1
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
2
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
3
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M, Al-Qahtani NH. Lipid-based nanoparticles: innovations in ocular drug delivery. Front Mol Biosci 2024; 11:1421959. [PMID: 39355534 PMCID: PMC11442363 DOI: 10.3389/fmolb.2024.1421959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Ocular drug delivery presents significant challenges due to intricate anatomy and the various barriers (corneal, tear, conjunctival, blood-aqueous, blood-retinal, and degradative enzymes) within the eye. Lipid-based nanoparticles (LNPs) have emerged as promising carriers for ocular drug delivery due to their ability to enhance drug solubility, improve bioavailability, and provide sustained release. LNPs, particularly solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and cationic nanostructured lipid carriers (CNLCs), have emerged as promising solutions for enhancing ocular drug delivery. This review provides a comprehensive summary of lipid nanoparticle-based drug delivery systems, emphasizing their biocompatibility and efficiency in ocular applications. We evaluated research and review articles sourced from databases such as Google Scholar, TandFonline, SpringerLink, and ScienceDirect, focusing on studies published between 2013 and 2023. The review discusses the materials and methodologies employed in the preparation of SLNs, NLCs, and CNLCs, focusing on their application as proficient carriers for ocular drug delivery. CNLCs, in particular, demonstrate superior effectiveness attributed due to their electrostatic bioadhesion to ocular tissues, enhancing drug delivery. However, continued research efforts are essential to further optimize CNLC formulations and validate their clinical utility, ensuring advancements in ocular drug delivery technology for improved patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam’s Kalsekar Technical Campus School of Pharmacy, Affiliated to the University of Mumbai, New Panvel, Maharashtra, India
| | | | - Anas Ahmad
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohd. Ashif Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
| | - Thomas J. Webster
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials, UFPI, Teresina, Brazil
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, United States
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Noora H. Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
6
|
Esposito E, Pozza E, Contado C, Pula W, Bortolini O, Ragno D, Toldo S, Casciano F, Bondi A, Zauli E, Secchiero P, Zauli G, Melloni E. Microfluidic Fabricated Liposomes for Nutlin-3a Ocular Delivery as Potential Candidate for Proliferative Vitreoretinal Diseases Treatment. Int J Nanomedicine 2024; 19:3513-3536. [PMID: 38623081 PMCID: PMC11018138 DOI: 10.2147/ijn.s452134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Proliferative vitreoretinal diseases (PVDs) represent a heterogeneous group of pathologies characterized by the presence of retinal proliferative membranes, in whose development retinal pigment epithelium (RPE) is deeply involved. As the only effective treatment for PVDs at present is surgery, we aimed to investigate the potential therapeutic activity of Nutlin-3a, a small non-genotoxic inhibitor of the MDM2/p53 interaction, on ARPE-19 cell line and on human RPE primary cells, as in vitro models of RPE and, more importantly, to formulate and evaluate Nutlin-3a loaded liposomes designed for ophthalmic administration. Methods Liposomes were produced using an innovative approach by a microfluidic device under selection of different conditions. Liposome size distribution was evaluated by photon correlation spectroscopy and centrifugal field flow fractionation, while the liposome structure was studied by transmission electron microscopy and Fourier-transform infrared spectroscopy. The Nutlin-3a entrapment capacity was evaluated by ultrafiltration and HPLC. Nutlin-3a biological effectiveness as a solution or loaded in liposomes was evaluated by viability, proliferation, apoptosis and migration assays and by morphological analysis. Results The microfluidic formulative study enabled the selection of liposomes composed of phosphatidylcholine (PC) 5.4 or 8.2 mg/mL and 10% ethanol, characterized by roundish vesicular structures with 150-250 nm mean diameters. Particularly, liposomes based on the lower PC concentration were characterized by higher stability. Nutlin-3a was effectively encapsulated in liposomes and was able to induce a significant reduction of viability and migration in RPE cell models. Conclusion Our results lay the basis for a possible use of liposomes for the ocular delivery of Nutlin-3a.
Collapse
Affiliation(s)
- Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Catia Contado
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Olga Bortolini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Sofia Toldo
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, I-44121, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, I-44121, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| | - Giorgio Zauli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, I-44121, Italy
| | - Elisabetta Melloni
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, I-44121, Italy
| |
Collapse
|
7
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Yang Q, Zhang T, Wu Y, Liang Q, Zhao W, Liu R, Jin X. Progress in the Application of Microneedles in Eye Disorders and the Proposal of the Upgraded Microneedle with Spinule. Pharm Res 2024; 41:203-222. [PMID: 38337104 DOI: 10.1007/s11095-024-03658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE In the local administration methods for treating eye diseases, the application of microneedles has great potential due to the shortcomings of low efficacy and significant side effects of local administration preparations. This article provides ideas for the research on the application of ophthalmic microneedle in the treatment of eye diseases. RESULTS This article analyzes the physiological structures of the eyes, ocular diseases and its existing ocular preparations in sequence. Finally, this article reviews the development and trends of ocular microneedles in recent years, and summarizes and discusses the drugs of ocular microneedles as well as the future directions of development. At the same time, according to the inspiration of previous work, the concept of "microneedle with spinule" is proposed for the first time, and its advantages and limitations are discussed in the article. CONCLUSIONS At present, the application of ocular microneedles still faces multiple challenges. The aspects of auxiliary devices, appearance, the properties of the matrix materials, and preparation technology of ophthalmic microneedle are crucial for their application in the treatment of eye diseases.
Collapse
Affiliation(s)
- Qiannan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Tingting Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyue Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Wanqi Zhao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Jin
- Military Medicine Section, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, Dongli District, China.
