1
|
Bi F, Yuan T, Zhang B, Li J, Lin Y, Yang J. Establishment of Biopredictive Dissolution and Bioequivalence Safe Space Using the Physiologically Based Biopharmaceutics Modeling for Tacrolimus Extended-Release Capsules. AAPS PharmSciTech 2024; 26:13. [PMID: 39690309 DOI: 10.1208/s12249-024-03006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
A slight variation in in vivo exposure for tacrolimus extended-release (ER) capsules, which have a narrow therapeutic index (NTI), significantly affects the pharmacodynamics of the drug. Generic drug bioequivalence (BE) standards are stricter, necessitating accurate assessment of the rate and extent of drug release. Therefore, an in vitro dissolution method with high in vivo predictive power is crucial for developing generic drugs. In this study, physiologically based biopharmaceutics modeling (PBBM) for 5 mg tacrolimus ER capsules was developed and validated. The reference and non-BE test formulations were assessed using the Flow-Through Cell apparatus (USP IV) with biorelevant media to establish a biopredictive dissolution method. Using PBBM, virtual bioequivalence trials with virtual batches were conducted to propose a BE safe space. These criteria can identify formulations that pass the internal quality control test but are likely non-BE. This study highlights the benefits of developing biopredictive dissolution methods that are based on biorelevant dissolution. The PBBM, constructed by integrating various drug parameters, combined with the developed biopredictive dissolution methods, is a convenient approach for BE evaluation of NTI drugs and a practical tool for developing new drugs.
Collapse
Affiliation(s)
- Fulin Bi
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tong Yuan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Baohong Zhang
- Logan Instruments (Shanghai) Co; Ltd, Shanghai, 201107, People's Republic of China
| | - Jixia Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jin Yang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Bhattiprolu AK, Kollipara S, Boddu R, Arumugam A, Khan SM, Ahmed T. A Semi-Mechanistic Physiologically Based Biopharmaceutics Model to Describe Complex and Saturable Absorption of Metformin: Justification of Dissolution Specifications for Extended Release Formulation. AAPS PharmSciTech 2024; 25:193. [PMID: 39168956 DOI: 10.1208/s12249-024-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Physiologically based pharmacokinetic (PBPK) or physiologically based biopharmaceutics models (PBBM) demonstrated plethora of applications in both new drugs and generic product development. Justification of dissolution specifications and establishment of dissolution safe space is an important application of such modeling approaches. In case of molecules exhibiting saturable absorption behavior, justification of dissolution specifications requires development of a model that incorporates effects of transporters is critical to simulate in vivo scenario. In the present case, we have developed a semi-mechanistic PBBM to describe the non-linearity of BCS class III molecule metformin for justification of dissolution specifications of extended release formulation at strengths 500 mg and 1000 mg. Semi-mechanistic PBBM was built using physicochemical properties, dissolution and non-linearity was accounted through incorporation of multiple transporter kinetics at absorption level. The model was extensively validated using literature reported intravenous, oral (immediate & extended release) formulations and further validated using in-house bioequivalence data in fasting and fed conditions. Virtual dissolution profiles at lower and upper specifications were generated to justify the dissolution specifications. The model predicted literature as well as in-house clinical study data with acceptable prediction errors. Further, virtual bioequivalence trials predicted the bioequivalence outcome that matched with clinical study data. The model predicted bioequivalence when lower and upper specifications were compared against pivotal test formulations thereby justifying dissolution specifications. Overall, complex and saturable absorption pathway of metformin was successfully simulated and this work resulted in regulatory acceptance of dissolution specifications which has ability to reduce multiple dissolution testing.
Collapse
Affiliation(s)
- Adithya Karthik Bhattiprolu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Rajkumar Boddu
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Anand Arumugam
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Sohel Mohammed Khan
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India.
