1
|
Keshavarz Aziziraftar S, Bahrami R, Hashemi D, Shahryari A, Ramezani A, Ashrafian F, Siadat SD. The beneficial effects of Akkermansia muciniphila and its derivatives on pulmonary fibrosis. Biomed Pharmacother 2024; 180:117571. [PMID: 39418965 DOI: 10.1016/j.biopha.2024.117571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary fibrosis (PF) is a progressive and debilitating respiratory condition characterized by excessive deposition of extracellular matrix proteins and scarring within the lung parenchyma. Despite extensive research, the pathogenesis of PF remains incompletely understood, and effective therapeutic options are limited. Emerging evidence suggests a potential link between gut microbiota dysbiosis and the development of PF, highlighting the gut-lung axis as a promising therapeutic target. Akkermansia muciniphila (A. muciniphila), a mucin-degrading bacterium residing in the gut mucosal layer, has garnered considerable interest due to its immunomodulatory and anti-inflammatory properties. This study investigates the therapeutic potential of live and pasteurized A. muciniphila, as well as its extracellular vesicles (EVs), in mitigating inflammation and fibrosis in a murine model of carbon tetrachloride (CCl4)-induced PF exacerbated by a high-fat diet (HFD). Male C57BL/6 mice were divided into groups receiving either a normal diet or an HFD, with or without CCl4 administration. The mice were then treated with live or pasteurized A. muciniphila, or its EVs. Lung tissue was analyzed for the expression of inflammatory markers and fibrosis markers using real-time PCR and ELISA. Administration of live and pasteurized A. muciniphila, as well as its EVs, significantly downregulated the expression of inflammatory and fibrosis markers in the lung tissue of CCl4-induced PF mice. Furthermore, these treatments ameliorated the increased production of IL-6 and reduced IL-10 levels observed in the HFD and CCl4-treated groups. These findings suggest that A. muciniphila and its derivatives exert protective effects against pulmonary inflammation and fibrosis, potentially through modulation of the gut-lung axis. The study highlights the therapeutic potential of A. muciniphila and its derivatives as novel interventions for the management of PF, warranting further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Shahrbanoo Keshavarz Aziziraftar
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Pathology, University of California San Francisco, San Francisco, US.
| | - Romina Bahrami
- B.S, Department of Microbiology and Microbial Biotech, Shahid Beheshti University, Tehran, Iran.
| | - Danial Hashemi
- B.S, Department of Animal Science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Arefeh Shahryari
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Centennial College School of Engineering Technology and Applied Science Biotechnology Program Toronto, Ontario, Canada.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Ashrafian
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Zhou S, Cheng W, Liu Y, Gao H, Yu L, Zeng Y. MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1. Respir Res 2024; 25:382. [PMID: 39427175 PMCID: PMC11491022 DOI: 10.1186/s12931-024-03011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Wenzhao Cheng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yifei Liu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Yiming Zeng
- Fujian Provincial Key Laboratory of Lung Stem Cells, Stem Cell Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
3
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
4
|
Annareddy S, Ghewade B, Jadhav U, Wagh P. Navigating Drug-Induced Lung Disease (DILD): A Comprehensive Review on Management and Prevention Strategies. Cureus 2024; 16:e69954. [PMID: 39445304 PMCID: PMC11496594 DOI: 10.7759/cureus.69954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Drug-induced lung disease (DILD) is a significant and often overlooked adverse effect of pharmacological treatments, encompassing a range of pulmonary disorders triggered by medications. This review provides a comprehensive overview of DILD, focusing on its definition, pathophysiology, and clinical implications. We explore the epidemiology of DILD, highlighting the prevalence of various drugs associated with pulmonary toxicity and the factors influencing susceptibility. The review details the clinical presentation of DILD, including common symptoms and diagnostic challenges, and outlines diagnostic modalities such as imaging, pulmonary function tests, and invasive procedures. Management strategies are discussed, emphasizing the importance of timely drug discontinuation, supportive care, and the role of corticosteroids and novel therapies. Preventive measures, including pre-treatment evaluations and ongoing monitoring, are also addressed. The review concludes by examining future research directions and emerging therapies, aiming to enhance the understanding and management of DILD. This review is intended to aid healthcare professionals in recognizing, managing, and preventing drug-induced lung diseases, ultimately improving patient outcomes and safety.