| |
Collapse
|
9
|
Prchalova E, Kohoutova Z, Knittelova K, Malinak D, Musilek K. Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Arch Toxicol 2023; 97:2839-2860. [PMID: 37642747 DOI: 10.1007/s00204-023-03587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
Collapse
Affiliation(s)
- Eliska Prchalova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Creteanu A, Lisa G, Vasile C, Popescu MC, Spac AF, Tantaru G. Development of Solid Lipid Nanoparticles for Controlled Amiodarone Delivery. Methods Protoc 2023; 6:97. [PMID: 37888029 PMCID: PMC10609381 DOI: 10.3390/mps6050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The aims of this study were to improve its solubility by encapsulating amiodarone into solid lipid nanoparticles using two excipients-Compritol® 888 ATO (pellets) (C888) as a lipid matrix and Transcutol® (T) as a surfactant. Six types of amiodarone-loaded solid lipid nanoparticles (AMD-SLNs) were obtained using a hot homogenization technique followed by ultrasonication with varying sonication parameters. AMD-SLNs were characterized by their size distribution, polydispersity index, zeta potential, entrapment efficiency, and drug loading. Based on the initial evaluation of the entrapment efficiency, only three solid lipid nanoparticle formulations (P1, P3, and P5) were further tested. They were evaluated through scanning electron microscopy, Fourier-transform infrared spectrometry, near-infrared spectrometry, thermogravimetry, differential scanning calorimetry, and in vitro dissolution tests. The P5 formulation showed optimum pharmaco-technical properties, and it had the greatest potential to be used in oral pharmaceutical products for the controlled delivery of amiodarone.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania
| | - Maria-Cristina Popescu
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania
| | - Adrian Florin Spac
- Department of Phisico Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| | - Gladiola Tantaru
- Department of Analytical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| |
Collapse
|
11
|
Zhang Y, Yang J, Ji Y, Liang Z, Wang Y, Zhang J. Development of Osthole-Loaded Microemulsions as a Prospective Ocular Delivery System for the Treatment of Corneal Neovascularization: In Vitro and In Vivo Assessments. Pharmaceuticals (Basel) 2023; 16:1342. [PMID: 37895813 PMCID: PMC10610237 DOI: 10.3390/ph16101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osthole (OST), a natural coumarin compound, has shown a significant inhibitory effect on corneal neovascularization (CNV). But, its effect on treating CNV is restricted by its water insolubility. To overcome this limitation, an OST-loaded microemulsion (OST-ME) was created to improve the drug's therapeutic effect on CNV after topical administration. The OST-ME formulation comprised Capryol-90 (CP-90), Cremophor® EL (EL-35), Transcutol-P (TSP) and water, and sodium hyaluronate (SH) was also included to increase viscosity. The OST-ME had a droplet size of 16.18 ± 0.02 nm and a low polydispersity index (0.09 ± 0.00). In vitro drug release from OST-ME fitted well to the Higuchi release kinetics model. Cytotoxicity assays demonstrated that OST-ME was not notably toxic to human corneal epithelial cells (HCECs), and the formulation had no irritation to rabbit eyes. Ocular pharmacokinetics studies showed that the areas under the concentration-time curves (AUC0-t) in the cornea and conjunctiva were 19.74 and 63.96 μg/g*min after the administration of OST-ME, both of which were 28.2- and 102.34-fold higher than those after the administration of OST suspension (OST-Susp). Moreover, OST-ME (0.1%) presented a similar therapeutic effect to commercially available dexamethasone eye drops (0.025%) on CNV in mouse models. In conclusion, the optimized OST-ME exhibited good tolerance and enhanced 28.2- and 102.34-fold bioavailability in the cornea and conjunctiva tissues compared with suspensions in rabbit eyes. The OST-ME is a potential ocular drug delivery for anti-CNV.
Collapse
Affiliation(s)
- Yali Zhang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Yang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yinjian Ji
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen Liang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Wang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junjie Zhang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| |
Collapse
|
12
|
Zembala J, Forma A, Zembala R, Januszewski J, Zembala P, Adamowicz D, Teresiński G, Buszewicz G, Flieger J, Baj J. Technological Advances in a Therapy of Primary Open-Angle Glaucoma: Insights into Current Nanotechnologies. J Clin Med 2023; 12:5798. [PMID: 37762739 PMCID: PMC10531576 DOI: 10.3390/jcm12185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Dominik Adamowicz
- University Clinical Center, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (J.B.)
| |
Collapse
|
13
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
14
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Aceves-Franco LA, Sanchez-Aguilar OE, Barragan-Arias AR, Ponce-Gallegos MA, Navarro-Partida J, Santos A. The Evolution of Triamcinolone Acetonide Therapeutic Use in Retinal Diseases: From Off-Label Intravitreal Injection to Advanced Nano-Drug Delivery Systems. Biomedicines 2023; 11:1901. [PMID: 37509540 PMCID: PMC10377205 DOI: 10.3390/biomedicines11071901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Ophthalmic drug delivery to the posterior segment of the eye has been challenging due to the complex ocular anatomy. Intravitreal injection of drugs was introduced to deliver therapeutic doses in the posterior segment. Different posterior segment diseases including age-related macular degeneration, diabetic macular edema, retinal vein occlusions, uveitis, and cystoid macular edema, among others, have been historically treated with intravitreal corticosteroids injections, and more recently with intravitreal corticosteroids drug implants. Triamcinolone acetonide (TA) is the most frequently used intraocular synthetic corticosteroid. Using nanoparticle-based TA delivery systems has been proposed as an alternative to intravitreal injections in the treatment of posterior segment diseases. From these novel delivery systems, topical liposomes have been the most promising strategy. This review is oriented to exhibit triamcinolone acetonide drug evolution and its results in treating posterior segment diseases using diverse delivery platforms.
Collapse
Affiliation(s)
- Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | | | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
16
|
Ana RD, Gliszczyńska A, Sanchez-Lopez E, Garcia ML, Krambeck K, Kovacevic A, Souto EB. Precision Medicines for Retinal Lipid Metabolism-Related Pathologies. J Pers Med 2023; 13:jpm13040635. [PMID: 37109021 PMCID: PMC10145959 DOI: 10.3390/jpm13040635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidation of lipids and lipoproteins contributes to inflammation processes that promote the development of eye diseases. This is a consequence of metabolism dysregulation; for instance, that of the dysfunctional peroxisomal lipid metabolism. Dysfunction of lipid peroxidation is a critical factor in oxidative stress that causes ROS-induced cell damage. Targeting the lipid metabolism to treat ocular diseases is an interesting and effective approach that is now being considered. Indeed, among ocular structures, retina is a fundamental tissue that shows high metabolism. Lipids and glucose are fuel substrates for photoreceptor mitochondria; therefore, retina is rich in lipids, especially phospholipids and cholesterol. The imbalance in cholesterol homeostasis and lipid accumulation in the human Bruch's membrane are processes related to ocular diseases, such as AMD. In fact, preclinical tests are being performed in mice models with AMD, making this area a promising field. Nanotechnology, on the other hand, offers the opportunity to develop site-specific drug delivery systems to ocular tissues for the treatment of eye diseases. Specially, biodegradable nanoparticles constitute an interesting approach to treating metabolic eye-related pathologies. Among several drug delivery systems, lipid nanoparticles show attractive properties, e.g., no toxicological risk, easy scale-up and increased bioavailability of the loaded active compounds. This review analyses the mechanisms involved in ocular dyslipidemia, as well as their ocular manifestations. Moreover, active compounds as well as drug delivery systems which aim to target retinal lipid metabolism-related diseases are thoroughly discussed.
