1
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
2
|
Ahola I, Raijada D, Cornett C, Bøtker J, Rantanen J, Genina N. Tailor-Made Doses of Pharmaceuticals by Tunable Modular Design: A Case Study on Tapering Antidepressant Medication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403852. [PMID: 38696202 DOI: 10.1002/adma.202403852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
An abrupt cessation of antidepressant medication can be challenging due to the appearance of withdrawal symptoms. A slow hyperbolic tapering of an antidepressant, such as citalopram hydrobromide (CHB), can mitigate the withdrawal syndrome. However, there are no viable dosage forms on the market to implement the tapering scheme. A solution using a tunable modular design (TMD) approach to produce flexible and accurate doses of CHB is proposed. This design consists of two parts: 1) a module with a fixed amount of preloaded CHB in a freeze-dried polymer matrix, and 2) fine-tuning the CHB dose by inkjet printing. A noncontact food-grade printer, used for the first time for printing pharmaceuticals, is modified to allow for accurate printing of the highly concentrated CHB ink on the porous CHB-free or CHB-preloaded modules. The produced modules with submilligram precision are bench-marked with commercially available CHB tablets that are manually divided. The TMD covers the entire range of doses needed for the tapering (0.5-23.8 mg). The greatest variance is 13% and 88% when comparing the TMD and self-tapering, respectively. Self-tapering is proven inaccurate and showcases the need for the TMD to make available accurate and personalized doses to wean off treatment with CHB.
Collapse
Affiliation(s)
- Ilari Ahola
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Dhara Raijada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Gothenburg, 431 83, Sweden
| | - Claus Cornett
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Johan Bøtker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| |
Collapse
|
3
|
Sandler Topelius N, Shokraneh F, Bahman M, Lahtinen J, Hassinen N, Airaksinen S, Verma S, Hrizanovska L, Lass J, Paaver U, Tähnas J, Kern C, Lagarce F, Fenske D, Malik J, Scherliess H, Cruz SP, Paulsson M, Dekker J, Kammonen K, Rautamo M, Lück H, Pierrot A, Stareprawo S, Tubic-Grozdanis M, Zibolka S, Lösch U, Jeske M, Griesser U, Hummer K, Thalmeier A, Harjans A, Kruse A, Heimke-Brinck R, Khoukh K, Bruno F. Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets. Pharmaceutics 2024; 16:678. [PMID: 38794340 PMCID: PMC11125381 DOI: 10.3390/pharmaceutics16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend® excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies.
Collapse
Affiliation(s)
- Niklas Sandler Topelius
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Farnaz Shokraneh
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Mahsa Bahman
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Julius Lahtinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Niko Hassinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Sari Airaksinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Soumya Verma
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Ludmila Hrizanovska
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Jana Lass
- Tartu University Hospital, 50406 Tartu, Estonia;
| | - Urve Paaver
- Institute of Pharmacy, Tartu University, 50411 Tartu, Estonia;
| | | | | | | | | | - Julia Malik
- Asklepios Klinik Nord, 22417 Hamburg, Germany;
| | | | | | - Mattias Paulsson
- Department of Women’s and Children’s Health, Uppsala University, Akademiska Sjukhuset, SE-751 85 Uppsala, Sweden
| | - Jan Dekker
- UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Maria Rautamo
- HUS Helsinki University Hospital, 00029 Helsinki, Finland;
- Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Hendrik Lück
- UKSH Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- UKSH Universitätsklinikum Schleswig-Holstein, 24105 Lubeck, Germany
| | - Antoine Pierrot
- Centre Hospitalier Universitaire Vaudois, 1005 Lausanne, Switzerland
| | | | | | - Stefanie Zibolka
- Universitätsklinikum Magdeburg A.ö.R., 39120 Magdeburg, Germany;
| | - Uli Lösch
- Universitätsspital Basel, 4031 Basel, Switzerland;
| | | | - Ulrich Griesser
- Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Karin Hummer
- Landeskrankenanstalten-Betriebsgesellschaft—KABEG (Klagenfurt), 9020 Klagenfurt am Wörthersee, Austria
| | | | - Anna Harjans
- Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | | | - Ralph Heimke-Brinck
- University Hospital Erlangen (Apotheke des Universitätsklinikums Erlangen), 91054 Erlangen, Germany;
| | | | | |
Collapse
|
4
|
Junnila A, Mortier L, Arbiol A, Harju E, Tomberg T, Hirvonen J, Viitala T, Karttunen AP, Peltonen L. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion. Int J Pharm 2024; 655:124070. [PMID: 38554740 DOI: 10.1016/j.ijpharm.2024.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.