Collapse
Affiliation(s)
- Srinivasulareddy Annareddy
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Babaji Ghewade
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ulhas Jadhav
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Wagh
- Respiratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Zhang Q, Li G, Zhao G, Yan C, Lv H, Fu Y, Li Y, Zhao Z. Preparation and evaluation of inhalable S-allylmercapto-N-acetylcysteine and nintedanib co-loaded liposomes for pulmonary fibrosis. Eur J Pharm Sci 2024; 197:106779. [PMID: 38670294 DOI: 10.1016/j.ejps.2024.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Orally marketed products nintedanib (NDNB) and pirfenidone (PFD) for pulmonary fibrosis (PF) are administered in high doses and have been shown to have serious toxic and side effects. NDNB can cause the elevation of galectin-3, which activates the NF-κB signaling pathway and causes the inflammatory response. S-allylmercapto-N-acetylcysteine (ASSNAC) can alleviate the inflammation response by inhibiting the TLR-4/NF-κB signaling pathway. Therefore, we designed and prepared inhalable ASSNAC and NDNB co-loaded liposomes for the treatment of pulmonary fibrosis. The yellow, spheroidal co-loaded liposomes with a particle size of 98.32±1.98 nm and zeta potential of -22.5 ± 1.58 mV were produced. The aerodynamic fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of NDNB were >50 % (81.14 %±0.22 %) and <5 μm (1.79 μm±0.06 μm) in the nebulized liposome solution, respectively. The results showed that inhalation improved the lung deposition and retention times of both drugs. DSPE-PEG 2000 in the liposome formulation enhanced the mucus permeability and reduced phagocytic efflux mediated by macrophages. ASSNAC reduced the mRNA over-expressions of TLR-4, MyD88 and NF-κB caused by NDNB, which could reduce the NDNB's side effects. The Masson's trichrome staining of lung tissues and the levels of CAT, TGF-β1, HYP, collagen III and mRNA expressions of Collagen I, Collagen III and α-SMA in lung tissues revealed that NDNB/Lip inhalation was more beneficial to alleviate fibrosis than oral NDNB. Although the dose of NDNB/Lip was 30 times lower than that in the oral group, the inhaled NDNB/Lip group had better or comparable anti-fibrotic effects to those in the oral group. According to the expressions of Collagen I, Collagen III and α-SMA in vivo and in vitro, the combination of ASSNAC and NDNB was more effective than the single drugs for pulmonary fibrosis. Therefore, this study provided a new scheme for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qinxiu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, China.
| |
Collapse
|
6
|
Zhang M, Qiu J, Wang R. Mendelian randomization study on the causal effect of herpes simplex virus infection on idiopathic pulmonary fibrosis. Expert Rev Respir Med 2024; 18:341-347. [PMID: 38878268 DOI: 10.1080/17476348.2024.2369253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/13/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Previous observational studies have shown that past infection of herpes simplex virus (HSV) is associated with idiopathic pulmonary fibrosis (IPF). The present study aims to identify the causal link between HSV infection (exposure factor) and IPF (outcome factor). RESEARCH DESIGN AND METHODS To date, the largest publicly available genome-wide association study (GWAS) for HSV infection (1,595 cases and 211,856 controls from Finnish ancestry) and for IPF (1,028 cases and 196,986 controls from Finnish ancestry) were used to perform this two-sample Mendelian randomization (MR) study. RESULTS We found no significant pleiotropy or heterogeneity of all selected nine HSV infection-associated genetic instrumental variants (IVs) in IPF GWAS dataset. Interestingly, we found that as HSV infection genetically increased, IPF risk increased based on an inverse-variance weighted (IVW) analysis (odds ratio [OR] = 1.280, 95% confidence interval [CI]: 1.048-1.563; p = 0.015) and weighted median (OR = 1.321, 95% CI: 1.032-1.692; p = 0.027). CONCLUSIONS Our analysis suggests a causal effect of genetically increased HSV infection on IPF risk. Thus, HSV infection may be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jinming Qiu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Bao Y, Yang S, Zhao H, Wang Y, Li K, Liu X, Zhang W, Zhu X. A prognostic model of idiopathic pulmonary fibrosis constructed based on macrophage and mitochondria-related genes. BMC Pulm Med 2024; 24:176. [PMID: 38609879 PMCID: PMC11015635 DOI: 10.1186/s12890-024-02976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Studies have shown that mitochondrial function and macrophages may play a role in the development of idiopathic pulmonary fibrosis (IPF). However, the understanding of the interactions and specific mechanisms between mitochondrial function and macrophages in pulmonary fibrosis is still very limited. METHODS To construct a prognostic model for IPF based on Macrophage- related genes (MaRGs) and Mitochondria-related genes (MitoRGs), differential analysis was performed to achieve differentially expressed genes (DEGs) between IPF and Control groups in the GSE28042 dataset. Then, MitoRGs, MaRGs and DEGs were overlapped