Collapse
Affiliation(s)
- Raquel da Ana
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08007 Barcelona, Spain
| | - Karolline Krambeck
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Health Sciences School, Guarda Polytechnic Institute, 6300-035 Guarda, Portugal
| | - Andjelka Kovacevic
- Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eliana B Souto
- UCIBIO-Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
González-Fernández FM, Delledonne A, Nicoli S, Gasco P, Padula C, Santi P, Sissa C, Pescina S. Nanostructured Lipid Carriers for Enhanced Transscleral Delivery of Dexamethasone Acetate: Development, Ex Vivo Characterization and Multiphoton Microscopy Studies. Pharmaceutics 2023; 15:pharmaceutics15020407. [PMID: 36839729 PMCID: PMC9961953 DOI: 10.3390/pharmaceutics15020407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Corticosteroids, although highly effective for the treatment of both anterior and posterior ocular segment inflammation, still nowadays struggle for effective drug delivery due to their poor solubilization capabilities in water. This research work aims to develop nanostructured lipid carriers (NLC) intended for periocular administration of dexamethasone acetate to the posterior segment of the eye. Pre-formulation studies were initially performed to find solid and liquid lipid mixtures for dexamethasone acetate solubilization. Pseudoternary diagrams at 65 °C were constructed to select the best surfactant based on the macroscopic transparency and microscopic isotropy of the systems. The resulting NLC, obtained following an organic solvent-free methodology, was composed of triacetin, Imwitor® 491 (glycerol monostearate >90%) and tyloxapol with Z-average = 106.9 ± 1.2 nm, PDI = 0.104 ± 0.019 and zeta potential = -6.51 ± 0.575 mV. Ex vivo porcine sclera and choroid permeation studies revealed a considerable metabolism in the sclera of dexamethasone acetate into free dexamethasone, which demonstrated higher permeation capabilities across both tissues. In addition, the NLC behavior once applied onto the sclera was further studied by means of multiphoton microscopy by loading the NLC with the fluorescent probe Nile red.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| |
Collapse
|
18
|
Minocha N, Sharma N, Verma R, Kaushik D, Pandey P. Solid Lipid Nanoparticles: Peculiar Strategy to Deliver Bio-Proactive Molecules. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:228-242. [PMID: 35301957 DOI: 10.2174/1872210516666220317143351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Novel Drug Delivery Systems (NDDS) provide numerous benefits compared to conventional dosage forms. Poor aqueous solubility, low bioavailability, frequent dosing, and particular hydrophilic lipophilic character of the drug are the biological factors associated with the traditional systems leading to the development of SLNs. OBJECTIVE For improving the solubility profile, enhancing the bioavailability, and attaining the best possible therapeutic effect of lipid inclined or aqueous inclined drug, formulating solid lipid nanoparticles is the best choice. METHODS Solid Lipid Nanoparticles (SLNs) have been projected as a colloidal carrier system with a size of 50-1,000 nm, collectively combining the benefits of other colloidal systems like liposomes, emulsions, etc., for delivering the drug at the target site. High absorption, high stability, and efficient drug packing enhance the pharmacokinetic and pharmacodynamic properties of the packed drug. RESULT Solid Lipid Nanoparticles can be developed in different dosage forms and administered via routes such as nasal, rectal, oral, topical, vaginal, ocular, and parenteral. They have higher physicochemical stability and the batch size can be easily scaled up at a low cost. Lipophilic as well as hydrophilic drugs can be easily incorporated into solid lipid nanoparticles. CONCLUSION In this manuscript, the authors have reviewed different aspects of solid lipid nanoparticles, major principles behind mechanism methods, recent patents, applications, and therapeutic potentials of solid lipid nanoparticles.
Collapse
Affiliation(s)
- Neha Minocha
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, Haryana, India
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram 122103, Haryana, India
| | - Nidhi Sharma
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar 201204, Uttar Pradesh, India
| | - Ravinder Verma
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122018, Haryana, India
| |
Collapse
|
19
|
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces 2022; 220:112899. [DOI: 10.1016/j.colsurfb.2022.112899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
20
|
Lambuk L, Suhaimi NAA, Sadikan MZ, Jafri AJA, Ahmad S, Nasir NAA, Uskoković V, Kadir R, Mohamud R. Nanoparticles for the treatment of glaucoma-associated neuroinflammation. EYE AND VISION 2022; 9:26. [PMID: 35778750 PMCID: PMC9250254 DOI: 10.1186/s40662-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Recently, a considerable amount of literature has emerged around the theme of neuroinflammation linked to neurodegeneration. Glaucoma is a neurodegenerative disease characterized by visual impairment. Understanding the complex neuroinflammatory processes underlying retinal ganglion cell loss has the potential to improve conventional therapeutic approaches in glaucoma. Due to the presence of multiple barriers that a systemically administered drug has to cross to reach the intraocular space, ocular drug delivery has always been a challenge. Nowadays, studies are focused on improving the current therapies for glaucoma by utilizing nanoparticles as the modes of drug transport across the ocular anatomical and physiological barriers. This review offers some important insights on the therapeutic advancements made in this direction, focusing on the use of nanoparticles loaded with anti-inflammatory and neuroprotective agents in the treatment of glaucoma. The prospect of these novel therapies is discussed in relation to the current therapies to alleviate inflammation in glaucoma, which are being reviewed as well, along with the detailed molecular and cellular mechanisms governing the onset and the progression of the disease.