Collapse
Affiliation(s)
- Atte Junnila
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland.
| | - Laurence Mortier
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland; Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Alba Arbiol
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Elina Harju
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Teemu Tomberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Anssi-Pekka Karttunen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| | - Leena Peltonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, § ,University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Krause I, Manigk R, Lopez EA, Douroumis D. Personalised oral dosage forms using an ultra-compact tablet press at the point of care. Eur J Pharm Biopharm 2024; 197:114220. [PMID: 38360119 DOI: 10.1016/j.ejpb.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Over the last 10 years there is an increasing need for the design of personalised medicines at the point of care (PoC) that meet the specific needs of individual patients. A plethora of technologies has been introduced for making affordable personalised pharmaceutical products, which however, do not address manufacturing and regulatory challenges. Here we introduce a novel ultra-compact tablet press which was used for the design and compression of rosuvastatin-aspirin and amiloride-lysonipril bilayer tablets respectively. By applying precision dosing, it was feasible to manufacture tablets of different dose strengths and control features such as hardness, friability and disintegration times. The compaction of on-demand personalised multidrug pills that meet quality standards could revolutionised the treatment of patients at the point of care.
Collapse
Affiliation(s)
- Ingo Krause
- PrivMed® X AB, Björnholmsvägen 4, SE-184 92 Åkersberga, Sweden
| | - Rene Manigk
- PrivMed® X AB, Björnholmsvägen 4, SE-184 92 Åkersberga, Sweden
| | - Elena Arribas Lopez
- Centre for Research Innovation, University of Greenwich, Medway Campus, Kent ME4 4TB, UK
| | - Dennis Douroumis
- Centre for Research Innovation, University of Greenwich, Medway Campus, Kent ME4 4TB, UK; Delta Pharmaceutics Ltd. Chatham, Kent ME4 5NG, UK.
| |
Collapse
|
6
|
Wang Y, Genina N, Müllertz A, Rantanen J. Binder jetting 3D printing in fabricating pharmaceutical solid products for precision medicine. Basic Clin Pharmacol Toxicol 2024; 134:325-332. [PMID: 38105694 DOI: 10.1111/bcpt.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Current treatment strategies are moving towards patient-centricity, which emphasizes the need for new solutions allowing for medication tailored to a patient. This can be realized by precision medicine where patient diversity is considered during treatment. However, the broader use of precision medicine is restricted by the current technological solutions and rigid manufacturing of pharmaceutical products by mass production principles. Additive manufacturing of pharmaceutical products can provide a feasible solution to this challenge. In this review, a particular subtype of additive manufacturing, that is, binder jetting 3D printing, is introduced as a solution for fabricating pharmaceutical solid products that can be considered as precision medicine. Technical aspects, practical applications, unique advantages and challenges related to this technique are discussed, indicating that binder jetting 3D printing possesses the potential for fabricating already new product prototypes, where diversity in patient treatment in terms of the needs for specific drug type, dose and drug release can be accounted. To further advance this type of mass customization of pharmaceuticals, multidisciplinary research initiatives are needed not only to cover the engineering aspects but also to bridge these innovations with patient-centric perspectives.
Collapse
Affiliation(s)
- Yingya Wang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Additive manufacturing in respiratory sciences - Current applications and future prospects. Adv Drug Deliv Rev 2022; 186:114341. [PMID: 35569558 DOI: 10.1016/j.addr.2022.114341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
Abstract
Additive Manufacturing (AM) comprises a variety of techniques that enable fabrication of customised objects with specific attributes. The versatility of AM procedures and constant technological improvements allow for their application in the development of medicinal products and medical devices. This review provides an overview of AM applications related to respiratory sciences. For this purpose, both fields of research are briefly introduced and the potential benefits of integrating AM to respiratory sciences at different levels of pharmaceutical development are highlighted. Tailored manufacturing of microstructures as a particle design approach in respiratory drug delivery will be discussed. At the dosage form level, we exemplify AM as an important link in the iterative loop of data driven inhaler design, rapid prototyping and in vitro testing. This review also presents the application of bioprinting in the respiratory field for design of biorelevant in vitro cellular models, followed by an overview of AM-related processes in preventive and therapeutic care. Finally, this review discusses future prospects of AM as a component in a digital health environment.
