1
|
Nagpal S, Png J, Kahouadji L, Wacker MG. A bio-predictive release assay for liposomal prednisolone phosphate. J Control Release 2024; 374:61-75. [PMID: 39089507 DOI: 10.1016/j.jconrel.2024.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Predictive performance assays are crucial for the development and approval of nanomedicines and their bioequivalent successors. At present, there are no established compendial methods that provide a reliable standard for comparing and selecting these formulation prototypes, and our understanding of the in vivo release remains still incomplete. Consequently, extensive animal studies, with enhanced analytical resolution for both, released and encapsulated drug, are necessary to assess bioequivalence. This significantly raises the cost and duration of nanomedicine development. This work presents the development of a discriminatory and biopredictive release test method for liposomal prednisolone phosphate. Using model-informed deconvolution, we identified an in vivo target release. The experimental design employed a discrete L-optimal configuration to refine the analytical method and determine the impact of in vitro parameters on the dosage form. A three-point specification evaluated the key phases of in vivo release: early (T-5%), intermediate (T-20%), and late release behavior (T-40%), compared to the in vivo release profile of the reference product, NanoCort®. Various levels of shear responses and the influence of clinically relevant release media compositions were tested. This enabled an assessment of the effect of shear on the release, an essential aspect of their in vivo deformation and release behavior. The type and concentration of proteins in the medium influence liposome release. Fetal bovine serum strongly impacted the discriminatory performance at intermediate shear conditions. The method provided deep insights into the release response of liposomes and offers an interesting workflow for in vitro bioequivalence evaluation.
Collapse
Affiliation(s)
- Shakti Nagpal
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore
| | - Jordan Png
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore
| | - Lyes Kahouadji
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Matthias G Wacker
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore.
| |
Collapse
|
2
|
Pepin X, Arora S, Borges L, Cano-Vega M, Carducci T, Chatterjee P, Chen G, Cristofoletti R, Dallmann A, Delvadia P, Dressman J, Fotaki N, Gray E, Heimbach T, Holte Ø, Kijima S, Kotzagiorgis E, Lennernäs H, Lindahl A, Loebenberg R, Mackie C, Malamatari M, McAllister M, Mitra A, Moody R, Mudie D, Musuamba Tshinanu F, Polli JE, Rege B, Ren X, Rullo G, Scherholz M, Song I, Stillhart C, Suarez-Sharp S, Tannergren C, Tsakalozou E, Veerasingham S, Wagner C, Seo P. Parameterization of Physiologically Based Biopharmaceutics Models: Workshop Summary Report. Mol Pharm 2024; 21:3697-3731. [PMID: 38946085 PMCID: PMC11304397 DOI: 10.1021/acs.molpharmaceut.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.
Collapse
Affiliation(s)
- Xavier Pepin
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Sumit Arora
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luiza Borges
- ANVISA, SIA Trecho 5́, Guara, Brasília, Federal District 71205-050, Brazil
| | - Mario Cano-Vega
- Drug
Product Technologies, Amgen Inc., Thousand Oaks, California 91320-1799, United
States
| | - Tessa Carducci
- Analytical
Commercialization Technology, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, New Jersey 07065, United States
| | - Parnali Chatterjee
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Grace Chen
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Rodrigo Cristofoletti
- College
of Pharmacy, University of Florida, 6550 Sanger Rd., Orlando, Florida 32827, United States
| | - André Dallmann
- Bayer
HealthCare SAS, 59000 Lille, France, on behalf of Bayer
AG, Pharmacometrics/Modeling and Simulation, Systems Pharmacology
& Medicine, PBPK, Leverkusen, Germany
| | - Poonam Delvadia
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Nikoletta Fotaki
- University of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| | - Elizabeth Gray
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Tycho Heimbach
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Øyvind Holte
- Norwegian Medical Products Agency, Oslo 0213, Norway
| | - Shinichi Kijima
- Office
of New Drug V, Pharmaceuticals and Medical
Devices Agency (PMDA), Tokyo 100-0013, Japan
| | - Evangelos Kotzagiorgis
- European Medicines Agency (EMA), Domenico Scarlattilaan 6, Amsterdam 1083 HS, The Netherlands
| | - Hans Lennernäs
- Translational
Drug Discovery and Development, Department of Pharmaceutical Bioscience, Uppsala University, Uppsala 751 05, Sweden
| | | | - Raimar Loebenberg
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmontonton T6G 2E1, Canada
| | - Claire Mackie
- Janssen
Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maria Malamatari
- Medicines & Healthcare Products Regulatory Agency, 10 S Colonnade, London SW1W 9SZ, United Kingdom
| | - Mark McAllister
- Global
Biopharmaceutics, Drug Product Design, Pfizer, Sandwich CT13 9NJ, United Kingdom
| | - Amitava Mitra
- Clinical
Pharmacology, Kura Oncology Inc., Boston, Massachusetts 02210, United States
| | - Rebecca Moody
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Deanna Mudie
- Global
Research and Development, Small Molecules, Lonza, 63045 NE Corporate
Pl., Bend, Oregon 97701, United States
| | - Flora Musuamba Tshinanu
- Belgian Federal Agency for Medicines and Health Products, Galileelaan 5/03, Brussel 1210, Belgium
| | - James E. Polli
- School
of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Bhagwant Rege
- Office
of
Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research
(CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United
States
| | - Xiaojun Ren
- PK
Sciences/Translational Medicine, BioMedical Research, Novartis, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Gregory Rullo
- Regulatory
CMC, AstraZeneca, 1 Medimmune Way, Gaithersburg, Maryland 20878, United States
| | - Megerle Scherholz
- Pharmaceutical
Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Ivy Song
- Takeda
Development Center Americas Inc., 300 Shire Way, Lexington, Massachusetts 02421, United States
| | - Cordula Stillhart
- Pharmaceutical
R&D, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Sandra Suarez-Sharp
- Regulatory
Affairs, Simulations Plus Inc., 42505 10th Street West, Lancaster, California 93534-7059, United States
| | - Christer Tannergren
- Biopharmaceutics
Science, New Modalities & Parenteral Product Development, Pharmaceutical
Technology & Development, Operations, AstraZeneca, Gothenburg 431 50, Sweden
| | - Eleftheria Tsakalozou
- Division
of Quantitative Methods and Modeling, Office of Research and Standards,
Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20903-1058, United
States
| | - Shereeni Veerasingham
- Pharmaceutical
Drugs Directorate (PDD), Health Canada, 1600 Scott St., Ottawa K1A 0K9, Canada
| | - Christian Wagner
- Global