Collapse
|
21
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
22
|
Romeo A, Bonaccorso A, Carbone C, Lupo G, Daniela Anfuso C, Giurdanella G, Caggia C, Randazzo C, Russo N, Romano GL, Bucolo C, Rizzo M, Tosi G, Thomas Duskey J, Ruozi B, Pignatello R, Musumeci T. Melatonin loaded hybrid nanomedicine: DoE approach, optimization and in vitro study on diabetic retinopathy model. Int J Pharm 2022; 627:122195. [PMID: 36115466 DOI: 10.1016/j.ijpharm.2022.122195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Melatonin (MEL) is a pleiotropic neurohormone of increasing interest as a neuroprotective agent in ocular diseases. Improving the mucoadhesiveness is a proposed strategy to increase the bioavailability of topical formulations. Herein, the design and optimization of MEL-loaded lipid-polymer hybrid nanoparticles (mel-LPHNs) using Design of Experiment (DoE) was performed. LPHNs consisted of PLGA-PEG polymer nanoparticles coated with a cationic lipid-shell. The optimized nanomedicine showed suitable size for ophthalmic administration (189.4 nm; PDI 0.260) with a positive surface charge (+39.8 mV), high encapsulation efficiency (79.8 %), suitable pH and osmolarity values, good mucoadhesive properties and a controlled release profile. Differential Scanning Calorimetry and Fourier-Transform Infrared Spectroscopy confirmed the encapsulation of melatonin in the systems and the interaction between lipids and polymer matrix. Biological evaluation in an in vitro model of diabetic retinopathy demonstrated enhanced neuroprotective and antioxidant activities of mel-LPHNs, compared to melatonin aqueous solution at the same concentration (0.1 and 1 μM). A modified Draize test was performed to assess the ocular tolerability of the formulation showing no signs of irritation. To the best our knowledge, this study reported for the first time the development of mel-LPHNs, a novel and safe hybrid platform suitable for the topical management of retinal diseases.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Gabriella Lupo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Giovanni Giurdanella
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Cinzia Caggia
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Cinzia Randazzo
- NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania, Italy.
| | - Giovanni Luca Romano
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Claudio Bucolo
- Department of Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy.
| | - Milena Rizzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy.
| | - Giovanni Tosi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Jason Thomas Duskey
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Barbara Ruozi
- Department of Life Sciences, Nanotech Lab, Te.Far.T.I., University of Modena & Reggio Emilia, Via Campi 103, Modena 41125, Italy.
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6 - 95125 Catania, Italy; NANO-i, Research Centre for Ocular Nanotechnology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
23
|
da Ana R, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-Based Nanoparticulate Systems for the Ocular Delivery of Bioactives with Anti-Inflammatory Properties. Int J Mol Sci 2022; 23:ijms232012102. [PMID: 36292951 PMCID: PMC9603520 DOI: 10.3390/ijms232012102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022] Open
Abstract
The complexity of the eye structure and its physiology turned ocular drug administration into one of the most challenging topics in the pharmaceutical field. Ocular inflammation is one of the most common ophthalmic disorders. Topical administration of anti-inflammatory drugs is also commonly used as a side treatment in tissue repair and regeneration. The difficulty in overcoming the eye barriers, which are both physical and chemical, reduces drug bioavailability, and the frequency of administration must be increased to reach the therapeutic effect. However, this can cause serious side effects. Lipid nanoparticles seem to be a great alternative to ocular drug delivery as they are composed from natural excipients and can encapsulate both hydrophilic and lipophilic drugs of different sources, and their unique properties, as their excellent biocompatibility, safety and adhesion allow to increase the bioavailability, compliance and achieve a sustained drug release. They are also very stable, easy to produce and scale up, and can be lyophilized or sterilized with no significant alterations to the release profile and stability. Because of this, lipid nanoparticles show a great potential to be an essential part of the new therapeutic technologies in ophthalmology to deliver synthetic and natural anti-inflammatory drugs. In fact, there is an increasing interest in natural bioactives with anti-inflammatory activities, and the use of nanoparticles for their site-specific delivery. It is therefore expected that, in the near future, many more studies will promote the development of new nanomedicines resulting in clinical studies of new drugs formulations.
Collapse
Affiliation(s)
- Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznan, Poland
- Correspondence: (A.Z.); (E.B.S.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (A.Z.); (E.B.S.)
| |
Collapse
|
24
|
Yang J, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Li J, Zhang J. Development of a Luliconazole Nanoemulsion as a Prospective Ophthalmic Delivery System for the Treatment of Fungal Keratitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:2052. [PMID: 36297487 PMCID: PMC9608689 DOI: 10.3390/pharmaceutics14102052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Luliconazole (LCZ), a novel imidazole drug, has broad-spectrum and potential antifungal effects, which makes it a possible cure for fungal keratitis; nevertheless, its medical use in ocular infections is hindered by its poor solubility. The purpose of this study was to design and optimize LCZ nanoemulsion (LCZ-NE) formulations using the central composite design-response surface methodology, and to investigate its potential in improving bioavailability following ocular topical administration. The LCZ-NE formulation was composed of Capryol 90, ethoxylated hydrogenated castor oil, Transcutol® P and water. The shape of LCZ-NE was spherical and uniform, with a droplet size of 18.43 ± 0.05 nm and a low polydispersity index (0.070 ± 0.008). The results of an in vitro release of LCZ study demonstrated that the LCZ-NE released more drug than an LCZ suspension (LCZ-Susp). Increases in the inhibition zone indicated that the in vitro antifungal activity of the LCZ-NE was significantly improved. An ocular irritation evaluation in rabbits showed that the LCZ-NE had a good tolerance in rabbit eyes. Ocular pharmacokinetics analysis revealed improved bioavailability in whole eye tissues that were treated with LCZ-NE, compared with those treated with LCZ-Susp. In conclusion, the optimized LCZ-NE formulation exhibited excellent physicochemical properties, good tolerance, enhanced antifungal activity and bioavailability in eyes. This formulation would be safe, and shows promise in effectively treating ocular fungal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| |
Collapse
|
25
|
Thiruchenthooran V, Świtalska M, Bonilla L, Espina M, García ML, Wietrzyk J, Sánchez-López E, Gliszczyńska A. Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers. Int J Mol Sci 2022; 23:ijms231911310. [PMID: 36232614 PMCID: PMC9570096 DOI: 10.3390/ijms231911310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 μM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marta Świtalska
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Joanna Wietrzyk
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); (A.G.)