Collapse
|
8
|
Tidau M, Finke JH. Modified Release Kinetics in Dual Filament 3D Printed Individualized Oral Dosage Forms. Eur J Pharm Sci 2022; 175:106221. [PMID: 35662635 DOI: 10.1016/j.ejps.2022.106221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
On demand production of totally customizable combinative preparations is a central goal of a patient-centric pharmaceutical supply chain. Additive manufacturing techniques like fused deposition modeling (FDM) could be key technologies towards such individualized dosage forms. As so far only a limited number of studies on 3D printed combinative preparations applying FDM have been reported, a core-shell dosage form was the focus of the present study. Dosage forms with an initial and a sustained release part with theophylline as model API were successfully produced applying a dual nozzle FDM 3D printer. Investigations identified microstructural defects at the interface between the two formulations by means of µCT analysis. Dissolution testing proved the achievement of the intended release profile. In combination with additionally characterized release profile of single material prints of different shapes, the combinative release profiles could be predicted by developing model equations and taking into account the geometric composition. As these model approaches can accordingly facilitate the prediction of API release from 3D printed combinative preparations with only data from single material release. This is a first step towards a truly individualized and reliable patient-centric pharmaceutical supply via 3D printing.
Collapse
Affiliation(s)
- Marius Tidau
- TU Braunschweig, Institut für Partikeltechnik (iPAT); Volkmaroder Str. 5, 38104 Braunschweig, Germany; TU Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Str. 35A, 38106 Braunschweig, Germany.
| | - Jan Henrik Finke
- TU Braunschweig, Institut für Partikeltechnik (iPAT); Volkmaroder Str. 5, 38104 Braunschweig, Germany; TU Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Str. 35A, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Application and Multi-Stage Optimization of Daylight Polymer 3D Printing of Personalized Medicine Products. Pharmaceutics 2022; 14:pharmaceutics14040843. [PMID: 35456677 PMCID: PMC9029863 DOI: 10.3390/pharmaceutics14040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Additive technologies have undoubtedly become one of the most intensively developing manufacturing methods in recent years. Among the numerous applications, the interest in 3D printing also includes its application in pharmacy for production of small batches of personalized drugs. For this reason, we conducted multi-stage pre-formulation studies to optimize the process of manufacturing solid dosage forms by photopolymerization with visible light. Based on tests planned and executed according to the design of the experiment (DoE), we selected the optimal quantitative composition of photocurable resin made of PEG 400, PEGDA MW 575, water, and riboflavin, a non-toxic photoinitiator. In subsequent stages, we adjusted the printer set-up and process parameters. Moreover, we assessed the influence of the co-initiators ascorbic acid or triethanolamine on the resin’s polymerization process. Next, based on an optimized formulation, we printed and analyzed drug-loaded tablets containing mebeverine hydrochloride, characterized by a gradual release of active pharmaceutical ingredient (API), reaching 80% after 6 h. We proved the possibility of reusing the drug-loaded resin that was not hardened during printing and determined the linear correlation between the volume of the designed tablets and the amount of API, confirming the possibility of printing personalized modified-release tablets.
Collapse
|
10
|
The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing? Pharmaceutics 2022; 14:pharmaceutics14030609. [PMID: 35335984 PMCID: PMC8952205 DOI: 10.3390/pharmaceutics14030609] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The technological revolution has physically affected all manufacturing domains, at the gateway of the fourth industrial revolution. Three-dimensional (3D) printing has already shown its potential in this new reality, exhibiting remarkable applications in the production of drug delivery systems. As part of this concept, personalization of the dosage form by means of individualized drug dose or improved formulation functionalities has concentrated global research efforts. Beyond the manufacturing level, significant parameters must be considered to promote the real-time manufacturing of pharmaceutical products in distributed areas. The majority of current research activities is focused on formulating 3D-printed drug delivery systems while showcasing different scenarios of installing 3D printers in patients' houses, hospitals, and community pharmacies, as well as in pharmaceutical industries. Such research presents an array of parameters that must be considered to integrate 3D printing in a future healthcare system, with special focus on regulatory issues, drug shortages, quality assurance of the product, and acceptability of these scenarios by healthcare professionals and public parties. The objective of this review is to critically present the spectrum of possible scenarios of 3D printing implementation in future healthcare and to discuss the inevitable issues that must be addressed.