- Clinical Pharmacokinetics, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), BachupallyMedchal Malkajgiri District, Hyderabad, Telangana, 500 090, India.
| |
Collapse
|
3
|
Yang R, Lin Y, Chen K, Huang J, Yang S, Yao A, Yang X, Lei D, Xiao J, Yang G, Pei Q. Establishing Virtual Bioequivalence and Clinically Relevant Specifications for Omeprazole Enteric-Coated Capsules by Incorporating Dissolution Data in PBPK Modeling. AAPS J 2024; 26:82. [PMID: 38997548 DOI: 10.1208/s12248-024-00956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Currently, Biopharmaceutics Classification System (BCS) classes I and III are the only biological exemptions of immediate-release solid oral dosage forms eligible for regulatory approval. However, through virtual bioequivalence (VBE) studies, BCS class II drugs may qualify for biological exemptions if reliable and validated modeling is used. Here, we sought to establish physiologically based pharmacokinetic (PBPK) models, in vitro-in vivo relationship (IVIVR), and VBE models for enteric-coated omeprazole capsules, to establish a clinically-relevant dissolution specification (CRDS) for screening BE and non-BE batches, and to ultimately develop evaluation criteria for generic omeprazole enteric-coated capsules. To establish omeprazole's IVIVR based on the PBPK model, we explored its in vitro dissolution conditions and then combined in vitro dissolution profile studies with in vivo clinical trials. The predicted omeprazole pharmacokinetics (PK) profiles and parameters closely matched the observed PK data. Based on the VBE results, the bioequivalence study of omeprazole enteric-coated capsules required at least 48 healthy Chinese subjects. Based on the CRDS, the capsules' in vitro dissolution should not be < 28%-54%, < 52%, or < 80% after two, three, and six hours, respectively. Failure to meet these dissolution criteria may result in non-bioequivalence. Here, PBPK modeling and IVIVR methods were used to bridge the in vitro dissolution of the drug with in vivo PK to establish the BE safety space of omeprazole enteric-coated capsules. The strategy used in this study can be applied in BE studies of other BCS II generics to obtain biological exemptions and accelerate drug development.
Collapse
Affiliation(s)
- Ruwei Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqi Lin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kaifeng Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - An Yao
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Deqing Lei
- Changsha Institute for Food and Drug Control of Hunan Province, Changsha, China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Kesharwani SS, Louit G, Ibrahim F. The Use of Global Sensitivity Analysis to Assess the Oral Absorption of Weakly Basic Compounds: A Case Example of Dipyridamole. Pharm Res 2024; 41:877-890. [PMID: 38538971 DOI: 10.1007/s11095-024-03688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To utilize the global system analysis (GSA) in oral absorption modeling to gain a deeper understanding of system behavior, improve model accuracy, and make informed decisions during drug development. METHODS GSA was utilized to give insight into which drug substance (DS), drug product (DP), and/or physiological parameter would have an impact on peak plasma concentration (Cmax) and area under the curve (AUC) of dipyridamole as a model weakly basic compound. GSA guided the design of in vitro experiments and oral absorption risk assessment using FormulatedProducts v2202.1.0. The solubility and precipitation profiles of dipyridamole in different bile salt concentrations were measured. The results were then used to build a mechanistic oral absorption model. RESULTS GSA warranted further investigation into the precipitation kinetics and its link to the levels of bile salt concentrations. Mechanistic modeling studies demonstrated that a precipitation-integrated modeling approach appropriately predicted the mean plasma profiles, Cmax, and AUC from the clinical studies. CONCLUSIONS This work shows the value of GSA utilization in early development to guide in vitro experimentation and build more confidence in identifying the critical parameters for the mathematical models.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | - Guillaume Louit
- Siemens K.K, DI SW Division, 1-6-1 Miyahara, Osaka, 532-0003, Japan
| | - Fady Ibrahim
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water St, Cambridge, MA, 02141, USA.