| |
Collapse
|
26
|
Onugwu AL, Attama AA, Nnamani PO, Onugwu SO, Onuigbo EB, Khutoryanskiy VV. Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
28
|
Marathe S, Shadambikar G, Mehraj T, Sulochana SP, Dudhipala N, Majumdar S. Development of α-Tocopherol Succinate-Based Nanostructured Lipid Carriers for Delivery of Paclitaxel. Pharmaceutics 2022; 14:1034. [PMID: 35631620 PMCID: PMC9145488 DOI: 10.3390/pharmaceutics14051034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 12/21/2022] Open
Abstract
The management of retinoblastoma (RB) involves the use of invasive treatment regimens. Paclitaxel (PTX), an effective antineoplastic compound used in the treatment of a wide range of malignant tumors, poses treatment challenges due to systemic toxicity, rapid elimination, and development of resistance. The goal of this work was to develop PTX-loaded, α-tocopherol succinate (αTS)-based, nanostructured lipid carrier (NLCs; αTS-PTX-NLC) and PEGylated αTS-PTX-NLC (αTS-PTX-PEG-NLC) to improve ocular bioavailability. The hot homogenization method was used to prepare the NLCs, and repeated measures ANOVA analysis was used for formulation optimization. αTS-PTX-NLC and αTS-PTX-PEG-NLC had a mean particle size, polydispersity index and zeta potential of 186.2 ± 3.9 nm, 0.17 ± 0.03, −33.2 ± 1.3 mV and 96.2 ± 3.9 nm, 0.27 ± 0.03, −39.15 ± 3.2 mV, respectively. The assay and entrapment efficiency of both formulations was >95.0%. The NLC exhibited a spherical shape, as seen from TEM images. Sterilized (autoclaved) formulations were stable for up to 60 days (last time point checked) under refrigerated conditions. PTX-NLC formulations exhibited an initial burst release and 40% drug release, overall, in 48 h. The formulations exhibited desirable physicochemical properties and could lead to an effective therapeutic option in the management of RB.
Collapse
Affiliation(s)
- Sushrut Marathe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Gauri Shadambikar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Tabish Mehraj
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Suresh P. Sulochana
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA; (S.M.); (G.S.); (T.M.); (S.P.S.); (N.D.)
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
29
|
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent Developments of Nanostructures for the Ocular Delivery of Natural Compounds. Front Chem 2022; 10:850757. [PMID: 35494641 PMCID: PMC9043530 DOI: 10.3389/fchem.2022.850757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ocular disorders comprising various diseases of the anterior and posterior segments are considered as the main reasons for blindness. Natural products have been identified as potential treatments for ocular diseases due to their anti-oxidative, antiangiogenic, and anti-inflammatory effects. Unfortunately, most of these beneficial compounds are characterised by low solubility which results in low bioavailability and rapid systemic clearance thus requiring frequent administration or requiring high doses, which hinders their therapeutic applications. Additionally, the therapeutic efficiency of ocular drug delivery as a popular route of drug administration for the treatment of ocular diseases is restricted by various anatomical and physiological barriers. Recently, nanotechnology-based strategies including polymeric nanoparticles, micelles, nanofibers, dendrimers, lipid nanoparticles, liposomes, and niosomes have emerged as promising approaches to overcome limitations and enhance ocular drug bioavailability by effective delivery to the target sites. This review provides an overview of nano-drug delivery systems of natural compounds such as thymoquinone, catechin, epigallocatechin gallate, curcumin, berberine, pilocarpine, genistein, resveratrol, quercetin, naringenin, lutein, kaempferol, baicalin, and tetrandrine for ocular applications. This approach involves increasing drug concentration in the carriers to enhance drug movement into and through the ocular barriers.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Science Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Antony D’Emanuele
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
30
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
31
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
32
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
33
|
Fernandes AR, Dos Santos T, Granja PL, Sanchez-Lopez E, Garcia ML, Silva AM, Souto EB. Permeability, anti-inflammatory and anti-VEGF profiles of steroidal-loaded cationic nanoemulsions in retinal pigment epithelial cells under oxidative stress. Int J Pharm 2022; 617:121615. [PMID: 35217072 DOI: 10.1016/j.ijpharm.2022.121615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is defined as a degenerative, progressive and multifactorial disorder that affects the macula with a complex etiology. The retinal pigment epithelium is a monolayer of cells that has the function to separate the surface of the choroid from the neural retina that is involved in the signal transduction leading to vision. The blood-aqueous barrier and the blood retinal barrier limit the permeation of drugs into the retina and thereby reducing their efficacy. Triamcinolone acetonide (TA) is widely used as anti-inflammatory and immunomodulatory drug that promotes the inhibition of the inflammatory processes. The factors that stimulate or inhibit angiogenesis in AMD create a local balance that is responsible for the growth of sub-retinal neovascularization. In AMD, the main angiogenic stimulus is the vascular endothelial growth factor (VEGF). In this work, nanoemulsions with cationic surfactants (mono- and dicationic DABCO and quinuclidine) were produced to deliver TA, and were found to reduce the production of tumor necrosis factor alpha (TNF-α), which stimulates the choroidal neovascularization development by upregulating the VEGF production, and consequently decreased the VEGF levels. Our results support the potential use of mono- and dicationic DABCO and quinuclidine-based cationic nanoemulsions for the delivery of TA in the treatment of AMD.
Collapse
Affiliation(s)
- Ana R Fernandes
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Tiago Dos Santos
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro L Granja
- i3S - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering National Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Maria L Garcia
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Amelia M Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
34
|
Design of Nanotechnological Carriers for Ocular Delivery of Mangiferin: Preformulation Study. Molecules 2022; 27:molecules27041328. [PMID: 35209120 PMCID: PMC8880740 DOI: 10.3390/molecules27041328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH−US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 μM TE/g) was higher than that of the free compound (3521 ± 271 μM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.
Collapse
|
35
|
Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, Isabel Lema M, Javier Otero-Espinar F. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm 2022; 172:144-156. [DOI: 10.1016/j.ejpb.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
|
36
|
Shahab MS, Rizwanullah M, Sarim Imam S. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Chakole CM, Sahoo P, Pandey J, Chauhan MK. A green chemistry approach towards synthesizing hydrogel for sustained ocular delivery of brinzolamide: In vitro and ex vivo evaluation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Galindo R, Sánchez-López E, Gómara MJ, Espina M, Ettcheto M, Cano A, Haro I, Camins A, García ML. Development of Peptide Targeted PLGA-PEGylated Nanoparticles Loading Licochalcone-A for Ocular Inflammation. Pharmaceutics 2022; 14:285. [PMID: 35214019 PMCID: PMC8874979 DOI: 10.3390/pharmaceutics14020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Licochalcone-A is a natural compound with anti-inflammatory properties. However, it possesses low water solubility, making its application for the treatment of ocular inflammation difficult. To overcome this drawback, biodegradable nanoparticles incorporating Licochalcone-A have been developed. Additionally, to avoid fast clearance and increase cellular internalization into the ocular tissues, PLGA nanoparticles have been functionalized using PEG and cell penetrating peptides (Tet-1 and B6). To optimize the formulations, a factorial design was carried out and short-term stability of the nanoparticles was studied. Moreover, morphology was also observed by transmission electron microcopy and in vitro drug release was carried out. Ocular tolerance of the formulations was ensured in vitro and in vivo and anti-inflammatory therapeutic efficacy was also assessed. Surface functionalized nanoparticles loading Licochalcone-A were developed with an average size below 200 nm, a positive surface charge, and a monodisperse population. The formulations were non-irritant and showed a prolonged Licochalcone-A release. Despite the fact that both Licochalcone-A Tet-1 and B6 functionalized nanoparticles demonstrated to be suitable for the treatment of ocular inflammation, B6 targeted nanoparticles provided greater therapeutic efficacy in in vivo assays.