Collapse
|
11
|
Calvo F, Gómez JM, Alvarez O, Ricardez-Sandoval L. Trends and perspectives on emulsified product design. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D Printing of Pediatric Medication: The End of Bad Tasting Oral Liquids?-A Scoping Review. Pharmaceutics 2022; 14:416. [PMID: 35214148 PMCID: PMC8880000 DOI: 10.3390/pharmaceutics14020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
3D printing of pediatric-centered drug formulations can provide suitable alternatives to current treatment options, though further research is still warranted for successful clinical implementation of these innovative drug products. Extensive research has been conducted on the compliance of 3D-printed drug products to a pediatric quality target product profile. The 3D-printed tablets were of particular interest in providing superior dosing and release profile similarity compared to conventional drug manipulation and compounding methods, such as oral liquids. In the future, acceptance of 3D-printed tablets in the pediatric patient population might be better than current treatments due to improved palatability. Further research should focus on expanding clinical knowledge, providing regulatory guidance and expansion of the product range, including dosage form possibilities. Moreover, it should enable the use of diverse good manufacturing practice (GMP)-ready 3D printing techniques for the production of various drug products for the pediatric patient population.
Collapse
Affiliation(s)
- Iris Lafeber
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Elisabeth J. Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC—Sophia Children’s Hospital, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Kirsten J. M. Schimmel
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| |
Collapse
|
13
|
Fused Deposition Modeling as a Possible Approach for the Preparation of Orodispersible Tablets. Pharmaceuticals (Basel) 2022; 15:ph15010069. [PMID: 35056125 PMCID: PMC8781976 DOI: 10.3390/ph15010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing technologies are considered as a potential way to support individualized pharmacotherapy due to the possibility of the production of small batches of customized tablets characterized by complex structures. We designed five different shapes and analyzed the effect of the surface/mass ratio, the influence of excipients, and storage conditions on the disintegration time of tablets printed using the fused deposition modeling method. As model pharmaceutical active ingredients (APIs), we used paracetamol and domperidone, characterized by different thermal properties, classified into the various Biopharmaceutical Classification System groups. We found that the high surface/mass ratio of the designed tablet shapes together with the addition of mannitol and controlled humidity storage conditions turned out to be crucial for fast tablet’s disintegration. As a result, mean disintegration time was reduced from 5 min 46 s to 2 min 22 s, and from 11 min 43 s to 2 min 25 s for paracetamol- and domperidone-loaded tablets, respectively, fulfilling the European Pharmacopeia requirement for orodispersible tablets (ODTs). The tablet’s immediate release characteristics were confirmed during the dissolution study: over 80% of APIs were released from printlets within 15 min. Thus, this study proved the possibility of using fused deposition modeling for the preparation of ODTs.
Collapse
|
14
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
15
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
Raijada D, Wac K, Greisen E, Rantanen J, Genina N. Integration of personalized drug delivery systems into digital health. Adv Drug Deliv Rev 2021; 176:113857. [PMID: 34389172 DOI: 10.1016/j.addr.2021.113857] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
Personalized drug delivery systems (PDDS), implying the patient-tailored dose, dosage form, frequency of administration and drug release kinetics, and digital health platforms for diagnosis and treatment monitoring, patient adherence, and traceability of drug products, are emerging scientific areas. Both fields are advancing at a fast pace. However, despite the strong complementary nature of these disciplines, there are only a few successful examples of merging these areas. Therefore, it is important and timely to combine PDDS with an increasing number of high-end digital health solutions to create an interactive feedback loop between the actual needs of each patient and the drug products. This review provides an overview of advanced design solutions for new products such as interactive personalized treatment that would interconnect the pharmaceutical and digital worlds. Furthermore, we discuss the recent advancements in the pharmaceutical supply chain (PSC) management and related limitations of the current mass production model. We summarize the current state of the art and envision future directions and potential development areas.
