. Here, we prepared a hydrogel system based on methylcellulose (MC) and hyaluronic acid (HA), which possesses mucosal healing properties, incorporating a model macromolecular drug, namely (fluorescently-labeled) bovine serum albumin (BSA). The BSA-loaded MCHA hydrogel showed temperature-dependent gelation (liquid-like at 20 °C and gel-like at 37 °C) and shear thinning behavior, with these being important and desirable characteristics for rectal application (enabling easy application and retention). BSA release from the MCHA system at 37 °C was linear, with 50% of the loaded drug released within 2 h. The system demonstrated acceptable toxicity towards intestinal (colon) Caco-2 epithelial cells, even at high concentrations. Importantly, application of the BSA-loaded MCHA hydrogel to polarized Caco-2 monolayers, with or without an exemplar absorption enhancer, resulted in transintestinal permeability of BSA. The study therefore indicates that the MCHA hydrogel shows potential for topical (rectal) delivery of biologics in IBD.
Collapse
Affiliation(s)
- Andreea Aprodu
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Julia Mantaj
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Bahijja Raimi-Abraham
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Driton Vllasaliu
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| |
Collapse
|
27
|
Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019; 11:pharmaceutics11010041. [PMID: 30669434 PMCID: PMC6359609 DOI: 10.3390/pharmaceutics11010041] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022] Open
Abstract
The application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
Collapse
|
28
|
Liang MY, Banwell MG, Wang Y, Lan P. Effect of Variations in the Fatty Acid Residue of Lactose Monoesters on Their Emulsifying Properties and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12594-12603. [PMID: 30395455 DOI: 10.1021/acs.jafc.8b05794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lactose fatty acid esters are high-value-added derivatives of lactose and represent a class of biodegradable, non-ionic, low-molecular-weight surfactants (emulsifiers) that have considerable potential in the food, cosmetic, and pharmaceutical industries. Certain lactose esters have also garnered attention for their biological activities. In this work, we detail syntheses of a homologous series of 6'- O-acyllactose esters of varying alkyl chain length (from 6 to 18 carbons) and report on their activities as surfactants as well as their antimicrobial and cytotoxic properties. The structure-property profiles established in this work revealed that while the medium-chain esters displayed excellent emulsifying properties and moderate antimicrobial activities, their longer chain congeners exhibited the highest cytotoxicities. As such, we have established that certain 6'- O-acyllactose esters are superior to their sucrose-derived and commercially exploited counterparts. These results will serve as a useful guide for the development of lactose esters as, inter alia, emulsifiers in the food industry.
Collapse
Affiliation(s)
- Min-Yi Liang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Yong Wang
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
| | - Ping Lan
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , Guangdong 519070 , People's Republic of China
| |
Collapse
|
29
|
Ascorbyl Palmitate Hydrogel for Local, Intestinal Delivery of Macromolecules. Pharmaceutics 2018; 10:pharmaceutics10040188. [PMID: 30326565 PMCID: PMC6321208 DOI: 10.3390/pharmaceutics10040188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Biologics have changed the management of inflammatory bowel disease (IBD), but there are concerns with unexpected systemic toxicity and loss of therapeutic response following administration by injection. Rectal administration of biologics offers potentially reduced therapy costs, as well as safer and more effective local delivery to inflammation sites. Hydrogels are potentially useful carriers of biologics for improved delivery to the inflamed intestinal mucosa. Here, we prepared a hydrogel system based on ascorbyl palmitate (AP) and incorporated a model macromolecular drug (fluorescently-labelled dextran) into the system. Characterization of gel properties included rheology, drug loading and release, cytotoxicity, and drug delivery in an in vitro intestinal model. We report that this hydrogel can be formed under a moderate environment that is amenable to incorporation of some biologics. The system showed a shear-thinning behavior. AP hydrogel released approximately 60% of the drug within 5 h and showed reasonable a cytotoxicity profile. The study therefore provides evidence that AP hydrogel has potential for local delivery of macromolecules to the intestinal mucosa in IBD.
Collapse
|
30
|
Probing the Action of Permeation Enhancers Sodium Cholate and N-dodecyl-β-D-maltoside in a Porcine Jejunal Mucosal Explant System. Pharmaceutics 2018; 10:pharmaceutics10040172. [PMID: 30279382 PMCID: PMC6320951 DOI: 10.3390/pharmaceutics10040172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
The small intestinal epithelium constitutes a major permeability barrier for the oral administration of therapeutic drugs with poor bioavailability, and permeation enhancers (PEs) are required to increase the paracellular and/or transcellular uptake of such drugs. Many PEs act as surfactants by perturbing cell membrane integrity and causing permeabilization by leakage or endocytosis. The aim of the present work was to study the action of sodium cholate (NaC) and N-dodecyl-β-D-maltoside (DDM), using a small intestinal mucosal explant system. At 2 mM, both NaC and DDM caused leakage into the enterocyte cytosol of the fluorescent probe Lucifer Yellow, but they also blocked the constitutive endocytotic pathway from the brush border. In addition, an increased paracellular passage of 3-kDa Texas Red Dextran into the lamina propria was observed. By electron microscopy, both PEs disrupted the hexagonal organization of microvilli of the brush border and led to the apical extrusion of vesicle-like and amorphous cell debris to the lumen. In conclusion, NaC and DDM acted in a multimodal way to increase the permeability of the jejunal epithelium both by paracellular and transcellular mechanisms. However, endocytosis, commonly thought to be an uptake mechanism that may be stimulated by PEs, was not involved in the transcellular process.