Drug Product Development, Global CMC Development, the Healthcare Business of Merck KGaA, Darmstadt D-64293, Germany
| | - Paul Seo
- Office
of Translational Science, Office of Clinical Pharmacology (OCP), Center
for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland 20903-1058, United States
| |
Collapse
|
3
|
Li Z, Kovshova T, Malinovskaya J, Knoll J, Shanehsazzadeh S, Osipova N, Chernysheva A, Melnikov P, Gelperina S, Wacker MG. Blood-Nanoparticle Interactions Create a Brain Delivery Superhighway for Doxorubicin. Int J Nanomedicine 2024; 19:2039-2056. [PMID: 38476274 PMCID: PMC10928925 DOI: 10.2147/ijn.s440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose This study investigated the brain targeting mechanism of doxorubicin-loaded polybutyl cyanoacrylate (PBCA) nanoparticles, particularly their interactions with the blood-brain barrier (BBB). The BBB protects the brain from drugs in the bloodstream and represents a crucial obstacle in the treatment of brain cancer. Methods An advanced computer model analyzed the brain delivery of two distinct formulations, Doxil® and surfactant-coated PBCA nanoparticles. Computational learning was combined with in vitro release and cell interaction studies to comprehend the underlying brain delivery pathways. Results Our analysis yielded a surprising discovery regarding the brain delivery mechanism of PBCA nanoparticles. While Doxil® exhibited the expected behavior, accumulating in the brain through extravasation in tumor tissue, PBCA nanoparticles employed a unique and previously uncharacterized mechanism. They underwent cell hitchhiking, resulting in a remarkable more than 1000-fold increase in brain permeation rate compared to Doxil® (2.59 × 10-4 vs 0.32 h-1). Conclusion The nonspecific binding to blood cells facilitated and intensified interactions of surfactant-coated PBCA nanoparticles with the vascular endothelium, leading to enhanced transcytosis. Consequently, the significant increase in circulation time in the bloodstream, coupled with improved receptor interactions, contributes to this remarkable uptake of doxorubicin into the brain.
Collapse
Affiliation(s)
- Zhuoxuan Li
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Tatyana Kovshova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julia Malinovskaya
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julian Knoll
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Saeed Shanehsazzadeh
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Nadezhda Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Anastasia Chernysheva
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Melnikov
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| |
Collapse
|
4
|
Nagpal S, Png Yi Jie J, Malinovskaya J, Kovshova T, Jain P, Naik S, Khopade A, Bhowmick S, Shahi P, Chakra A, Bhokari A, Shah V, Gelperina S, Wacker MG. A Design-Conversed Strategy Establishes the Performance Safe Space for Doxorubicin Nanosimilars. ACS NANO 2024; 18:6162-6175. [PMID: 38359902 PMCID: PMC10906076 DOI: 10.1021/acsnano.3c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Nanomedicines exhibit multifaceted performances, yet their biopharmaceutics remain poorly understood and present several challenges in the translation from preclinical to clinical research. To address this issue and promote the production of high-quality nanomedicines, a systematic screening of the design space and in vivo performance is necessary. Establishing formulation performance specifications early on enables an informed selection of candidates and promotes the development of nanosimilars. The deconvolution of the pharmacokinetics enables the identification of key characteristics that influence their performances and disposition. Using an in vitro-in vivo rank-order relationship for doxorubicin nanoformulations, we defined in vitro release specifications for Doxil/Caelyx-like follow-on products. Additionally, our model predictions were used to establish the bioequivalence of Lipodox, a nanosimilar of Doxil/Caelyx. Furthermore, a virtual safe space was established, providing crucial insights into expected disposition kinetics and informing formulation development. By addressing bottlenecks in biopharmaceutics and formulation screening, our research advances the translation of nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Shakti Nagpal
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Jordan Png Yi Jie
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Julia Malinovskaya
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Tatyana Kovshova
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Pankaj Jain
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Sachin Naik
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Ajay Khopade
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Subhas Bhowmick
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Pradeep Shahi
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Amaresh Chakra
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Ashutosh Bhokari
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Vishal Shah
- Sun
Pharma Advanced Research Company Ltd., 17 B Mahal Industrial Estate, Mahakali Caves Road,
Andheri (East), Mumbai, Maharashtra 400093, India
- Sun
Pharma Advanced Research Centre (SPARC), Tandalja, Vadodara, Gujarat 390 020, India
| | - Svetlana Gelperina
- Dmitry
Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia
| | - Matthias G. Wacker
- Department
of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
5
|
Mead H, Paraskevopoulou V, Smith N, Gibson R, Amerio-Cox M, Taylor-Vine G, Armstrong T, Harris K, Wren S, Mann J. Developing a robust in vitro release method for a polymeric nanoparticle: Challenges and learnings. Int J Pharm 2023; 644:123317. [PMID: 37586575 DOI: 10.1016/j.ijpharm.2023.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Nanomedicines have emerged as a promising approach for targeted therapeutic delivery and specifically as a beneficial alternative to conventional cancer therapies as they can deliver higher concentrations of chemotherapeutic agents at the tumour site compared to healthy tissue, thus providing improved drug efficacy and lower systemic toxicity. Long acting injectables are increasingly becoming the focus of pharmaceutical research, as they can reduce dosing frequency and improve the life quality of patients. Development of an in vitro release (IVR) method for modified release nanomedicines is challenging because of the uniqueness and range of different formulation design approaches, as well as the complex nature of drug release mechanisms which may result in inherent variability. Regulatory guidance on the development of dissolution or release methods for parenteral products is limited relative to oral products. This article details the extensive in vitro release method development work conducted on a polymeric nanoparticle to develop the release media composition and selection of suitable apparatus and sampling technique to separate the released drug from the formulation. The aim was to develop a suitably robust analytical method that generated clinically relevant in vitro release data.