Collapse
Affiliation(s)
- Dhara Raijada
- Department of Pharmacy, University of Copenhagen, Denmark
| | - Katarzyna Wac
- Department of Computer Science, University of Copenhagen, Denmark; Quality of Life Technologies Lab, Center for Informatics, University of Geneva, Switzerland
| | | | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Pharmaceutical Product Modularization as a Mass Customization Strategy to Increase Patient Benefit Cost-Efficiently. SYSTEMS 2021. [DOI: 10.3390/systems9030059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Customized pharmaceutical products aim to comply with the individual needs of a patient to enhance the treatment outcome. The current pharmaceutical production paradigm is, however, dominated by mass production, where the pharmaceutical products embrace a one-size-fits-all design with a low possibility of treatment optimization to patient needs. This production paradigm is not designed or intended for customized pharmaceutical products and operating this production context for customized pharmaceutical products is argued to be cost-inefficient. To address this challenge of inefficient production of customized pharmaceutical products, this study proposes an approach to modular pharmaceutical product design. As a mass customization strategy, product modularization enables serving customers with customized products cost-efficiently. The proposed modular pharmaceutical products integrate three product design requirements originating from patient needs: a scalable dose strength, a flexible target release profile, and a scalable treatment size. An approach to assess the value of these product designs is presented, by means of proposing three benefit metrics complying with respective design requirements and a cost metric assessing the cost of producing these modular pharmaceutical product designs. Results suggest that pharmaceutical product modularization can, by keeping the number of produced components low, substantially increase the external product variety and, hence, enhance the treatment outcome of patients. Furthermore, results indicate that the achieved benefit for the patient through product modularization increases beyond additional costs arising during production. However, a careful modularization must be performed to optimize the tradeoff between the increased benefit and cost.
Collapse
|
18
|
Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021; 13:1212. [PMID: 34452173 PMCID: PMC8399326 DOI: 10.3390/pharmaceutics13081212] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
3D printing is a new emerging technology in the pharmaceutical manufacturing landscape. Its potential advantages for personalized medicine have been widely explored and commented on in the literature over recent years. More recently, the selective laser sintering (SLS) technique has been investigated for oral drug-delivery applications. Thus, this article reviews the work that has been conducted on SLS 3D printing for the preparation of solid oral forms (SOFs) from 2017 to 2020 and discusses the opportunities and challenges for this state-of-the-art technology in precision medicine. Overall, the 14 research articles reviewed report the use of SLS printers equipped with a blue diode laser (445-450 nm). The review highlights that the printability of pharmaceutical materials, although an important aspect for understanding the sintering process has only been properly explored in one article. The modulation of the porosity of printed materials appears to be the most interesting outcome of this technology for pharmaceutical applications. Generally, SLS shows great potential to improve compliance within fragile populations. The inclusion of "Quality by Design" tools in studies could facilitate the deployment of SLS in clinical practice, particularly where Good Manufacturing Practices (GMPs) for 3D-printing processes do not currently exist. Nevertheless, drug stability and powder recycling remain particularly challenging in SLS. These hurdles could be overcome by collaboration between pharmaceutical industries and compounding pharmacies.
Collapse
Affiliation(s)
- Yanis A. Gueche
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (S.C.); (B.B.)
| | | | - Sylvain Cailleaux
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (S.C.); (B.B.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Bernard Bataille
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (S.C.); (B.B.)
| | - Ian Soulairol
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (S.C.); (B.B.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| |
Collapse
|
19
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
20
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|
21
|
Almeida A, Linares V, Mora-Castaño G, Casas M, Caraballo I, Sarmento B. 3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micelles. Eur J Pharm Biopharm 2021; 167:48-56. [PMID: 34280496 DOI: 10.1016/j.ejpb.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023]
Abstract
The use of 3D printing technology in the manufacturing of drug delivery systems has expanded and benefit of a customized care. The ability to create tailor-made structures filled with drugs/delivery systems with suitable drug dosage is especially appealing in the field of nanomedicine. In this work, chitosan-based polymeric micelles loaded with camptothecin (CPT) were incorporated into 3D printing systems (printfills) sealed with an enteric layer, aiming to protect the nanosystems from the harsh environment of the gastrointestinal tract (GIT). Polymeric micelles and printfills were fully characterized and, a simulated digestion of the 3D systems upon an oral administration was performed. The printfills maintained intact at the simulated gastric pH of the stomach and, only released the micelles at the colonic pH. From there, the dissolution media was used to recreate the intestinal absorption and, chitosan micelles showed a significant increase of the CPT permeability compared to the free drug, reaching an apparent permeability coefficient (Papp) of around 9×10-6 cm/s in a 3D intestinal cell-based model. The combination of 3D printing with nanotechnology appears to have great potential for the colon-specific release of polymeric micelles, thereby increasing intestinal absorption while protecting the system/drug from degradation throughout the GIT.