Collapse
Affiliation(s)
- Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (R.G.); (M.E.); (A.C.); (M.L.G.)
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; (M.J.G.); (I.H.)
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (R.G.); (M.E.); (A.C.); (M.L.G.)
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; (M.J.G.); (I.H.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (A.C.)
| | - María José Gómara
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; (M.J.G.); (I.H.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (R.G.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (R.G.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; (M.J.G.); (I.H.)
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (R.G.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (M.E.); (A.C.)
| |
Collapse
|
39
|
Srivastava N, Aslam S. Recent Advancements and Patents on Buccal Drug Delivery Systems: A Comprehensive Review. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:308-325. [PMID: 34126916 DOI: 10.2174/1872210515666210609145144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The major requirement for a dosage form to be successful is its ability to penetrate the site of application and the bioavailability of the drug released from the dosage form. The buccal drug delivery is an influential route to deliver the drug into the body. Here, in this context, various novel approaches that include lipoidal carriers like ethosomes, transferosomes, niosomes etc. and electrospun nanofibers are discussed, with respect to buccal drug delivery. These carriers can be easily incorporated into buccal dosage forms like patches and gels that are responsible for increased permeation across the buccal epithelium. The in vivo methods of evaluation on animal models are conscribed here. The novel biocarriers of lipoidal and non-lipoidal nature can be utilized by loading the drug into them, which are helpful in preventing drug degradation and other drawbacks as compared to conventional formulations. The globally patented buccal formulations give us a wide context in literature about the patents filed and granted in the recent years. When it comes to patient compliance, age is an issue, which is also solved by the buccal route. The pediatric buccal formulations are researched for the customization to be delivered to children. Diseases like mouth ulcers, oral cancer, Parkinson's disease, aphthous stomatitis etc. have been successfully treated through the buccal route, which infers that the buccal drug delivery system is an effective and emerging area for formulation and development in the field of pharmaceutics.
Collapse
Affiliation(s)
- Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| | - Sahifa Aslam
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
40
|
Liang Z, Zhang Z, Yang J, Lu P, Zhou T, Li J, Zhang J. Assessment to the Antifungal Effects in vitro and the Ocular Pharmacokinetics of Solid-Lipid Nanoparticle in Rabbits. Int J Nanomedicine 2021; 16:7847-7857. [PMID: 34876813 PMCID: PMC8643199 DOI: 10.2147/ijn.s340068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction Fungal keratitis (FK) remains a severe sight-threatening disease, and case management is difficult due to ocular intrinsic barriers and drug shortages. Econazole (ECZ), a broad-spectrum antifungal agent, is limited in ocular applications due to the poor water solubility and strong irritant property. Methods We successfully prepared solid-lipid nanoparticle-based ECZ eye drops (E-SLNs) by microemulsion method, and the physicochemical properties of E-SLNs were investigated. Corneal permeability, antifungal ability against Fusarium spp., irritation and bioavailability compared to ECZ Suspension (E-Susp) were evaluated in vitro and in vivo. Results E-SLNs were a uniform and stable system which had an average particle size of 19 nm and a spherical morphology. E-SLNs also exhibited controlled release, enhanced antifungal activity without irritation. The pharmacokinetic analysis in vivo confirmed that E-SLNs showed an improved ocular bioavailability and the drug concentration in the cornea were above minimum inhibitory concentration (MIC) for 3 h after single administration. Conclusion The E-SLNs colloid system is a promising therapeutic approach for fungal keratitis and could serve as a candidate strategy for other ocular diseases.
Collapse
Affiliation(s)
- Zhen Liang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhen Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingjing Yang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ping Lu
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Tianyang Zhou
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
41
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
42
|
Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A, Souto EB, Cano A, Sánchez-López E. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2021; 7 Suppl 1:S121-S132. [PMID: 34862851 PMCID: PMC9340299 DOI: 10.1002/epi4.12567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is the second most prevalent neurological disease worldwide. It is mainly characterized by an electrical abnormal activity in different brain regions. The massive entrance of Ca2+ into neurons is the main neurotoxic process that lead to cell death and finally to neurodegeneration. Although there are a huge number of antiseizure medications, there are many patients who do not respond to the treatments and present refractory epilepsy. In this context, nanomedicine constitutes a promising alternative to enhance the central nervous system bioavailability of antiseizure medications. The encapsulation of different chemical compounds at once in a variety of controlled drug delivery systems gives rise to an enhanced drug effectiveness mainly due to their targeting and penetration into the deepest brain region and the protection of the drug chemical structure. Thus, in this review we will explore the recent advances in the development of drugs associated with polymeric and lipid-based nanocarriers as novel tools for the management of epilepsy disorders.
Collapse
Affiliation(s)
- Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Antoni Camins
- Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Centre for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
43
|
El-Emam GA, Girgis GNS, Hamed MF, El-Azeem Soliman OA, Abd El Gawad AEGH. Formulation and Pathohistological Study of Mizolastine-Solid Lipid Nanoparticles-Loaded Ocular Hydrogels. Int J Nanomedicine 2021; 16:7775-7799. [PMID: 34853513 PMCID: PMC8627895 DOI: 10.2147/ijn.s335482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 01/28/2023] Open
Abstract
Background Mizolastine (MZL) is a dual-action nonsedating topical antihistamine anti-inflammatory agent that is used to relieve allergic conditions, such as rhinitis and conjunctivitis. Solid lipid nanoparticles (SLNs) are advanced delivery system in ophthalmology, with the merits of increasing the corneal drug absorption and hence improved bioavailability with the objective of ocular drug targeting. Methods First, MZL was formulated as MZL-SLNs by hot homogenization/ultrasonication adopting a 32 full factorial design. Solid-state characterization, in vitro release, and stability studies have been performed. Then, the optimized MZL-SLNs formula has been incorporated into ocular hydrogels using 1.5% w/v Na alginate and 5% w/v polyvinylpyrrolidone K90. The gels were evaluated via in vitro release as well as in vivo studies by applying allergic conjunctivitis congestion in a rabbit-eye model. Results The optimized formula (F4) was characterized by the highest entrapment efficiency (86.5±1.47%), the smallest mean particle size (202.3±13.59 nm), and reasonable zeta potential (−22.03±3.65 mV). Solid-state characterization of the encapsulation of MZL in SLNs was undertaken. In vitro results showed a sustained release profile from MZL-SLNs up to 30 hours with a non-Fickian Higuchi kinetic model. Stability studies confirmed immutability of freeze-dried MZL-SLNs (F4) upon storage for 6 months. Finally, hydrogel formulations containing MZL-SLNs, proved ocular congestion disappearance with completely repaired conjunctiva after 24 hours. Moreover, pretreatment with MZL-SLNs–loaded hydrogel imparted markedly decreased TNF-α and VEGF-expression levels in rabbits conjunctivae compared with post-treatment with the same formula. Conclusion MZL-SLNs could be considered a promising stable sustained-release nanoparticulate system for preparing ocular hydrogel as effective antiallergy ocular delivery systems.