Collapse
Affiliation(s)
- Heather Mead
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK.
| | - Vasiliki Paraskevopoulou
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Natalie Smith
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Rhiannon Gibson
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Marius Amerio-Cox
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Georgia Taylor-Vine
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Thomas Armstrong
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Kate Harris
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Stephen Wren
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
6
|
Ngo TT, Kim JD. Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer. Pharmaceutics 2023; 15:pharmaceutics15041301. [PMID: 37111786 PMCID: PMC10145127 DOI: 10.3390/pharmaceutics15041301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The ability to engineer and predict drug release behavior during treatment is critical to the design and implementation of effective drug delivery systems. In this study, a drug delivery system consisting of a methacrylate-based polymer and flurbiprofen was studied, and its release profile in a controlled phosphate-buffered saline solution was characterized. The polymer, which was 3D printed and processed in supercritical carbon dioxide under different temperature and pressure settings, showed sustained drug release over a prolonged period. A computer algorithm was used to determine the drug release time duration before reaching steady state and the maximum drug release at steady state. Several empirical models were applied to fit the release kinetic data to gain information about the drug release mechanism. The diffusion coefficients for each system were also estimated using Fick's law. Based on the results, the influence of supercritical carbon dioxide processing conditions on the diffusion behavior is interpreted, providing insights into the effective and tunable design of drug delivery systems for targeted treatment specifications.
Collapse
Affiliation(s)
- Truc T Ngo
- Department of Industrial and Systems Engineering, Shiley-Marcos School of Engineering, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | - Jae D Kim
- Department of Industrial and Systems Engineering, Shiley-Marcos School of Engineering, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| |
Collapse
|
7
|
Wallenwein CM, Ashtikar M, Hofhaus G, Haferland I, Thurn M, König A, Pinter A, Dressman J, Wacker MG. How wound environments trigger the release from Rifampicin-loaded liposomes. Int J Pharm 2023; 633:122606. [PMID: 36632921 DOI: 10.1016/j.ijpharm.2023.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic wounds often contain high levels of proinflammatory cytokines that prolong the wound-healing process. Patients suffering from these conditions are likely to benefit from topical rifampicin therapy. Although recent research indicates considerable anti-inflammatory properties of the antibiotic, currently, there are no commercial topical wound healing products available. To address this medical need, a liposomal drug delivery system was developed. A mechanistic investigation outlined major influences of wound environments that affect the release kinetics and, as a consequence, local bioavailability. METHODS Liposomes were prepared using the thin-film hydration method and subsequently freeze-dried at the pilot scale to improve their stability. We investigated the influence of oxidation, plasma proteins, and lipolysis on the in vitro release of rifampicin and its two main degradation products using the Dispersion Releaser technology. A novel simulated wound fluid provided a standardized environment to study critical influences on the release. It reflects the pathophysiological environment regarding pH, buffer capacity, and protein content. RESULTS During storage, the liposomes efficiently protect rifampicin from degradation. After the dispersion of the vesicles in simulated wound fluid, despite the significant albumin binding (>70%), proteins have no considerable effect on the release. Also, the presence of lipase at pathophysiologically elevated concentrations did not trigger the liberation of rifampicin. Surprisingly, the oxidative environment of the wound bed represents the strongest accelerating influence and triggers the release. CONCLUSION A stable topical delivery system of rifampicin has been developed. Once the formulation comes in contact with simulated wound fluid, drug oxidation accelerates the release. The influence of lipases that are assumed to trigger the liberation from liposomes depends on the drug-to-lipid ratio. Considering that inflamed tissues exhibit elevated levels of oxidative stress, the trigger mechanism identified for rifampicin contributes to targeted drug delivery.
Collapse
Affiliation(s)
- Chantal M Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Mukul Ashtikar
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Götz Hofhaus
- Department of Dermatology, Venerology, and Allergology, University Hospital, 60596 Frankfurt am Main, Germany
| | - Isabel Haferland
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Anke König
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Andreas Pinter
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 4 Science Drive 2, Singapore 117544, Singapore.