| |
Collapse
|
5
|
Li Y, Jin X, Wang F, Zhou H, Gu Y, Yang Y, Qian Z, Li W. Multi-channel Small Animal Drug Metabolism Real-Time Monitoring Fluorescence System. Mol Imaging Biol 2024; 26:138-147. [PMID: 38114709 DOI: 10.1007/s11307-023-01883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The data acquisition of drug metabolism analysis requires a lot of time and animal resources. However, there are often many deviations in the results of pharmacokinetic analysis. Conventional methods cannot measure the blood drug concentration data in multiple tissues at the same time, and the data is obtained by in vitro measurement, which produces time errors, in vitro data errors, and individual differences between animals. In the analysis of pharmacokinetic parameters, it will seriously affect the pass rate of clinical trials of R&D drugs and the accuracy of the dosing schedule. To the best of our knowledge, we have not found the study of in vivo blood drug concentration using multi-channel equipment. Therefore, the purpose of this paper is to build a set of multi-organ monitoring and analysis instruments for synchronously monitoring the metabolism of drugs in various tissues of small animals, so as to obtain real in vivo data of blood drug concentration in real time. PROCEDURES Using the fluorescence properties and laser-induced fluorescence principle of drugs, we designed six channels to monitor the changes of fluorescence-labeled drugs in their main metabolic organs, a multi-channel calibration method was proposed to improve the accuracy of the time-division multiplexing, the real-time collection of drug concentration in vivo is realized, and the drug metabolism curve in vivo can be observed. RESULTS The instrument satisfies the collection of small doses of drugs such as microgram; the detection sensitivity can reach 10 ng/ml, and can monitor and collect the drug metabolism of multiple small animal tissues at the same time, which greatly reduces the use of animals, reduces the differences between individuals, and reduces consumption cost and improve the detection efficiency of parameters, and obtain data information that is closer to the real biology. CONCLUSION The real-time continuous monitoring and data collection of the drug metabolism in the plasma of living small animals and the important organs such as kidney, liver, and spleen were realized. The research and development of new drugs and clinical research have higher practical value.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Feilong Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Huijing Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yueqing Gu
- Engineering College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
6
|
Wang L, Zhao P, Luo T, Yang D, Jiang Q, Chen J, Lou H, Ruan Z, Jiang B. Physiologically based absorption modeling to predict the bioequivalence of two cilostazol formulations. Clin Transl Sci 2023; 16:2323-2330. [PMID: 37718502 PMCID: PMC10651633 DOI: 10.1111/cts.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
In vivo pharmacokinetic simulations and virtual bioequivalence (BE) evaluation of cilostazol have not yet been described for humans. Here, we successfully developed a physiologically based absorption model to simulate plasma concentrations of cilostazol. In addition, virtual population simulations integrating dissolution of 0.3% sodium dodecyl sulfate water media were executed to evaluate the BE of test and reference formulations. Simulation results show that test and reference formulations were bioequivalent among 28 subjects, but not nine subjects, consistent with clinical studies. The model proved to be an important tool to show potential BE for cilostazol. This finding may facilitate understanding of the potential risks during the development of generic products.
Collapse
Affiliation(s)
- Lu Wang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Pengfei Zhao
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Ting Luo
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Dandan Yang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Qianqian Jiang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Jinliang Chen
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Honggang Lou
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zourong Ruan
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Bo Jiang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Denninger A, Becker T, Westedt U, Wagner KG. Advanced In Vivo Prediction by Introducing Biphasic Dissolution Data into PBPK Models. Pharmaceutics 2023; 15:1978. [PMID: 37514164 PMCID: PMC10386266 DOI: 10.3390/pharmaceutics15071978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coupling biorelevant in vitro dissolution with in silico physiological-based pharmacokinetic (PBPK) tools represents a promising method to describe and predict the in vivo performance of drug candidates in formulation development including non-passive transport, prodrug activation, and first-pass metabolism. The objective of the present study was to assess the predictability of human pharmacokinetics by using biphasic dissolution results obtained with the previously established BiPHa+ assay and PBPK tools. For six commercial drug products, formulated by different enabling technologies, the respective organic partitioning profiles were processed with two PBPK in silico modeling tools, namely PK-Sim and GastroPlus®, similar to extended-release dissolution profiles. Thus, a mechanistic dissolution/precipitation model of the assessed drug products was not required. The developed elimination/distribution models were used to simulate the pharmacokinetics of the evaluated drug products and compared with available human data. In essence, an in vitro to in vivo extrapolation (IVIVE) was successfully developed. Organic partitioning profiles obtained from the BiPHa+ dissolution analysis enabled highly accurate predictions of the pharmacokinetic behavior of the investigated drug products. In addition, PBPK models of (pro-)drugs with pronounced first-pass metabolism enabled adjustment of the solely passive diffusion predicting organic partitioning profiles, and increased prediction accuracy further.