Collapse
Affiliation(s)
- Andreia Almeida
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vicente Linares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra, 137, 4585-116 Gandra, Portugal.
| |
Collapse
|
22
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
23
|
Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 2021; 174:406-424. [PMID: 33951489 DOI: 10.1016/j.addr.2021.04.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.
Collapse
|
24
|
Abstract
Spray drying is a versatile technology that has been applied widely in the chemical, food, and, most recently, pharmaceutical industries. This review focuses on engineering advances and the most significant applications of spray drying for pharmaceuticals. An in-depth view of the process and its use is provided for amorphous solid dispersions, a major, growing drug-delivery approach. Enhanced understanding of the relationship of spray-drying process parameters to final product quality attributes has made robust product development possible to address a wide range of pharmaceutical problem statements. Formulation and process optimization have leveraged the knowledge gained as the technology has matured, enabling improved process development from early feasibility screening through commercial applications. Spray drying's use for approved small-molecule oral products is highlighted, as are emerging applications specific to delivery of biologics and non-oral delivery of dry powders. Based on the changing landscape of the industry, significant future opportunities exist for pharmaceutical spray drying.
Collapse
Affiliation(s)
- John M Baumann
- Small Molecules, Lonza Pharma & Biotech, Bend, Oregon 97701, USA; , ,
| | - Molly S Adam
- Small Molecules, Lonza Pharma & Biotech, Bend, Oregon 97701, USA; , ,
| | - Joel D Wood
- Small Molecules, Lonza Pharma & Biotech, Bend, Oregon 97701, USA; , ,
| |
Collapse
|
25
|
Govender R, Abrahmsén-Alami S, Folestad S, Olsson M, Larsson A. Enabling modular dosage form concepts for individualized multidrug therapy: Expanding the design window for poorly water-soluble drugs. Int J Pharm 2021; 602:120625. [PMID: 33892062 DOI: 10.1016/j.ijpharm.2021.120625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Multidrug dosage forms (aka combination dosage forms, polypills, etc.) create value for patients through reduced pill burdens and simplified administration to improve adherence to therapy. Enhanced flexibility of multidrug dosage forms would provide further opportunities to better match emerging needs for individualized therapy. Through modular dosage form concepts, one approach to satisfy these needs is to adapt multidrug dosage forms to a wider variety of drugs, each with a variety of doses and release profiles. This study investigates and technically explores design requirements for extending the capability of modular multidrug dosage form concepts towards individualization. This builds on our recent demonstration of independent tailoring of dose and drug release, which is here extended towards poorly water-soluble drugs. The challenging design requirement of carrying higher drug loads in smaller volumes to accommodate multiple drugs at their clinical dose is here met regarding dose and release performance. With a modular concept, we demonstrate high precision (<5% RSD) in dose and release performance of individual modules containing felodipine or naproxen in Kollidon VA64 at both a wide drug loading range (5% w/w and 50% w/w drug) and a small module size (3.6 mg). In a forward-looking design-based discussion, further requirements are addressed, emphasizing that reproducible individual module performance is predictive of dosage form performance, provided the modules are designed to act independently. Therefore, efforts to incorporate progressively higher drug loads within progressively smaller module volumes will be crucial to extend the design window further towards full flexibility of future dosage forms for individualized multidrug therapy.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Martina Olsson
- Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
26
|
Eleftheriadis GK, Kantarelis E, Monou PK, Andriotis EG, Bouropoulos N, Tzimtzimis EK, Tzetzis D, Rantanen J, Fatouros DG. Automated digital design for 3D-printed individualized therapies. Int J Pharm 2021; 599:120437. [PMID: 33662466 DOI: 10.1016/j.ijpharm.2021.120437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Efthymios Kantarelis
- KTH Royal Institute of Technology, Department of Chemical Engineering, SE100 44 Stockholm, Sweden
| | - Paraskevi Kyriaki Monou
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dimitrios G Fatouros
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
27
|