| |
Collapse
|
8
|
Agnihotri TG, Alexander A, Agrawal M, Dubey SK, Jain A. In vitro-in vivo correlation in nanocarriers: From protein corona to therapeutic implications. J Control Release 2023; 354:794-809. [PMID: 36709923 DOI: 10.1016/j.jconrel.2023.01.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Understanding and establishing a link between the physicochemical characteristics of nanoparticles (NPs) and their biological interactions poses to be a great challenge in the field of nanotherapeutics. Recent analytical advancements concerning bio-nanointerfaces have accelerated the quest to comprehend the fate of nanocarrier systems in vivo. Scientists have discovered that protein corona, an adsorbed layer of biomolecules on the surface of NPs takes a leading part in interacting with cells and in the cellular uptake process, thereby determining the in vivo behaviour of NPs. Another useful method to assess the in vivo fate of NPs is by performing dissolution testing. This forms the basis for in vitro in vivo correlation (IVIVC), relating in vitro dissolution of NPs and their in vivo properties. Scientists are continuously directing their efforts towards establishing IVIVC for different nanocarrier systems while concurrently gaining insights into protein corona. This review primarily summarizes the importance of protein corona and its interaction with nanoparticles. It also gives an insight into the factors affecting the interaction and various in vitro dissolution media used for varied nanocarrier systems. The article concludes with a discussion of the limitations of IVIVC modelling and its position from a regulatory perspective.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila village, Nizsundarighopa, Changsari, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad 509301, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
9
|
Wallenwein CM, Weigel V, Hofhaus G, Dhakal N, Schatton W, Gelperina S, Groeber-Becker FK, Dressman J, Wacker MG. Pharmaceutical Development of Nanostructured Vesicular Hydrogel Formulations of Rifampicin for Wound Healing. Int J Mol Sci 2022; 23:16207. [PMID: 36555855 PMCID: PMC9788359 DOI: 10.3390/ijms232416207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds exhibit elevated levels of inflammatory cytokines, resulting in the release of proteolytic enzymes which delay wound-healing processes. In recent years, rifampicin has gained significant attention in the treatment of chronic wounds due to an interesting combination of antibacterial and anti-inflammatory effects. Unfortunately, rifampicin is sensitive to hydrolysis and oxidation. As a result, no topical drug product for wound-healing applications has been approved. To address this medical need two nanostructured hydrogel formulations of rifampicin were developed. The liposomal vesicles were embedded into hydroxypropyl methylcellulose (HPMC) gel or a combination of hyaluronic acid and marine collagen. To protect rifampicin from degradation in aqueous environments, a freeze-drying method was developed. Before freeze-drying, two well-defined hydrogel preparations were obtained. After freeze-drying, the visual appearance, chemical stability, residual moisture content, and redispersion time of both preparations were within acceptable limits. However, the morphological characterization revealed an increase in the vesicle size for collagen-hyaluronic acid hydrogel. This was confirmed by subsequent release studies. Interactions of marine collagen with phosphatidylcholine were held responsible for this effect. The HPMC hydrogel formulation remained stable over 6 months of storage. Moving forward, this product fulfills all criteria to be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Chantal M. Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Verena Weigel
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Namrata Dhakal
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | | | - Svetlana Gelperina
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Drugs, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Florian K. Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G. Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
10
|
Lou H, Hageman MJ. Development of an In Vitro System To Emulate an In Vivo Subcutaneous Environment: Small Molecule Drug Assessment. Mol Pharm 2022; 19:4017-4025. [PMID: 36279508 DOI: 10.1021/acs.molpharmaceut.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable in vitro system can support and guide the development of subcutaneous (SC) drug products. Although several in vitro systems have been developed, they have some limitations, which may hinder them from getting more engaged in SC drug product development. This study sought to develop a novel in vitro system, namely, Emulator of SubCutaneous Absorption and Release (ESCAR), to better emulate the in vivo SC environment and predict the fate of drugs in SC delivery. ESCAR was designed using computer-aided design (CAD) software and fabricated using the three-dimensional (3D) printing technique. ESCAR has a design of two acceptor chambers representing the blood uptake pathway and the lymphatic uptake pathway, respectively, although only the blood uptake pathway was investigated for small molecules in this study. Via conducting a DoE factor screening study using acetaminophen solution, the relationship of the output (drug release from the "SC" chamber to the "blood circulation" chamber) and the input parameters could be modeled using a variety of methods, including polynomial equations, machine learning methods, and Monte Carlo simulation-based methods. The results suggested that the hyaluronic acid (HA) concentration was a critical parameter, whereas the influence of the injection volume and injection position was not substantial. An in vitro-in vivo correlation (IVIVC) study was developed using griseofulvin suspension to explore the feasibility of applying ESCAR in formulation development and bioequivalence studies. The developed LEVEL A IVIVC model demonstrated that the in vivo PK profile could be correlated with the in vitro release profile. Therefore, using this model, for new formulations, only in vitro studies need to be conducted in ESCAR, and in vivo studies might be waived. In conclusion, ESCAR had important implications for research and development and quality control of SC drug products. Future work would be focused on further optimizing ESCAR and expanding its applications via assessing more types of molecules and formulations.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| | - Michael J. Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas66047, United States
| |
Collapse
|
11
|
Villa Nova M, Gan K, Wacker MG. Biopredictive tools for the development of injectable drug products. Expert Opin Drug Deliv 2022; 19:671-684. [PMID: 35603724 DOI: 10.1080/17425247.2022.2081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected in-vivo performances. So far, there is limited experience in the application of these methodologies to injectable drug products. AREAS COVERED Parenteral drug products cover a variety of dosage forms and administration sites including subcutaneous, intramuscular, and intravenous injections. In this area, developing biopredictive and biorelevant methodologies often confronts us with unique challenges and knowledge gaps. Here, we provide a formulation-centric approach and explain the key considerations and workflow when designing biopredictive assays. Also, we outline the key role of computational methods in achieving clinical relevance and put all considerations into context using liposomal nanomedicines as an example. EXPERT OPINION Biopredictive tools are the need of the hour to exploit the tremendous opportunities of injectable drug products. A growing number of biopharmaceuticals such as peptides, proteins, and nucleic acids require different strategies and a better understanding of the influences on drug absorption. Here, our design strategy must maintain the balance of robustness and complexity required for effective formulation development.