Collapse
Affiliation(s)
- Alexander Denninger
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
- Corden Pharma GmbH, Otto-Hahn-Strasse, 68723 Plankstadt, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| | - Ulrich Westedt
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Strasse 3, 53121 Bonn, Germany
| |
Collapse
|
8
|
Wu D, Li M. Current State and Challenges of Physiologically Based Biopharmaceutics Modeling (PBBM) in Oral Drug Product Development. Pharm Res 2023; 40:321-336. [PMID: 36076007 DOI: 10.1007/s11095-022-03373-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
Physiologically based biopharmaceutics modeling (PBBM) emphasizes the integration of physicochemical properties of drug substance and formulation characteristics with system physiological parameters to predict the absorption and pharmacokinetics (PK) of a drug product. PBBM has been successfully utilized in drug development from discovery to postapproval stages and covers a variety of applications. The use of PBBM facilitates drug development and can reduce the number of preclinical and clinical studies. In this review, we summarized the major applications of PBBM, which are classified into six categories: formulation selection and development, biopredictive dissolution method development, biopharmaceutics risk assessment, clinically relevant specification settings, food effect evaluation and pH-dependent drug-drug-interaction risk assessment. The current state of PBBM applications is illustrated with examples from published studies for each category of application. Despite the variety of PBBM applications, there are still many hurdles limiting the use of PBBM in drug development, that are associated with the complexity of gastrointestinal and human physiology, the knowledge gap between the in vitro and the in vivo behavior of drug products, the limitations of model interfaces, and the lack of agreed model validation criteria, among other issues. The challenges and essential considerations related to the use of PBBM are discussed in a question-based format along with the scientific thinking on future research directions. We hope this review can foster open discussions between the pharmaceutical industry and regulatory agencies and encourage collaborative research to fill the gaps, with the ultimate goal to maximize the applications of PBBM in oral drug product development.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Min Li
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
9
|
Pepin XJH, Hammarberg M, Mattinson A, Moir A. Physiologically Based Biopharmaceutics Model for Selumetinib Food Effect Investigation and Capsule Dissolution Safe Space - Part I: Adults. Pharm Res 2023; 40:387-403. [PMID: 36002614 DOI: 10.1007/s11095-022-03339-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE A physiologically based biopharmaceutics model (PBBM) was developed to mechanistically investigate the effect of formulation and food on selumetinib pharmacokinetics. METHODS Selumetinib is presented as a hydrogen sulfate salt, and in vitro and in vivo data were used to verify the precipitation rate to apply to simulations. Dissolution profiles observed for capsules and granules were used to derive product-particle size distributions for model input. The PBBM incorporated gut efflux and first-pass gut metabolism, based on intravenous and oral pharmacokinetic data, alongside in vitro data for the main enzyme isoform and P-glycoprotein efflux. The PBBM was validated across eight clinical scenarios. RESULTS The quality-control dissolution method for selumetinib capsules was found to be clinically relevant through PBBM validation. A safe space for capsule dissolution was established using a virtual batch. The effect of food (low fat vs high fat) on capsules and granules was elucidated by the PBBM. For capsules, a lower amount was dissolved in the fed state due to a pH increase in the stomach followed by higher precipitation in the small intestine. First-pass gut extraction is higher for capsules in the fed state due to drug dilution in the stomach chyme and reduced concentration in the lumen. The enteric-coated granules dissolve more slowly than capsules after stomach emptying, attenuating the difference in first-pass gut extraction between prandial states. CONCLUSIONS The PBBM was instrumental in understanding and explaining the different behaviors of the selumetinib formulations. The model can be used to predict the impact of food in humans.
Collapse
Affiliation(s)
- Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Maria Hammarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden. .,AstraZeneca, Pepparedsleden, SE-431 83, Mölndal, Sweden.