Collapse
Affiliation(s)
- Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed Fawzy Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
44
|
Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. MATERIALS 2021; 14:ma14216551. [PMID: 34772074 PMCID: PMC8585152 DOI: 10.3390/ma14216551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Nanocomposites as drug delivery systems (e.g., metal nanoparticles) are being exploited for several applications in the biomedical field, from therapeutics to diagnostics. Green nanocomposites stand for nanoparticles of biocompatible, biodegradable and non-toxic profiles. When using metal nanoparticles for drug delivery, the question of how hazardous these "virus-sized particles" can be is posed, due to their nanometer size range with enhanced reactivity compared to their respective bulk counterparts. These structures exhibit a high risk of being internalized by cells and interacting with the genetic material, with the possibility of inducing DNA damage. The Comet Assay, or Single-Cell Gel Electrophoresis (SCGE), stands out for its capacity to detect DNA strand breaks in eukaryotic cells. It has huge potential in the genotoxicity assessment of nanoparticles and respective cells' interactions. In this review, the Comet assay is described, discussing several examples of its application in the genotoxicity evaluation of nanoparticles commonly administered in a set of routes (oral, skin, inhaled, ocular and parenteral administration). In the nanoparticles boom era, where guidelines for their evaluation are still very limited, it is urgent to ensure their safety, alongside their quality and efficacy. Comet assay or SCGE can be considered an essential tool and a reliable source to achieve a better nanotoxicology assessment of metal nanoparticles used in drug delivery.
Collapse
|
45
|
Wróblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int J Pharm 2021; 607:121012. [PMID: 34400274 DOI: 10.1016/j.ijpharm.2021.121012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Due to the very low bioavailability of drugs administered to the surface of the eyeball, issues related to the formulation of an ophthalmic drug pose a technological challenge. The essence of an ophthalmic drug is the selection of an appropriate active substance (API), but also auxiliary substances that determine the desired drug quality and API availability. The ophthalmic drug is not only classic eye drops. Therefore, on the basis of the literature data, the properties and application of auxiliary substances increasing the pharmaceutical availability of API, improving the penetration of API into the eye structures and modifying the viscosity of eye drops were characterized. The possibility of chemical modification of API and the use of prodrugs in ophthalmic drug forms was also noted. Taking into account the progress in the field of ophthalmic drug formulation, the use of multi-compartment systems (lipid particles, nanoparticles, microparticles, liposomes, niosomes, dendrimers) and modern ophthalmic drug delivery systems (inserts, implants, microneedles, contact lenses, ionophoretic systems) have been indicated. Examples of solutions already used by manufacturers, as well as those in the phase of laboratory or clinical trials, were indicated.
Collapse
Affiliation(s)
- Katarzyna B Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
46
|
Lipid Nanoparticles Traverse Non-Corneal Path to Reach the Posterior Eye Segment: In Vivo Evidence. Molecules 2021; 26:molecules26154673. [PMID: 34361825 PMCID: PMC8347557 DOI: 10.3390/molecules26154673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Lipid-based nanocarriers (LNs) have made it possible to prolong corneal residence time and improve the ocular bioavailability of ophthalmic drugs. In order to investigate how the LNs interact with the ocular mucosa and reach the posterior eye segment, we have formulated lipid nanocarriers that were designed to bear a traceable fluorescent probe in the present work. The chosen fluorescent probe was obtained by a conjugation reaction between fluoresceinamine and the solid lipid excipient stearic acid, forming a chemically synthesized adduct (ODAF, N-(3′,6′-dihydroxy-3-oxospiro [isobenzofuran-1(3H),9′-[9H] xanthen]-5-yl)-octadecanamide). The novel formulation (LN-ODAF) has been formulated and characterized in terms of its technological parameters (polydispersity index, mean particle size and zeta potential), while an in vivo study was carried out to assess the ability of LN-ODAF to diffuse through different ocular compartments. LN-ODAF were in nanometric range (112.7 nm ± 0.4), showing a good homogeneity and long-term stability. A TEM (transmission electron microscopy) study corroborated these results of characterization. In vivo results pointed out that after ocular instillation, LN ODAF were concentrated in the cornea (two hours), while at a longer time (from the second hour to the eighth hour), the fluorescent signals extended gradually towards the back of the eye. From the results obtained, LN-ODAF demonstrated a potential use of lipid-based nanoparticles as efficient carriers of an active pharmaceutical ingredient (API) involved in the management of retinal diseases.