Collapse
Affiliation(s)
- Mônica Villa Nova
- State University of Maringá, Department of Pharmacy, Maringá, Paraná, Brazil
| | - Kennard Gan
- National University of Singapore, Department of Pharmacy, Singapore
| | | |
Collapse
|
12
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
13
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
14
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
15
|
An Update to Dialysis-Based Drug Release Testing-Data Analysis and Validation Using the Pharma Test Dispersion Releaser. Pharmaceutics 2021; 13:pharmaceutics13122007. [PMID: 34959289 PMCID: PMC8708653 DOI: 10.3390/pharmaceutics13122007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, a wide variety of complex non-oral dosage forms are entering the global healthcare market. Although many assays have been described in recent research, harmonized procedures and standards for testing their in vitro performance remain widely unexplored. Among others, dialysis-based techniques such as the Pharma Test Dispersion Releaser are developed for testing the release of drugs from nanoparticles, liposomes, or extracellular vesicle preparations. Here, we provide advanced strategies and practical advice for the development and validation of dialysis-based techniques, including documentation, analysis, and interpretation of the raw data. For this purpose, key parameters of the release assay, including the hydrodynamics in the device at different stirring rates, the selectivity for particles and molecules, as well as the effect of excipients on drug permeation were investigated. At the highest stirring rate, a more than twofold increase in the membrane permeation rate (from 0.99 × 10−3 to 2.17 × 10−3 cm2/h) was observed. Additionally, we designed a novel computer model to identify important quality parameters of the dialysis experiment and to calculate error-corrected release profiles. Two hydrophilic creams of diclofenac, Voltaren® Emulgel, and Olfen® gel, were tested and provide first-hand evidence of the robustness of the assay in the presence of semisolid dosage forms.
Collapse
|
16
|
Gupta R, Chen Y, Xie H. In vitro dissolution considerations associated with nano drug delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1732. [PMID: 34132050 PMCID: PMC8526385 DOI: 10.1002/wnan.1732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Nano drug delivery systems (NDDS) offer promising solution for the translation of future nanomedicines. As bioavailability and therapeutic outcomes can be improved by altering the drug release from these NDDS, it becomes essential to thoroughly understand their drug release kinetics. Moreover, U.S. Food and Drug Administration requires critical evaluation of potential safety, efficacy, and public health impacts of nanomaterials. Spiraling up market share of NDDS has also stimulated the pharmaceutical industry to develop their cost-effective generic versions after the expiry of patent and associated exclusivity. However, unlike the conventional dosage forms, the in vivo disposition of NDDS is highly intricate and different from their in vitro behavior. Significant challenges exist in the establishment of in vitro-in vivo correlation (IVIVC) due to incomplete understanding of nanoparticles' in vivo biofate and its impact on in vitro experimental protocols. A rational design of dissolution may serve as quality and quantity control tool and help develop a meaningful IVIVC for favorable economic implications. Clinically relevant drug product specifications (critical quality attributes) can be identified by establishing a link between in vitro performance and in vivo exposure. In vitro dissolution may also play a pivotal role to understand the dissolution-mediated clearance and safety of NDDS. Prevalent in vitro dissolution methods for NDDS and their limitations are discussed in this review, among which USP 4 is gaining more interest recently. Researchers are working diligently to develop biorelevant in vitro release assays to ensure optimal therapeutic performance of generic versions of these NDDS. This article focuses on these studies and presents important considerations for the future development of clinically relevant in vitro release methods. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA 77004
| | - Yuan Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA 77004
| | - Huan Xie
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA 77004
| |
Collapse
|
17
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
18
|
Injectable drug delivery systems of doxorubicin revisited: In vitro-in vivo relationships using human clinical data. Int J Pharm 2021; 608:121073. [PMID: 34481887 DOI: 10.1016/j.ijpharm.2021.121073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
A growing number of nanomedicines entered the clinical trials and improved our understanding of the in vivo responses expected in humans. The in vitro drug release represents an important critical quality attribute involved in pharmacokinetics. Establishing in vitro-in vivo relationships for nanomedicines requires a careful analysis of the clinical data with respect to the unique differences between drugs and nanomedicines. Also, the biorelevant assay must reflect the release mechanism of the carrier. Four drug delivery systems of doxorubicin were evaluated for their in vitro release behavior under biorelevant conditions using the dispersion releaser. The pharmacokinetics observed during the first-in-men clinical trials were analyzed using a custom-made physiologically-based nanocarrier biopharmaceutics model. The drug product Lipodox® and the clinical candidate NanoCore-7.4 were evaluated to validate the model. Afterward, the in vivo performances of the preclinical candidates NanoCore-6.4 and doxorubicin-loaded nano-cellular vesicle technology systems (an extracellular vesicle preparation) were predicted. In vitro and in vivo release were in good correlation as indicated by the coefficients of determination of 0.98648 (NanoCore-7.4) and 0.94107 (Lipodox®). The predictions required an estimation of the carrier half-life in blood circulation leading to considerable uncertainty. Still, the simulations narrow down the possible scenarios in the clinical evaluation of nanomedicines and provide a valuable addition to animal studies.
Collapse
|
19
|
Exploring the Interplay between Drug Release and Targeting of Lipid-Like Polymer Nanoparticles Loaded with Doxorubicin. Molecules 2021; 26:molecules26040831. [PMID: 33562687 PMCID: PMC7915178 DOI: 10.3390/molecules26040831] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0→1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310–7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740–6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.
Collapse
|
20
|
Gao GF, Ashtikar M, Kojima R, Yoshida T, Kaihara M, Tajiri T, Shanehsazzadeh S, Modh H, Wacker MG. Predicting drug release and degradation kinetics of long-acting microsphere formulations of tacrolimus for subcutaneous injection. J Control Release 2021; 329:372-384. [PMID: 33271202 DOI: 10.1016/j.jconrel.2020.11.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Today, tacrolimus represents a cornerstone of immunosuppressive therapy for liver and kidney transplants and remains subject of preclinical and clinical investigations, aiming at the development of long-acting depot formulations for subcutaneous injection. One major challenge arises from establishing in vitro-in vivo correlations due to the absence of meaningful in vitro methods predictive for the in vivo situation, together with a strong impact of multiple kinetic processes on the plasma concentration-time profile. In the present approach, two microsphere formulations were compared with regards to their in vitro release and degradation characteristics. A novel biorelevant medium provided the physiological ion and protein background. Release was measured using the dispersion releaser technology under accelerated conditions. A release of 100% of the drug from the carrier was achieved within 7 days. The capability of the in vitro performance assay was verified by the level A in vitro-in vivo correlation analysis. The contributions of in vitro drug release, drug degradation, diffusion rate and lymphatic transport to the absorption process were quantitatively investigated by means of a mechanistic modelling approach. The degradation rate, together with release and diffusion characteristics provides an estimate of the bioavailability and therefore can be a guide to future formulation development.