| | - Alexandra Mattinson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Andrea Moir
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
10
|
Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically Based Pharmacokinetics Modeling in Biopharmaceutics: Case Studies for Establishing the Bioequivalence Safe Space for Innovator and Generic Drugs. Pharm Res 2023; 40:337-357. [PMID: 35840856 DOI: 10.1007/s11095-022-03319-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
For successful oral drug development, defining a bioequivalence (BE) safe space is critical for the identification of newer bioequivalent formulations or for setting of clinically relevant in vitro specifications to ensure drug product quality. By definition, the safe space delineates the dissolution profile boundaries or other drug product quality attributes, within which the drug product variants are anticipated to be bioequivalent. Defining a BE safe space with physiologically based biopharmaceutics model (PBBM) allows the establishment of mechanistic in vitro and in vivo relationships (IVIVR) to better understand absorption mechanism and critical bioavailability attributes (CBA). Detailed case studies on how to use PBBM to establish a BE safe space for both innovator and generic drugs are described. New case studies and literature examples demonstrate BE safe space applications such as how to set in vitro dissolution/particle size distribution (PSD) specifications, widen dissolution specification to supersede f2 tests, or application toward a scale-up and post-approval changes (SUPAC) biowaiver. A workflow for detailed PBBM set-up and common clinical study data requirements to establish the safe space and knowledge space are discussed. Approaches to model in vitro dissolution profiles i.e. the diffusion layer model (DLM), Takano and Johnson models or the fitted PSD and Weibull function are described with a decision tree. The conduct of parameter sensitivity analyses on kinetic dissolution parameters for safe space and virtual bioequivalence (VBE) modeling for innovator and generic drugs are shared. The necessity for biopredictive dissolution method development and challenges with PBBM development and acceptance criteria are described.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA
| | - Maitri Sanghavi
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Sivacharan Kollipara
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Tausif Ahmed
- Biopharmaceutics Group, Global Clinical Management, Dr. Reddy's Laboratories Ltd., Integrated Product Development Organization (IPDO), Bachupally, Medchal Malkajgiri District, Hyderabad, Telangana, 500 090, India
| | - Anuj K Saini
- Pharmacokinetics & Biopharmaceutics Group, Pharmaceutical Technology Center (PTC), Zydus Lifesciences Ltd., NH-8A, Sarkhej-Bavla Highway, Moraiya Ahmedabad, Gujarat, 382210, India
| | - Tycho Heimbach
- Pharmaceutical Sciences, MRL, Merck & Co., Inc., Rahway, New Jersey, 07065, USA.
| |
Collapse
|
11
|
Matsui K, Nakamichi K, Nakatani M, Yoshida H, Yamashita S, Yokota S. Lowly-buffered biorelevant dissolution testing is not necessarily biopredictive of human bioequivalence study outcome: Relationship between dissolution and pharmacokinetics. Int J Pharm 2023; 631:122531. [PMID: 36563795 DOI: 10.1016/j.ijpharm.2022.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
It has been revealed that buffer capacity of aspirated human intraluminal fluid is much lower than that of in vitro compendial dissolution media. Since buffer capacity significantly alters the dissolution profile of certain drug products, dissolution testing in highly buffered media dictates poor predictability of in vivo drug performance. To mitigate this inconsistency, low buffer capacity medium was suggested as an in vivo representation (biorelevant dissolution testing). The purpose of this study was to characterize the dissolution profiles of enteric-coated drug products in different buffer capacity media in a flow through cell dissolution apparatus, and to evaluate the in vivo predictability of human bioequivalence study outcomes conducted in the fasted state. It was confirmed that the lower the buffer capacity of dissolution media, the higher the discriminatory power of esomeprazole magnesium hydrate enteric-coated pellets, reflecting human bioequivalence failure. In the meantime, two duloxetine hydrochloride enteric-coated pellets also exhibited distinct dissolution profiles in such a lowly buffered medium despite the fact that these two are bioequivalent in human. Biopharmaceutical and pharmacokinetic characteristics comparison suggested that low intestinal permeability and small systemic elimination rate of duloxetine hinders the clear impact of different dissolution profile on its in vivo performance. These data suggest that dissolution comparison in physiologically-relevant low buffer capacity media is not always indicative of human bioequivalence. Instead, biopharmaceutical and pharmacokinetic aspects must be taken into consideration to make biorelevant dissolution testing biopredictive.
Collapse
Affiliation(s)
- Kazuki Matsui
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan.