to screen out the signature genes. The univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) algorithm were implemented to achieve key genes. Furthermore, the independent prognostic analysis was employed. The ingenuity pathway analysis (IPA) was employed to further understand the molecular mechanisms of key genes.Next, the immune infiltration analysis was implemented to identify differential immune cells between two risk subgroups. RESULTS There were 4791 DEGs between IPF and Control groups. Furthermore, 26 signature genes were achieved by the intersection processing. Three key genes including ALDH2, MCL1, and BCL2A1 were achieved, and the risk model based on the key genes was created. In addition, a nomogram for survival forecasting of IPF patients was created based on riskScore, Age, and Gender, and we found that key genes were associated with classical pathways including 'Apoptosis Signaling', 'PI3K/AKT Signaling', and so on. Next, two differential immune cells including Monocytes and CD8 T cells were identified between two risk subgroups. Moreover, we found that MIR29B2CHG and hsa-mir-1-3p could regulate the expression of ALDH2. CONCLUSION We achieved 3 key genes including ALDH2, MCL1,, and BCL2A1 associated with IPF, providing a new theoretical basis for clinical treatment of IPF.
Collapse
Affiliation(s)
- Yu Bao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Shiyuan Yang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Hailan Zhao
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Yezhen Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Ke Li
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Xue Liu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Wei Zhang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Xue Zhu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China.
| |
Collapse
|
8
|
Singh S, Wairkar S. Revolutionizing the Treatment of Idiopathic Pulmonary Fibrosis: From Conventional Therapies to Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:78. [PMID: 38589751 DOI: 10.1208/s12249-024-02793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease that has been well-reported in the medical literature. Its incidence has risen, particularly in light of the recent COVID-19 pandemic. Conventionally, IPF is treated with antifibrotic drugs-pirfenidone and nintedanib-along with other drugs for symptomatic treatments, including corticosteroids, immunosuppressants, and bronchodilators based on individual requirements. Several drugs and biologicals such as fluorofenidone, thymoquinone, amikacin, paclitaxel nifuroxazide, STAT3, and siRNA have recently been evaluated for IPF treatment that reduces collagen formation and cell proliferation in the lung. There has been a great deal of research into various treatment options for pulmonary fibrosis using advanced delivery systems such as liposomal-based nanocarriers, chitosan nanoparticles, PLGA nanoparticles, solid lipid nanocarriers, and other nanoformulations such as metal nanoparticles, nanocrystals, cubosomes, magnetic nanospheres, and polymeric micelles. Several clinical trials are also ongoing for advanced IPF treatments. This article elaborates on the pathophysiology of IPF, its risk factors, and different advanced drug delivery systems for treating IPF. Although extensive preclinical data is available for these delivery systems, the clinical performance and scale-up studies would decide their commercial translation.
Collapse
Affiliation(s)
- Sanskriti Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
9
|
Rinderknecht CH, Ning M, Wu C, Wilson MS, Gampe C. Designing inhaled small molecule drugs for severe respiratory diseases: an overview of the challenges and opportunities. Expert Opin Drug Discov 2024; 19:493-506. [PMID: 38407117 DOI: 10.1080/17460441.2024.2319049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Inhaled drugs offer advantages for the treatment of respiratory diseases over oral drugs by delivering the drug directly to the lung, thus improving the therapeutic index. There is an unmet medical need for novel therapies for lung diseases, exacerbated by a multitude of challenges for the design of inhaled small molecule drugs. AREAS COVERED The authors review the challenges and opportunities for the design of inhaled drugs for respiratory diseases with a focus on new target discovery, medicinal chemistry, and pharmacokinetic, pharmacodynamic, and toxicological evaluation of drug candidates. EXPERT OPINION Inhaled drug discovery is facing multiple unique challenges. Novel biological targets are scarce, as is the guidance for medicinal chemistry teams to design compounds with inhalation-compatible features. It is exceedingly difficult to establish a PK/PD relationship given the complexity of pulmonary PK and the impact of physical properties of the drug substance on PK. PK, PD and toxicology studies are technically challenging and require large amounts of drug substance. Despite the current challenges, the authors foresee that the design of inhaled drugs will be facilitated in the future by our increasing understanding of pathobiology, emerging medicinal chemistry guidelines, advances in drug formulation, PBPK models, and in vitro toxicology assays.