Collapse
|
31
|
Ma YR, Banwell MG, Yan R, Lan P. Comparative Study of the Emulsifying Properties of a Homologous Series of Long-Chain 6'- O-Acylmaltose Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8832-8840. [PMID: 30052434 DOI: 10.1021/acs.jafc.8b02391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Emulsifiers derived from renewable resources such as sucrose and fatty acids are high volume commodity chemicals and currently produced by traditional chemical synthesis techniques that lack the capacity to form the most desirable monoesters (of sucrose) in a selective and efficient fashion. The development of new emulsifiers (surfactants) from alternate, structurally simpler but nevertheless abundant disaccharides such as maltose represents a possible solution to this problem. Herein, we report the facile enzymatic preparation of a homologous series of 6'- O-acylmaltose esters and an in-depth evaluation of them revealing that their surfactant properties and thermal stabilities are largely determined by the length of the fatty acid chain. In the first such comparison, we show that the foaming and emulsifying effects of certain of these maltose monoesters are superior to those of their sucrose-derived and commercially exploited counterparts. As such, maltose esters have considerable potential as emulsifiers for use in, for example, the food industry.
Collapse
Affiliation(s)
- Ya-Ru Ma
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , 519070 , China
- Research School of Chemistry, Institute of Advanced Studies , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Rian Yan
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
| | - Ping Lan
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 , China
- Institute for Advanced and Applied Chemical Synthesis , Jinan University , Zhuhai , 519070 , China
| |
Collapse
|
32
|
Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
He S, Li C, Zhang Q, Ding J, Liang XJ, Chen X, Xiao H, Chen X, Zhou D, Huang Y. Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS NANO 2018; 12:7272-7281. [PMID: 29906087 DOI: 10.1021/acsnano.8b03476] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drug, targeting ligand, and imaging agent are the three essential components in a nanoparticle-based drug delivery system. However, tremendous batch-to-batch variation of composition and drug content typically accompany the current approaches of building these components together. Herein, we report the design of photoactivatable platinum(IV) (Pt(IV)) amphiphiles containing one or two hydrophilic lactose targeting ligands per hydrophobic Pt(IV) prodrug for an all-in-one precise nanomedicine. Self-assembly of these Pt(IV) amphiphiles results in either micelle or vesicle formation with a fixed Pt/targeting moiety ratio and a constantly high content of Pt. The micelles and vesicles are capable of hepatoma cell-targeting, fluorescence/Pt-based CT imaging and have shown effective anticancer efficacy under laser irradiation in vitro and in vivo. This photoactivatable, active self-targeting, and multimodal theranostic amphiphile strategy shows great potential in constructing precise nanomedicine.
Collapse
Affiliation(s)
- Shasha He
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chan Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Haihua Xiao
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
34
|
Lucarini S, Fagioli L, Cavanagh R, Liang W, Perinelli DR, Campana M, Stolnik S, Lam JKW, Casettari L, Duranti A. Synthesis, Structure⁻Activity Relationships and In Vitro Toxicity Profile of Lactose-Based Fatty Acid Monoesters as Possible Drug Permeability Enhancers. Pharmaceutics 2018; 10:pharmaceutics10030081. [PMID: 29970849 PMCID: PMC6161018 DOI: 10.3390/pharmaceutics10030081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/27/2022] Open
Abstract
Permeability enhancers are receiving increased attention arising from their ability to increase transepithelial permeability and thus, bioavailability of orally or pulmonary administered biopharmaceutics. Here we present the synthesis and the in vitro assaying of a series of lactose-based non-ionic surfactants, highlighting the relationship between their structure and biological effect. Using tensiometric measurements the critical micelle concentrations (CMCs) of the surfactants were determined and demonstrate that increasing hydrophobic chain length reduces surfactant CMC. In vitro testing on Caco-2 intestinal and Calu-3 airway epithelia revealed that cytotoxicity, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, is presented for most of the surfactants at concentrations greater than their CMCs. Further biological study demonstrates that application of cytotoxic concentrations of the surfactants is associated with depolarizing mitochondrial membrane potential, increasing nuclear membrane permeability and activation of effector caspases. It is, therefore, proposed that when applied at cytotoxic levels, the surfactants are inducing apoptosis in both cell lines tested. Importantly, through the culture of epithelial monolayers on Transwell® supports, the surfactants demonstrate the ability to reversibly modulate transepithelial electrical resistance (TEER), and thus open tight junctions, at non-toxic concentrations, emphasizing their potential application as safe permeability enhancers in vivo.