| | - Katsuki Nakamichi
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| | - Masatoshi Nakatani
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| | - Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Shoji Yokota
- Research & Development Division, Sawai Pharmaceutical Co., Ltd., Osaka 532-0003, Japan
| |
Collapse
|
12
|
Zhang F, Wu X, Wu K, Yu M, Liu B, Wang H. Predicting the Pharmacokinetics of Orally Administered Drugs across BCS Classes 1-4 by Virtual Bioequivalence Model. Mol Pharm 2023; 20:395-408. [PMID: 36469444 DOI: 10.1021/acs.molpharmaceut.2c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To evaluate the influence of solubility and permeability on the pharmacokinetic prediction performance of orally administered drugs using avirtual bioequivalence (VBE) model, a total of 23 orally administered drugs covering Biopharmaceutics Classification System (BCS) classes 1-4 were selected. A VBE model (i.e., a physiologically based pharmacokinetic model integrated with dissolution data) based on a B2O simulator was applied for pharmacokinetic (PK) prediction in a virtual population. Parameter sensitivity analysis was used for input parameter selection. The predictive performances of PK parameters (i.e., AUC0-t, Cmax, and Tmax), PK profiles, and bioequivalence (BE) results were evaluated using the twofold error, average fold error (AFE), absolute average fold error (AAFE), and BE reassessment metrics. All models successfully simulated the mean PK profiles, with AAFE < 2 and AFE ranging from 0.58 to 1.66. As for the PK parameters, except for the time of peak concentration, Tmax, of isosorbide mononitrate, other simulated PK parameters were all within a twofold error. The simulated PK behaviors were comparable to the observed ones, both for test (T) and reference (R) products, and the simulated T/R arithmetic mean ratios were all within 0.88-1.16 of the observed values. These four evaluation metrics were distributed equally among BCS class 1-4 drugs. The VBE model showed powerful performance to predict the PK behavior of orally administered drugs with various combinations of solubility and permeability, irrespective of the BCS category.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Keheng Wu
- Yinghan Pharmaceutical Technology (Shanghai) Co., Ltd, Shanghai201100, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| | - Bo Liu
- Wuhan Institute of Technology, Wuhan, Hubei430205, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100730, China
| |
Collapse
|
13
|
Pinheiro de Souza F, Sonego Zimmermann E, Tafet Carminato Silva R, Novaes Borges L, Villa Nova M, Miriam de Souza Lima M, Diniz A. Model-Informed drug development of gastroretentive release systems for sildenafil citrate. Eur J Pharm Biopharm 2023; 182:81-91. [PMID: 36516889 DOI: 10.1016/j.ejpb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Gastroretentive drug delivery systems (GRDDS) are modified-release dosage forms designed to prolong their residence time in the upper gastrointestinal tract, where some drugs are preferentially absorbed, and increase the drug bioavailability. This work aimed the development of a novel GRDDS containing 60 mg of sildenafil citrate, and the evaluation of the feasibility of the proposed formulation for use in the treatment of pulmonary arterial hypertension (PAH), for once a day administration, by using in silico pharmacokinetic (PK) modeling and simulations using GastroPlusTM. The Model-Informed Drug Development (MIDD) approach was used in formulation design and pharmacokinetic exposure prospecting. A 22 factorial design with a central point was used for optimization of the formulation, which was produced by direct compression and characterized by some tests, including buoyancy test, assay, impurities, and in vitro dissolution. A compartmental PK model was built using the GatroPlusTM software for virtual bioequivalence of the proposed formulations in comparison with the defined target release profile provided by an immediate release (IR) tablet formulation containing 20 mg of sildenafil administered three times a day (TID). The results of the factorial design showed a direct correlation between the dissolution rate and the amount of hydroxypropyl methyl cellulose (HPMC) in the formulations. By comparing the PK parameters predicted by the virtual bioequivalence, the formulations F1, F2, F3 and F5 failed on bioequivalence. The F4 showed bioequivalence to the reference and was considered the viable formulation to substitute the IR. Thus, GRDDS could be a promising alternative for controlling the release of drugs with a pH-dependent solubility and narrow absorption window, specifically in the gastric environment, and an interesting way to reduce dose frequency and increase the drug bioavailability. The MIDD approach increases the level of information about the pharmaceutical product and guide the drug development for more assertive ways.
Collapse
Affiliation(s)
- Fabio Pinheiro de Souza
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Estevan Sonego Zimmermann
- Center for Pharmacometrics and System Pharmacology at Lake Nona (Orlando), Department of Pharmaceutics, College of Pharmacy, University of Florida, FL, USA
| | - Raizza Tafet Carminato Silva
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Luiza Novaes Borges
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Mônica Villa Nova
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Marli Miriam de Souza Lima
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil
| | - Andréa Diniz
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmacy, State University of Maringá, PR, Brazil.