Collapse
Affiliation(s)
| | - Miaoran Ning
- Drug Metabolism and Pharmacokinetics, gRED, Genentech, South San Francisco, CA, USA
| | - Connie Wu
- Development Sciences Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Mark S Wilson
- Discovery Immunology, gRED, Genentech, South San Francisco, CA, USA
| | - Christian Gampe
- Discovery Chemistry, gRED, Genentech, South San Francisco, CA, USA
| |
Collapse
|
10
|
Chen S, Zhao T, Xie S, Wan X. Epithelial IL5RA promotes epithelial-mesenchymal transition in pulmonary fibrosis via Jak2/STAT3 cascade. Pulm Pharmacol Ther 2024; 84:102286. [PMID: 38191068 DOI: 10.1016/j.pupt.2024.102286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Pulmonary fibrosis is a progressive and debilitating lung disease characterized by the excessive accumulation of extracellular matrix (ECM) components within the lung parenchyma. However, the underlying mechanism remains largely elusive, and the treatment options available for pulmonary fibrosis are limited. Interleukin 5 receptor, alpha (IL5RA) is a well-established regulator of eosinophil activation, involved in eosinophil-mediated anti-parasitic activities and allergic reactions. Recent studies have indicated additional roles of IL5RA in lung epithelium and fibroblasts. Nevertheless, its involvement in pulmonary fibrosis remains unclear. In present study, we employed single-cell analyses alongside molecular and cellular assays to unveil the expression of IL5RA in lung epithelial cells. Moreover, using both in vitro and in vivo models, we demonstrated a notable upregulation of epithelial IL5RA during the progression of pulmonary fibrosis. This upregulated IL5RA expression subsequently promotes epithelial-mesenchymal transition (EMT), leading to the generation of mesenchymal phenotype with augmented capability for ECM production. Importantly, our findings uncovered that the pro-fibrotic function of IL5RA is mediated by Jak2/STAT3 signaling cascades. Inhibiting IL5RA has the potential to deactivate Jak2/STAT3 and suppress the downstream EMT process and ECM production, thereby offering a promising therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Shuyun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
11
|
Zhou J, Yang X, Liu Y, Guo J, Liu Z, Li Y, Bai Y, Xing Y, Wu J, Hu D. Mefloquine improves pulmonary fibrosis by inhibiting the KCNH2/Jak2/Stat3 signaling pathway in macrophages. Biomed Pharmacother 2024; 171:116138. [PMID: 38237352 DOI: 10.1016/j.biopha.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.
Collapse
Affiliation(s)
- Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Xuelian Yang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ziqin Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunyun Li
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yingru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China.
| |
Collapse
|
12
|
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 94:101227. [PMID: 38000335 DOI: 10.1016/j.mam.2023.101227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Fibrosis is the concluding pathological outcome and major cause of morbidity and mortality in a number of common chronic inflammatory, immune-mediated and metabolic diseases. The progressive deposition of a collagen-rich extracellular matrix (ECM) represents the cornerstone of the fibrotic response and culminates in organ failure and premature death. Idiopathic pulmonary fibrosis (IPF) represents the most rapidly progressive and lethal of all fibrotic diseases with a dismal median survival of 3.5 years from diagnosis. Although the approval of the antifibrotic agents, pirfenidone and nintedanib, for the treatment of IPF signalled a watershed moment for the development of anti-fibrotic therapeutics, these agents slow but do not halt disease progression or improve quality of life. There therefore remains a pressing need for the development of effective therapeutic strategies. In this article, we review emerging therapeutic strategies for IPF as well as the pre-clinical and translational approaches that will underpin a greater understanding of the key pathomechanisms involved in order to transform the way we diagnose and treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Manuela Platé
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK
| | - Rachel C Chambers
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK.