Collapse
Affiliation(s)
- Ge Fiona Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Mukul Ashtikar
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Ryo Kojima
- Astellas Pharma Inc., 180, Ozumi, Yaizu-shi, Shizuoka 425-0072, Japan
| | - Takatsune Yoshida
- Astellas Pharma Inc., 180, Ozumi, Yaizu-shi, Shizuoka 425-0072, Japan
| | - Masanori Kaihara
- Astellas Pharma Inc., 180, Ozumi, Yaizu-shi, Shizuoka 425-0072, Japan
| | - Tomokazu Tajiri
- Astellas Pharma Inc., 180, Ozumi, Yaizu-shi, Shizuoka 425-0072, Japan
| | - Saeed Shanehsazzadeh
- National University of Singapore, Department of Pharmacy, 5 Science Drive 2, Singapore 117545, Singapore
| | - Harshvardhan Modh
- National University of Singapore, Department of Pharmacy, 5 Science Drive 2, Singapore 117545, Singapore
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 5 Science Drive 2, Singapore 117545, Singapore.
| |
Collapse
|
21
|
Awan ZA, Fahmy UA, Badr-Eldin SM, Ibrahim TS, Asfour HZ, Al-Rabia MW, Alfarsi A, Alhakamy NA, Abdulaal WH, Al Sadoun H, Helmi N, Noor AO, Caraci F, Almasri DM, Caruso G. The Enhanced Cytotoxic and Pro-Apoptotic Effects of Optimized Simvastatin-Loaded Emulsomes on MCF-7 Breast Cancer Cells. Pharmaceutics 2020; 12:E597. [PMID: 32604984 PMCID: PMC7407207 DOI: 10.3390/pharmaceutics12070597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Statins, including simvastatin (SMV), are commonly used for the control of hyperlipidaemia and have also proven therapeutic and preventative effects in cardiovascular diseases. Besides that, there is an emerging interest in their use as antineoplastic drugs as demonstrated by different studies showing their cytotoxic activity against different cancer cells. In this study, SMV-loaded emulsomes (SMV-EMLs) were formulated and evaluated for their cytotoxic activity in MCF-7 breast cancer cells. The emulsomes were prepared using a modified thin-film hydration technique. A Box-Behnken model was used to investigate the impact of formulation conditions on vesicle size and drug entrapment. The optimized formulation showed a spherical shape with a vesicle size of 112.42 ± 2.1 nm and an entrapment efficiency of 94.34 ± 1.11%. Assessment of cytotoxic activities indicated that the optimized SMV-EMLs formula exhibited significantly lower half maximal inhibitory concentration (IC50) against MCF-7 cells. Cell cycle analysis indicated the accumulation of cells in the G2-M phase as well as increased cell fraction in the pre-G1 phase, suggesting an enhancement of anti-apoptotic activity of SMV. The staining of cells with Annex V revealed an increase in early and late apoptosis, in line with the increased cellular content of caspase-3 and Bax. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. In conclusion, SMV-EMLs demonstrated superior cell death-inducing activity against MCF-7 cells compared to pure SMV. This is mediated, at least in part, by enhanced pro-apoptotic activity and MMP modulation of SMV.
Collapse
Affiliation(s)
- Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.M.B.-E.); (A.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.M.B.-E.); (A.A.); (N.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (M.W.A.-R.)
| | - Mohammed W. Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (M.W.A.-R.)
| | - Anas Alfarsi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.M.B.-E.); (A.A.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.M.B.-E.); (A.A.); (N.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nawal Helmi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ahmad O. Noor
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.)
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, EN, Italy;
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Diena M. Almasri
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.O.N.); (D.M.A.)
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina, EN, Italy;
| |
Collapse
|
22
|
A physiologically-based nanocarrier biopharmaceutics model to reverse-engineer the in vivo drug release. Eur J Pharm Biopharm 2020; 153:257-272. [PMID: 32589926 DOI: 10.1016/j.ejpb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 10/25/2022]
Abstract
Over the years, a wide variety of nanomedicines has entered global markets, providing a blueprint for the emerging generics industry. They are characterized by a unique pharmacokinetic behavior difficult to explain with conventional methods. In the present approach a physiologically-based nanocarrier biopharmaceutics model has been developed. Providing a compartmental framework of the distribution and elimination of nanocarrier delivery systems, this model was applied to human clinical data of the drug products Doxil®, Myocet®, and AmBisome® as well as to the formulation prototypes Foslip® and NanoBB-1-Dox. A parameter optimization by differential evolution led to an accurate representation of the human data (AAFE < 2). For each formulation, separate half-lives for the carrier and the free drug as well as the drug release were calculated from the total drug concentration-time profile. In this context, a static in vitro set-up and the dynamic in vivo situation with a continuous infusion and accumulation of the carrier were simulated. For Doxil®, a total drug release ranging from 0.01 to 22.1% was determined. With the time of release exceeding the elimination time of the carrier, the major fraction was available for drug targeting. NanoBB-1-Dox released 76.2-77.8% of the drug into the plasma, leading to an accumulated fraction of approximately 20%. The mean residence time of encapsulated doxorubicin was 128 h for Doxil® and 0.784 h for NanoBB-1-Dox, giving the stealth liposomes more time to accumulate at the intended target site. For all other formulations, Myocet®, AmBisome®, and Foslip®, the major fraction of the dose was released into the blood plasma without being available for targeted delivery.