| |
Collapse
|
14
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
15
|
Lex TR, Rodriguez JD, Zhang L, Jiang W, Gao Z. Development of In Vitro Dissolution Testing Methods to Simulate Fed Conditions for Immediate Release Solid Oral Dosage Forms. AAPS J 2022; 24:40. [PMID: 35277760 DOI: 10.1208/s12248-022-00690-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
In vitro dissolution testing is widely used to mimic and predict in vivo performance of oral drug products in the gastrointestinal (GI) tract. This literature review assesses the current in vitro dissolution methodologies being employed to simulate and predict in vivo drug dissolution under fasted and fed conditions, with emphasis on immediate release (IR) solid oral dosage forms. Notable human GI physiological conditions under fasted and fed states have been reviewed and summarized. Literature results showed that dissolution media, mechanical forces, and transit times are key dissolution test parameters for simulating specific postprandial conditions. A number of biorelevant systems, including the fed stomach model (FSM), GastroDuo device, dynamic gastric model (DGM), simulated gastrointestinal tract models (TIM), and the human gastric simulator (HGS), have been developed to mimic the postprandial state of the stomach. While these models have assisted in expanding physiological relevance of in vitro dissolution tests, in general, these models lack the ability to fully replicate physiological conditions/processes. Furthermore, the translatability of in vitro data to an in vivo system remains challenging. Additionally, physiologically based pharmacokinetic (PBPK) modeling has been employed to evaluate the effect of food on drug bioavailability and bioequivalence. Here, we assess the current status of in vitro dissolution methodologies and absorption PBPK modeling approaches to identify knowledge gaps and facilitate further development of in vitro dissolution methods that factor in fasted and fed states. Prediction of in vivo drug performance under fasted and fed conditions via in vitro dissolution testing and modeling may potentially help efforts in harmonizing global regulatory recommendations regarding in vivo fasted and fed bioequivalence studies for solid oral IR products.
Collapse
Affiliation(s)
- Timothy R Lex
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Zongming Gao
- Division of Complex Drug Analysis, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
16
|
K Y, Kollipara S, Ahmed T, Chachad S. Applications of PBPK/PBBM modeling in generic product development: An industry perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Kambayashi A, Dressman JB. Towards virtual bioequivalence studies for oral dosage forms containing poorly water-soluble drugs: a physiologically based biopharmaceutics modeling (PBBM) approach. J Pharm Sci 2021; 111:135-145. [PMID: 34390740 DOI: 10.1016/j.xphs.2021.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to develop a physiologically based biopharmaceutics (PBBM) approach to predict the bioequivalence of dosage forms containing poorly soluble drugs. Aripiprazole and enzalutamide were used as model drugs. Variations in the gastrointestinal (GI) physiological parameters of fasted humans were taken into consideration in in vitro biorelevant dissolution testing and in an in silico PBBM simulations. To estimate bioequivalence between dosage forms, the inter-individual variabilities in their performance in virtual human subjects were predicted from the in vitro studies and variability in e.g. gastric emptying and fluid volume in the stomach was also taken into account. Formulations with different in vitro dissolution performance, a solution and a tablet formulation, were used in order to evaluate the accuracy of bioequivalence prediction using the PBBM approach. The bioequivalence parameters, i.e. geometric mean ratio and 90% confidence interval, for both drugs were predicted well in the virtual studies. In order to achieve even more precise predictions, it will be important to continue characterizing GI physiological parameters, along with their variabilities, on both an inter-subject and inter-occasion basis.
Collapse
Affiliation(s)
- Atsushi Kambayashi
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., 180 Ozumi, Yaizu, Shizuoka 425-0072, Japan; School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Jennifer B Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
18
|
In Silico Modeling and Simulation to Guide Bioequivalence Testing for Oral Drugs in a Virtual Population. Clin Pharmacokinet 2021; 60:1373-1385. [PMID: 34191255 DOI: 10.1007/s40262-021-01045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Model-informed drug discovery and development (MID3) shows great advantages in facilitating drug development. A physiologically based pharmacokinetic model is one of the powerful computational approaches of MID3, and the emerging field of virtual bioequivalence is well recognized to be the future of the physiologically based pharmacokinetic model. Based on the translational link between in vitro, in silico, and in vivo, virtual bioequivalence study can evaluate the similarity and potential difference of pharmacokinetic and clinical performance between test and reference formulations. With the aid of virtual bioequivalence study, the pivotal information of clinical trials can be provided to streamline the development for both new and generic drugs. However, a regulatory framework of virtual bioequivalence study has not reached its full maturity. Therefore, this article aims to present an overview of the current status of bioequivalence study, identify the framework of virtual bioequivalence studies for oral drugs, and also discuss the future opportunities of virtual bioequivalence in supporting the waiver and optimization of in vivo clinical trials.