Drumond N, Stegemann S. Better Medicines for Older Patients: Considerations between Patient Characteristics and Solid Oral Dosage Form Designs to Improve Swallowing Experience. Pharmaceutics 2020; 13:pharmaceutics13010032. [PMID: 33379258 PMCID: PMC7824227 DOI: 10.3390/pharmaceutics13010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Oral drug administration provided as solid oral dosage forms (SODF) remains the major route of drug therapy in primary and secondary care. There is clear evidence for a growing number of clinically relevant swallowing issues (e.g., dysphagia) in the older patient population, especially when considering the multimorbid, frail, and polymedicated patients. Swallowing impairments have a negative impact on SODF administration, which leads to poor adherence and inappropriate alterations (e.g., crushing, splitting). Different strategies have been proposed over the years in order to enhance the swallowing experience with SODF, by using conventional administration techniques or applying swallowing aids and devices. Nevertheless, new formulation designs must be considered by implementing a patient centric approach in order to efficiently improve SODF administration by older patient populations. Together with appropriate SODF size reductions, innovative film coating materials that can be applied to SODF and provide swallowing safety and efficacy with little effort being required by the patients are still needed. With that in mind, a literature review was conducted in order to identify the availability of patient centric coating materials claiming to shorten esophageal transit times and improve the overall SODF swallowing experience for older patients. The majority of coating technologies were identified in patent applications, and they mainly included well-known water soluble polymers that are commonly applied into pharmaceutical coatings. Nevertheless, scientific evidence demonstrating the benefits of given SODF coating materials in the concerned patient populations are still very limited. Consequently, the availability for safe, effective, and clinically proven solutions to address the increasing prevalence of swallowing issues in the older patient population is still limited.
Collapse
Affiliation(s)
- Nélio Drumond
- Correspondence: (N.D.); (S.S.); Tel.: +49-178-2144689 (N.D.); +49-172-6054869 (S.S.)
| | - Sven Stegemann
- Correspondence: (N.D.); (S.S.); Tel.: +49-178-2144689 (N.D.); +49-172-6054869 (S.S.)
| |
Collapse
|
28
|
Hein AE, Vrijens B, Hiligsmann M. A Digital Innovation for the Personalized Management of Adherence: Analysis of Strengths, Weaknesses, Opportunities, and Threats. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:604183. [PMID: 35047888 PMCID: PMC8757755 DOI: 10.3389/fmedt.2020.604183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Personalized medicine and management of adherence are potential solutions for the suboptimal use of medicines. Digital medication management innovations currently under development combine both aspects. This research aims to investigate facilitators for and barriers to the translation of digital innovations for personalized medicine and adherence management into clinical practice from the policymaker and regulator perspective. Methods: A mixed-method study was used combining a scoping review to identify main interests, semi-structured interviews (n = 5) with representatives of European health policymaking and regulatory organizations, and a supplementary literature review to investigate key subthemes. The SWOT analysis was used for the qualitative analysis. Results: The literature reviews and the qualitative interviews suggested that digital solutions can facilitate the personalized management of medications and improve quality and safety, especially as the openness for digital health solutions is increasing. Digital solutions may, on the other hand, add complexity to the treatment, which can be perceived as a potential barrier for their uptake. As more multidisciplinary and participative structures are emerging, digital solutions can promote the implementation of new services. Nevertheless, change progresses slowly in the task-oriented structures of health systems. Integration of digital solutions depends on all stakeholders' willingness and abilities to co-create this change. Patients have different capabilities to self-manage their medical conditions and use digital solutions. Personalization of digital health solutions and integration in existing service structures are crucial to ensure equality among population segments. Developments in the digital infrastructure, although they are partly slow and not well-aligned, enable the implementation of innovations in clinical practice leading to further advances in data generation and usage for future innovations. Discussion: This study suggests that digital solutions have the potential to facilitate high-quality medication management and improve adherence to medications, enable new service structures, and are essential to drive further innovations in health care. Nevertheless, increasing the self-responsibility of patients can have undesirable effects on health outcomes, especially within vulnerable population segments. Digital health solutions can be an opportunity to optimize the use of medicines and thus their efficiency. Well-conceived development and implementation processes are needed to also realize improvements in equality and solidarity within health systems.