Collapse
|
23
|
Gao GF, Thurn M, Wendt B, Parnham MJ, Wacker MG. A sensitive in vitro performance assay reveals the in vivo drug release mechanisms of long-acting medroxyprogesterone acetate microparticles. Int J Pharm 2020; 586:119540. [PMID: 32590096 DOI: 10.1016/j.ijpharm.2020.119540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Today, a growing number of subcutaneously administered depot formulations enable continuous delivery of poorly soluble compounds over a longer time period. The modified liberation is considered to be a rate-limiting step in drug absorption and thus impacts therapeutic efficacy and product safety. In the present approach, a mechanism-based pharmacokinetic model of the commercial microparticle formulation depo-subQ provera 104™ (Sauter mean diameter of 5.08 ± 1.63 µm) was established. The model was verified using human pharmacokinetic data from three different clinical trials. Further, the effects of drug release, injection site and patient population on the pharmacokinetic profile were investigated. For this purpose, the drug release was assessed using the novel dispersion releaser technology, whereby a biorelevant medium reflecting major characteristics of the subcutaneous tissue (including ion background, buffer capacity and protein concentration) was used. The established model provided an effective prediction of the key pharmacokinetic parameters, including Cmax, Tmax and AUCall. Only in presence of 55% of fetal bovine serum (using a novel simulated subcutaneous interstitial fluid), the release assay was capable to discriminate between microparticles before and after storage.
Collapse
Affiliation(s)
- Ge Fiona Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt/Main, Germany
| | - Manuela Thurn
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt/Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Bernd Wendt
- Certara Germany GmbH, Charlottenstr. 16, 10117 Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, Science Drive 4, 117559 Singapore, Singapore.
| |
Collapse
|
24
|
Predicting human pharmacokinetics of liposomal temoporfin using a hybrid in silico model. Eur J Pharm Biopharm 2020; 149:121-134. [DOI: 10.1016/j.ejpb.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/21/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023]
|
25
|
Feczkó T, Piiper A, Pleli T, Schmithals C, Denk D, Hehlgans S, Rödel F, Vogl TJ, Wacker MG. Theranostic Sorafenib-Loaded Polymeric Nanocarriers Manufactured by Enhanced Gadolinium Conjugation Techniques. Pharmaceutics 2019; 11:pharmaceutics11100489. [PMID: 31548500 PMCID: PMC6835296 DOI: 10.3390/pharmaceutics11100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide-co-glycolide) and polyethylene glycol-poly(d,l-lactide-co-glycolide) copolymers were compared. The particles ranged in size between 220 and 240 nm, with encapsulation efficiencies from 76.1 ± 1.7% to 69.1 ± 10.1%. A remarkable maximum drug load of approximately 9.0% was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface, transforming the nanospheres into theranostic devices, allowing their localization using magnetic resonance imaging. The manufacture of sorafenib-loaded nanoparticles alongside the functionalization of the particle surface with gadolinium complexes resulted in a highly efficacious nanodelivery system which exhibited a strong magnetic resonance imaging signal, optimal stability features, and a sustained release profile.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudosok krt. 2., H-1117 Budapest, Hungary
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 2., H-8200 Veszprém, Hungary
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
- Correspondence: ; Tel.: +36-88-624000/3508
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Thomas Pleli
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Christian Schmithals
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Dominic Denk
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany;
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore;
| |
Collapse
|
26
|
Wallenwein CM, Nova MV, Janas C, Jablonka L, Gao GF, Thurn M, Albrecht V, Wiehe A, Wacker MG. A dialysis-based in vitro drug release assay to study dynamics of the drug-protein transfer of temoporfin liposomes. Eur J Pharm Biopharm 2019; 143:44-50. [PMID: 31421208 DOI: 10.1016/j.ejpb.2019.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022]
Abstract
Today, a growing number of nanotherapeutics is utilized to deliver poorly soluble compounds using the intravenous route of administration. The drug release and the direct transfer of the active pharmaceutical ingredient to serum proteins plays an important role in bioavailability and accumulation of the drug at the target site. It is closely related to the formation of a protein corona as well as the plasma protein binding of the compound. In the present study, two in vitro drug release methods, the flow-through cell and the dispersion releaser technology, were evaluated with regards to their capability to measure a time-resolved profile of the serum protein binding. In this context, the photosensitizer temoporfin and temoporfin-loaded liposomes were tested. While in the fine capillaries of the flow-through cell a rapid agglomeration of proteins occurred, the dispersion releaser technology in combination with the four-step model enabled the measurement of the transfer of drugs from liposomes to proteins. In presence of 10% of fetal calf serum approximately 20% of the model compound temoporfin were bound to serum proteins within the first 3 h. At higher serum concentration this binding remained stable for approximately 10 h.
Collapse
Affiliation(s)
- Chantal M Wallenwein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Mônica Villa Nova
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Christine Janas
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Laura Jablonka
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Ge F Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Volker Albrecht
- Biolitec Research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy, 6 Science Drive 2, Singapore 117546, Singapore.
| |
Collapse
|
27
|
Li F, Shi Y, Liang J, Zhao L. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J Biomater Appl 2019; 34:476-486. [PMID: 31280635 DOI: 10.1177/0885328219860929] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fang Li
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yijie Shi
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Jia Liang
- 2 Life Science Institution, Jinzhou Medical University, Jinzhou, PR China
| | - Liang Zhao
- 1 School of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
28
|
Jablonka L, Ashtikar M, Gao G, Jung F, Thurn M, Preuß A, Scheglmann D, Albrecht V, Röder B, Wacker MG. Advanced in silico modeling explains pharmacokinetics and biodistribution of temoporfin nanocrystals in humans. J Control Release 2019; 308:57-70. [PMID: 31247282 DOI: 10.1016/j.jconrel.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 01/21/2023]
Abstract
Foscan®, a formulation comprising temoporfin dissolved in a mixture of ethanol and propylene glycol, has been approved in Europe for palliative photodynamic therapy of squamous cell carcinoma of the head and neck. During clinical and preclinical studies it was observed that considering the administration route, the drug presents a rather atypical plasma profile as plasma concentration peaks delayed. Possible explanations, as for example the formation of a drug depot or aggregation after intravenous administration, are discussed in current literature. In the present study an advanced in silico model was developed and evaluated for the detailed description of Foscan® pharmacokinetics. Therefore, in vitro release data obtained from experiments with the dispersion releaser technology investigating dissolution pressures of various release media on the drug as well as in vivo data obtained from a clinical study were included into the in silico models. Furthermore, precipitation experiments were performed in presence of biorelevant media and precipitates were analyzed by nanoparticle tracking analysis. Size analysis and particle fraction were also incorporated in this model and a sensitivity analysis was performed. An optimal description of the in vivo situation based on in vitro release and particle characterization data was achieved, as demonstrated by an absolute average fold error of 1.21. This in vitro-in vivo correlation provides an explanation for the pharmacokinetics of Foscan® in humans.