Collapse
|
19
|
Kambayashi A, Yomota C. Exploring clinically relevant dissolution specifications for oral solid dosage forms of weak acid drugs using an in silico modeling and simulation approach. Eur J Pharm Sci 2021; 159:105728. [DOI: 10.1016/j.ejps.2021.105728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/27/2020] [Accepted: 01/17/2021] [Indexed: 01/30/2023]
|
20
|
Zhang F, Zhou Y, Wu N, Jia R, Liu A, Liu B, Zhou Z, Hu H, Han Z, Ye X, Ding Y, He Q, Wang H. In silico prediction of bioequivalence of Isosorbide Mononitrate tablets with different dissolution profiles using PBPK modeling and simulation. Eur J Pharm Sci 2020; 157:105618. [PMID: 33122011 DOI: 10.1016/j.ejps.2020.105618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022]
Abstract
AIM The waiver of bioequivalence (BE) studies is well accepted for Biopharmaceutics Classification System (BCS) class I drugs in form of immediate-release solid oral products. This study aimed to assess whether the rapid dissolution profiles (≥85% in 30 min) was crucial to guarantee bioequivalence of isosorbide mononitrate (ISMN) and then established a clinically relevant dissolution specification (CRDS) for screening BE or non-BE batches. METHOD A physiologically based pharmacokinetic (PBPK) model was constructed by integrating clinical and non-clinical data by B2O simulator. The model was verified by an actual clinical study (NMPA registration number: CTR20191360) with 28 healthy Chinese subjects. Then a virtual BE study was simulated to evaluate the bioequivalence of 7 virtual batches of ISMN tablets with different dissolution profiles, and the CRDS was established by integrating the results. RESULT The simulated PK behavior of ISMN was comparable to the observed. Even though the batches with slower dissolution were not equivalent to a rapid dissolution profile (≥85% in 30 min), it was demonstrated these batches would exhibit the similar in vivo performance. Meanwhile, the in vitro dissolution specification time point and the percentage of drug release (75% in 45 min) proved to have clinical relevance. CONCLUSION The virtual BE simulation by integrating in vitro dissolution profiles into the PBPK model provided a powerful tool for screening formulations, contributing to gaining time and reducing costs in BE evaluations.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yinping Zhou
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ni Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ranran Jia
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Aijing Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Bo Liu
- Wuhan Institute of Technology, Hubei 430205, China
| | - Zhou Zhou
- Livzon Pharmaceutical Group Inc, Guangdong 519020, China
| | - Haitang Hu
- Livzon Pharmaceutical Group Inc, Guangdong 519020, China
| | - Zhihui Han
- Livzon Pharmaceutical Group Inc, Guangdong 519020, China
| | - Xiang Ye
- Hubei Yinghan Pharmaceutical Technology Co., Ltd, Hubei 435000, China
| | - Ying Ding
- Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214023, China
| | - Qing He
- Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214023, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
21
|
Matsumura N, Ono A, Akiyama Y, Fujita T, Sugano K. Bottom-Up Physiologically Based Oral Absorption Modeling of Free Weak Base Drugs. Pharmaceutics 2020; 12:E844. [PMID: 32899235 PMCID: PMC7558956 DOI: 10.3390/pharmaceutics12090844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we systematically evaluated "bottom-up" physiologically based oral absorption modeling, focusing on free weak base drugs. The gastrointestinal unified theoretical framework (the GUT framework) was employed as a simple and transparent model. The oral absorption of poorly soluble free weak base drugs is affected by gastric pH. Alternation of bulk and solid surface pH by dissolving drug substances was considered in the model. Simple physicochemical properties such as pKa, the intrinsic solubility, and the bile micelle partition coefficient were used as input parameters. The fraction of a dose absorbed (Fa) in vivo was obtained by reanalyzing the pharmacokinetic data in the literature (15 drugs, a total of 85 Fa data). The AUC ratio with/without a gastric acid-reducing agent (AUCr) was collected from the literature (22 data). When gastric dissolution was neglected, Fa was underestimated (absolute average fold error (AAFE) = 1.85, average fold error (AFE) = 0.64). By considering gastric dissolution, predictability was improved (AAFE = 1.40, AFE = 1.04). AUCr was also appropriately predicted (AAFE = 1.54, AFE = 1.04). The Fa values of several drugs were slightly overestimated (less than 1.7-fold), probably due to neglecting particle growth in the small intestine. This modeling strategy will be of great importance for drug discovery and development.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing, and Control, Pharmaceuticals Production & Technology Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan;
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan;
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|