Collapse
|
47
|
Abdelhakeem E, El-Nabarawi M, Shamma R. Effective Ocular Delivery of Eplerenone Using Nanoengineered Lipid Carriers in Rabbit Model. Int J Nanomedicine 2021; 16:4985-5002. [PMID: 34335024 PMCID: PMC8318821 DOI: 10.2147/ijn.s319814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Background Eplerenone (Epl) is a selective mineralocorticoid-receptor antagonist used for chronic central serous chorioretinopathy treatment. Our goal was to enhance the corneal performance of Epl-loaded nanostructured lipid carriers (NLCs) through surface modification using different coating polymers. Methods Epl-loaded modified NLCs (Epl-loaded MNLCs) were prepared by coating the surface of Epl-loaded NLCs using different polymers, namely hyaluronic acid, chitosan oligosaccharide lactate, and hydrogenated collagen. A 31×41 full factorial design was used to evaluate the effect of the surface modification on the properties of the prepared systems. Selected optimal Epl-loaded MNLCs were further evaluated for in vitro drug release, morphology, pH, rheological properties, corneal mucoadhesion, irritation, and penetration. Results Epl-loaded MNLCs were successfully prepared with high drug-entrapment efficiency and nanosized particles with low size distribution. Transmission electron microscopy revealed nanosized spherical particles surrounded by a coating layer of the surface modifier. The pH, refractive index, and viscosity results of the Epl-loaded MNLCs confirmed the ocular compatibility of the systems with no blurring of vision. The safety and ocular tolerance of the optimal MNLCs were confirmed using the hen’s egg test on chorioallantoic membrane and by histopathological evaluation of rabbit eyes treated with the optimal systems. Confocal laser-scanning microscopy of corneal surfaces confirmed successful transcorneal permeation of the Epl-loaded MNLCs compared to the unmodified Epl-loaded NLCs, revealed by higher corneal fluorescence intensity at all time intervals. Conclusion Overall, the results confirmed the potential of Epl-loaded MNLCs as a direct approach for Epl ocular delivery.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
48
|
Kumari S, Dandamudi M, Rani S, Behaeghel E, Behl G, Kent D, O’Reilly NJ, O’Donovan O, McLoughlin P, Fitzhenry L. Dexamethasone-Loaded Nanostructured Lipid Carriers for the Treatment of Dry Eye Disease. Pharmaceutics 2021; 13:905. [PMID: 34207223 PMCID: PMC8234689 DOI: 10.3390/pharmaceutics13060905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dry eye disease (DED) or keratoconjunctivitis sicca is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction. Symptoms include dryness, irritation, discomfort and visual disturbance, and standard treatment includes the use of lubricants and topical steroids. Secondary inflammation plays a prominent role in the development and propagation of this debilitating condition. To address this we have investigated the pilot scale development of an innovative drug delivery system using a dexamethasone-encapsulated cholesterol-Labrafac™ lipophile nanostructured lipid carrier (NLC)-based ophthalmic formulation, which could be developed as an eye drop to treat DED and any associated acute exacerbations. After rapid screening of a range of laboratory scale pre-formulations, the chosen formulation was prepared at pilot scale with a particle size of 19.51 ± 0.5 nm, an encapsulation efficiency of 99.6 ± 0.5%, a PDI of 0.08, and an extended stability of 6 months at 4 °C. This potential ophthalmic formulation was observed to have high tolerability and internalization capacity for human corneal epithelial cells, with similar behavior demonstrated on ex vivo porcine cornea studies, suggesting suitable distribution on the ocular surface. Further, ELISA was used to study the impact of the pilot scale formulation on a range of inflammatory biomarkers. The most successful dexamethasone-loaded NLC showed a 5-fold reduction of TNF-α production over dexamethasone solution alone, with comparable results for MMP-9 and IL-6. The ease of formulation, scalability, performance and biomarker assays suggest that this NLC formulation could be a viable option for the topical treatment of DED.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Madhuri Dandamudi
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Sweta Rani
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Elke Behaeghel
- Pharmaceutical Department, UC Leuven-Limburg, Campus Gasthuisberg Herestraat 49, 3000 Leuven, Belgium;
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - David Kent
- The Vision Clinic, R95 XC98 Kilkenny, Ireland;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Orla O’Donovan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| |
Collapse
|
49
|
Youshia J, Kamel AO, El Shamy A, Mansour S. Gamma sterilization and in vivo evaluation of cationic nanostructured lipid carriers as potential ocular delivery systems for antiglaucoma drugs. Eur J Pharm Sci 2021; 163:105887. [PMID: 34022410 DOI: 10.1016/j.ejps.2021.105887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023]
Abstract
Solid lipid nanoparticles and nanostructured lipid carriers showed promising results for enhancement of ocular bioavailability of drugs with poor corneal permeability. One of these drugs is methazolamide, which is an orally administered carbonic anhydrase inhibitor for glaucoma treatment. However, sterilization by autoclaving may result in loss of the physical properties of lipid nanoparticles such as particle size and surface charge. Here, we evaluated gamma radiation as an alternative sterilization method. Methazolamide loaded nanostructured lipid carriers were optimized using 23 factorial design. Optimized formulations contained 6% lipid (85% solid lipid (Cetostearyl alcohol and glyceryl behenate) and 15% oil either medium chain triglycerides or isopropyl myristate) stabilized by 2% polysorbate 80 and 0.15% stearylamine. Nanoparticles were cationic, smaller than 500 nm, and had an entrapment efficiency of about 30%. They released methazolamide within 8 hours and showed a 5-fold enhanced reduction in intraocular pressure compared to methazolamide solution. Gamma sterilization was superior to autoclaving in preserving entrapped methazolamide, size, and surface charge of lipid nanoparticles. These findings demonstrate that gamma radiation is a viable alternative to autoclaving for sterilizing lipid nanoparticles. Moreover, this proves that nanostructured lipid carriers enhance pharmacological response of topically administered methazolamide for treating glaucoma.
Collapse
Affiliation(s)
- John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Abdelhameed El Shamy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
50
|
Navarro-Partida J, Castro-Castaneda CR, Santa Cruz-Pavlovich FJ, Aceves-Franco LA, Guy TO, Santos A. Lipid-Based Nanocarriers as Topical Drug Delivery Systems for Intraocular Diseases. Pharmaceutics 2021; 13:pharmaceutics13050678. [PMID: 34065059 PMCID: PMC8151015 DOI: 10.3390/pharmaceutics13050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Effective drug delivery to intraocular tissues remains a great challenge due to complex anatomical and physiological barriers that selectively limit the entry of drugs into the eye. To overcome these challenges, frequent topical application and regular intravitreal injections are currently used to achieve the desired drug concentrations into the eye. However, the repetitive installation or recurrent injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery have demonstrated promising results for topical ophthalmic nanotherapies in the treatment of intraocular diseases. Studies have revealed that nanocarriers enhance the intraocular half-life and bioavailability of several therapies including proteins, peptides and genetic material. Amongst the array of nanoparticles available nowadays, lipid-based nanosystems have shown an increased efficiency and feasibility in topical formulations, making them an important target for constant and thorough research in both preclinical and clinical practice. In this review, we will cover the promising lipid-based nanocarriers used in topical ophthalmic formulations for intraocular drug delivery.
Collapse
Affiliation(s)
- Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Carlos Rodrigo Castro-Castaneda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Francisco J. Santa Cruz-Pavlovich
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
| | - Tomer Ori Guy
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, P.C., Zapopan 45138, Mexico; (J.N.-P.); (C.R.C.-C.); (F.J.S.C.-P.); (L.A.A.-F.); (T.O.G.)
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, P.C., Zapopan 45116, Mexico
- Correspondence: ; Tel.: +52-(33)-36-69-30-00 (ext. 2540)
| |
Collapse
|