Collapse
Affiliation(s)
- Anna-Elisa Hein
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands.,Faculty of Management, Economics and Social Sciences, University of Cologne, Cologne, Germany
| | - Bernard Vrijens
- AARDEX Group, Research and Development, Liège, Belgium.,Department of Public Health, University of Liège, Liège, Belgium
| | - Mickael Hiligsmann
- Department of Health Services Research, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
Öblom H, Cornett C, Bøtker J, Frokjaer S, Hansen H, Rades T, Rantanen J, Genina N. Data-enriched edible pharmaceuticals (DEEP) of medical cannabis by inkjet printing. Int J Pharm 2020; 589:119866. [DOI: 10.1016/j.ijpharm.2020.119866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
|
30
|
Electro-Hydrodynamic Drop-on-Demand Printing of Aqueous Suspensions of Drug Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12111034. [PMID: 33138033 PMCID: PMC7693662 DOI: 10.3390/pharmaceutics12111034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
We demonstrate the ability to fabricate dosage forms of a poorly water-soluble drug by using wet stirred media milling of a drug powder to produce an aqueous suspension of nanoparticles and then print it onto a porous biocompatible film. Contrary to conventional printing technologies, a deposited material is pulled out from the nozzle. This feature enables printing highly viscous materials with a precise control over the printed volume. Drug (griseofulvin) nanosuspensions prepared by wet media milling were printed onto porous hydroxypropyl methylcellulose films prepared by freeze-drying. The drug particles retained crystallinity and polymorphic form in the course of milling and printing. The versatility of this technique was demonstrated by printing the same amount of nanoparticles onto a film with droplets of different sizes. The mean drug content (0.19-3.80 mg) in the printed films was predicted by the number of droplets (5-100) and droplet volume (0.2-1.0 µL) (R2 = 0.9994, p-value < 10-4). Our results also suggest that for any targeted drug content, the number-volume of droplets could be modulated to achieve acceptable drug content uniformity. Analysis of the model-independent difference and similarity factors showed consistency of drug release profiles from films with a printed suspension. Zero-order kinetics described the griseofulvin release rate from 1.8% up to 82%. Overall, this study has successfully demonstrated that the electro-hydrodynamic drop-on-demand printing of an aqueous drug nanosuspension enables accurate and controllable drug dosing in porous polymer films, which exhibited acceptable content uniformity and reproducible drug release.
Collapse
|
31
|
Govender R, Abrahmsén-Alami S, Larsson A, Borde A, Liljeblad A, Folestad S. Independent Tailoring of Dose and Drug Release via a Modularized Product Design Concept for Mass Customization. Pharmaceutics 2020; 12:E771. [PMID: 32823877 PMCID: PMC7465528 DOI: 10.3390/pharmaceutics12080771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Independent individualization of multiple product attributes, such as dose and drug release, is a crucial overarching requirement of pharmaceutical products for individualized therapy as is the unified integration of individualized product design with the processes and production that drive patient access to such therapy. Individualization intrinsically demands a marked increase in the number of product variants to suit smaller, more stratified patient populations. One established design strategy to provide enhanced product variety is product modularization. Despite existing customized and/or modular product design concepts, multifunctional individualization in an integrated manner is still strikingly absent in pharma. Consequently, this study aims to demonstrate multifunctional individualization through a modular product design capable of providing an increased variety of release profiles independent of dose and dosage form size. To further exhibit that increased product variety is attainable even with a low degree of product modularity, the modular design was based upon a fixed target dosage form size of approximately 200 mm3 comprising two modules, approximately 100 mm3 each. Each module contained a melt-extruded and molded formulation of 40% w/w metoprolol succinate in a PEG1500 and Kollidon® VA64 erodible hydrophilic matrix surrounded by polylactic acid and/or polyvinyl acetate as additional release rate-controlling polymers. Drug release testing confirmed the generation of predictable, combined drug release kinetics for dosage forms, independent of dose, based on a product's constituent modules and enhanced product variety through a minimum of six dosage form release profiles from only three module variants. Based on these initial results, the potential of the reconfigurable modular product design concept is discussed for unified integration into a pharmaceutical mass customization/mass personalization context.
Collapse
Affiliation(s)
- Rydvikha Govender
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Susanna Abrahmsén-Alami
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Anette Larsson
- Pharmaceutical Technology, Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
| | - Anders Borde
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Alexander Liljeblad
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden; (S.A.-A.); (A.B.); (A.L.)
| | - Staffan Folestad
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations, AstraZeneca, SE-43183 Gothenburg, Sweden;
| |
Collapse
|