Collapse
Affiliation(s)
- Laura Jablonka
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Mukul Ashtikar
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Ge Gao
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Fabian Jung
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt (Main), Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt (Main), Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | | | - Volker Albrecht
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore.
| |
Collapse
|
29
|
Kaihara M, Hojo K, Tajiri T, Kambayashi A, Yoshida T, Katakawa Y, Motonaga K, Kimura SI, Iwao Y, Kondo H. Novel Dissolution Approach for Tacrolimus-Loaded Microspheres Using a Dialysis Membrane for in Vitro-in Vivo Correlation. Chem Pharm Bull (Tokyo) 2019; 67:467-475. [PMID: 31061372 DOI: 10.1248/cpb.c18-01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to establish a novel approach to in vitro dissolution evaluation using a combination of the paddle method and a dialysis membrane, both to predict the overall in vivo performance of tacrolimus microspheres and also to identify a suitable dissolution test method to describe the in vivo initial burst phenomenon. This new dissolution method for evaluating the release of tacrolimus from microspheres consisted of rotating a customized paddle inside a dialysis membrane using a conventional paddle apparatus. Findings were compared with a method in which the paddle was rotated outside the dialysis membrane, the conventional paddle method, and the flow-through cell method. We concluded that the paddle method with a dialysis membrane and internal agitation, which was designed to mimic in vivo conditions, predicted the overall pharmacokinetic (PK) profile of tacrolimus microspheres whereas the conventional paddle method described the initial burst. These findings suggest that it may not be possible to predict both the PK profile and initial burst using a single analysis method. We therefore recommend that evaluation of the initial burst be performed separately. In conclusion, we propose that combination of the paddle method with a dialysis membrane and internal agitation to evaluate the overall PK profile, together with the paddle method to describe the in vivo initial burst, represents a novel approach to in vitro dissolution evaluation for microsphere formulations.
Collapse
Affiliation(s)
- Masanori Kaihara
- Analytical Research Labs., Astellas Pharma Inc.,School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazuhiro Hojo
- Analytical Research Labs., Astellas Pharma Europe B.V
| | | | | | | | | | | | | | - Yasunori Iwao
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
30
|
Nova MV, Nothnagel L, Thurn M, Travassos PB, Herculano LS, Bittencourt PR, Novello CR, Bazotte RB, Wacker MG, Bruschi ML. Development study of pectin/Surelease® solid microparticles for the delivery of L-alanyl-L-glutamine dipeptide. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Feczkó T, Piiper A, Ansar S, Blixt FW, Ashtikar M, Schiffmann S, Ulshöfer T, Parnham MJ, Harel Y, Israel LL, Lellouche JP, Wacker MG. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release 2018; 293:63-72. [PMID: 30458203 DOI: 10.1016/j.jconrel.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 01/10/2023]
Abstract
For many years, delivering drug molecules across the blood brain barrier has been a major challenge. The neuropeptide nerve growth factor is involved in the regulation of growth and differentiation of cholinergic neurons and holds great potential in the treatment of stroke. However, as with many other compounds, the biomolecule is not able to enter the central nervous system. In the present study, nerve growth factor and ultra-small particles of iron oxide were co-encapsulated into a chemically crosslinked albumin nanocarrier matrix which was modified on the surface with apolipoprotein E. These biodegradable nanoparticles with a size of 212 ± 1 nm exhibited monodisperse size distribution and low toxicity. They delivered NGF through an artificial blood brain barrier and were able to induce neurite outgrowth in PC12 cells in vitro. In an animal model of stroke, the infarct size was significantly reduced compared to the vehicle control. The combination therapy of NGF and the small-molecular MEK inhibitor U0126 showed a slight but not significant difference compared to U0126 alone. However, further in vivo evidence suggests that successful delivery of the neuropeptide is possible as well as the synergism between those two treatments.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, Hungary
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Saema Ansar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frank W Blixt
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mukul Ashtikar
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany
| | - Yifat Harel
- Department of Chemistry, Bar Ilan University, Israel
| | | | | | - Matthias G Wacker
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Frankfurt/Main, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
32
|
A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. Eur J Pharm Biopharm 2018; 127:462-470. [DOI: 10.1016/j.ejpb.2018.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
|
33
|
Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci 2018; 120:199-211. [PMID: 29751101 DOI: 10.1016/j.ejps.2018.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
Abstract
Novel drug delivery systems exhibit great potential in the formulation of poorly soluble compounds but have also been applied to reduce side effects of highly active drug molecules. Despite all efforts, there are only few technologies available to investigate the in vitro release of next-generation nanotherapeutics. In the following, different approaches for testing the drug release from nanoparticles in the fields of formulation development and quality control will be discussed. A variety of methods is available, starting from dialysis-based equipment, in situ measurements, flow-through devices and sample and separate setups. If possible, these methods should enable a more rapid formulation development and quality control of nanosized carriers as well as improve the prediction of in vivo performance and clinical outcomes.
Collapse
Affiliation(s)
- Lisa Nothnagel
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|