Collapse
Affiliation(s)
- Simone Lucarini
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Laura Fagioli
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Robert Cavanagh
- Drug Delivery and Tissue Engineering Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Wanling Liang
- Department of Pharmacology & Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | | | - Mario Campana
- Science and Technology Facilities Council (STFC), ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Snjezana Stolnik
- Drug Delivery and Tissue Engineering Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| | - Andrea Duranti
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, 61029 Urbino (PU), Italy.
| |
Collapse
|
35
|
Enayati M, Gong Y, Goddard JM, Abbaspourrad A. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. Food Chem 2018; 266:508-513. [PMID: 30381219 DOI: 10.1016/j.foodchem.2018.06.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/19/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
In this work, lactose fatty acid esters were enzymatically synthesized from fatty acids and lactose using Candida antarctica B lipase (CALB) in organic solvents. Products were purified using a solvent extraction method and analyzed using ATR-FTIR and surface-active properties measurements. Results showed that hexanes and acetonitrile provide the highest conversions for both free and immobilized lipases, up to 77% and 93% respectively. The conversion rate of esterification is solvent-dependent for free lipase; the conversion rate of immobilized lipase still shows solvent dependency, but to a lesser degree. Surface tension, interfacial tension, critical micelle concentration (CMC), and contact angles were also measured for all of the samples, showing the potentials of these sugar esters as naturally derived surfactants for the food industry.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA
| | - Yijing Gong
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA
| | - Julie M Goddard
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca 14853, NY, USA.
| |
Collapse
|
36
|
Perinelli DR, Lucarini S, Fagioli L, Campana R, Vllasaliu D, Duranti A, Casettari L. Lactose oleate as new biocompatible surfactant for pharmaceutical applications. Eur J Pharm Biopharm 2017; 124:55-62. [PMID: 29258912 DOI: 10.1016/j.ejpb.2017.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications.
Collapse
Affiliation(s)
- D R Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino (MC) 62032, Italy
| | - S Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - L Fagioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - R Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - D Vllasaliu
- School of Pharmacy, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - A Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy
| | - L Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento n° 6, Urbino (PU) 61029, Italy.
| |
Collapse
|
37
|
Perinelli DR, Vllasaliu D, Bonacucina G, Come B, Pucciarelli S, Ricciutelli M, Cespi M, Itri R, Spinozzi F, Palmieri GF, Casettari L. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur J Pharm Biopharm 2017; 119:419-425. [PMID: 28743594 DOI: 10.1016/j.ejpb.2017.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 02/04/2023]
Abstract
The use of surfactants as drug permeability enhancers across epithelial barriers remains a challenge. Although many studies have been performed in this field using synthetic surfactants, the possibility of employing surfactants produced by bacteria (the so called biosurfactants") has not been completely explored. Among them, one of the most well characterized class of biosurfactants are rhamnolipids. The aim of the study was to investigate the effect of rhamnolipids on the epithelial permeability of fluorescein isothiocyanate-labelled dextrans 4kDa and 10kDa (named FD4 and FD10, respectively) as model for macromolecular drugs, across Caco-2 and Calu-3monolayers. These cell lines were selected as an in vitro model for the oral and respiratory administration of drugs. Before performing permeability studies, rhamnolipids mixture was analysed in terms of chemical composition and quantification through mass analysis and HPLC. Cytotoxicity and transepithelial electrical resistance (TEER) studies were also conducted using Caco-2 and Calu-3 cell lines. A dose-dependent effect of rhamnolipids on TEER and FD4 or FD10 permeability across both cell lines was observed at relatively safe concentrations. Overall, results suggest the possibility of using rhamnolipids as absorption enhancers for macromolecular drugs through a reversible tight junction opening (paracellular route), despite more investigations are required to confirm their mechanism of action in term of permeability.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Driton Vllasaliu
- School of Pharmacy, University of Lincoln, Green Lane, Lincoln LN6 7DL, UK
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Benedetta Come
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Massimo Ricciutelli
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Marco Cespi
- School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, IFUSP, Rua do Matão, Travessa R, 187, 05508-090 São Paulo, Brazil
| | - Francesco Spinozzi
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | | | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| |
Collapse
|
38
|
Staroń J, Dąbrowski JM, Cichoń E, Guzik M. Lactose esters: synthesis and biotechnological applications. Crit Rev Biotechnol 2017; 38:245-258. [PMID: 28585445 DOI: 10.1080/07388551.2017.1332571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.e. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.
Collapse
Affiliation(s)
- Jakub Staroń
- a Institute of Pharmacology of the Polish Academy of Sciences , Kraków , Poland
| | | | - Ewelina Cichoń
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| | - Maciej Guzik
- c Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences , Kraków , Poland
| |
Collapse
|