| |
Collapse
|
13
|
Aggarwal K, Arora S, Nagpal K. Pulmonary Fibrosis: Unveiling the Pathogenesis, Exploring Therapeutic Targets, and Advancements in Drug Delivery Strategies. AAPS PharmSciTech 2023; 24:152. [PMID: 37442839 DOI: 10.1208/s12249-023-02618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an ailment with no cure and a very high rate of progression that ultimately leads to death. The exact reason for this disease is still not acknowledged. Many underlying mechanisms of wound healing and various types of stimuli that trigger the pathogenesis of IPF continue to be intensively explored. The exact therapy for the reversal of this disease is not yet known and is constantly in progress. Existing treatments only slow down the process or mitigate the symptoms to enhance the patient's healthcare system. The only two Food and Drug Administration-approved oral medications include pirfenidone and nintedanib whose high dose and systemic circulation can have side effects to a greater extent. Further research on restorative and extra-curative therapies for IPF is necessary due to the absence of viable therapeutic choices. To assure minimum off-targeted site delivery and longer duration of action, techniques that offer a sustainable release of the drug, better bioavailability, and patient compliance can be used.The work is an overview of the main therapeutic targets and pertinent developing therapies for the management of IPF. This study is an attempt to focus on various drug delivery systems that are responsible for showing effectiveness in defense mechanisms against IPF.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, U.P, Noida, 201303, India
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, U.P, Noida, 201303, India
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, U.P, Noida, 201303, India.
| |
Collapse
|
14
|
Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology 2023; 21:215. [PMID: 37422665 DOI: 10.1186/s12951-023-01971-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.
Collapse
Affiliation(s)
- Qianyu Wan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongfang Zhou
- Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd, Lishui, 323000, China
| | - Rui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kehao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
15
|
Zhao T, Gong B, Luo S, Zhang R, Zhang L, Huang Y, Gao H, Gong T. A fibroblastic foci-targeting and hypoxia-cleavable delivery system of pirfenidone for the treatment of idiopathic pulmonary fibrosis. Acta Biomater 2023:S1742-7061(23)00349-5. [PMID: 37356783 DOI: 10.1016/j.actbio.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The progressive formation of fibroblastic foci characterizes idiopathic pulmonary fibrosis (IPF), and excessive oral doses of approved pirfenidone (PFD) always cause gastrointestinal side effects. The fibrotic response driven by activated fibroblasts could perpetuate epithelial damage and promote abnormal extracellular matrix (ECM) deposition. When modified nanoparticles reach their target, it is important to ensure a responsive release of PFD. Hypoxia is a determining factor in IPF, leading to alveolar dysfunction and deeper cellular fibrosis. Herein, a fibroblastic foci-targeting and hypoxia-cleavable drug delivery system (Fn-Azo-BSA@PEG) was established to reprogram the fibrosis in IPF. We have modified the FnBAP5 peptide to enable comprehensive fibroblastic foci targeting, which helps BSA nanoparticles recognize and accumulate at fibrotic sites. Meantime, the hypoxia-responsive azobenzene group allowed for efficient and rapid drug diffusion, while the PEGylated BSA reduced system toxicity and increased circulation in vivo. As expected, the strategy of the fibronectin-targeting-modification and hypoxia-responsive drug release synergistically inhibited activated fibroblasts and reduced the secretion of the fibrosis-related protein. Fn-Azo-BSA@PEG could accumulate in pulmonary tissue and prolong the survival time in bleomycin-induced pulmonary fibrosis mice. Together, the multivalent BSA nanoparticles offered an efficient approach for improving lung architecture and function by regulating the fibroblastic foci and hypoxia. STATEMENT OF SIGNIFICANCE: We established fibroblastic foci-targeting and hypoxia-cleavable bovine serum albumin (BSA) nanoparticles (Fn-Azo-BSA@PEG) to reprogramme the fibroblastic foci in idiopathic pulmonary fibrosis (IPF). Fn-Azo-BSA@PEG was designed to actively target fibroblasts and abnormal ECM with the FnBPA5 peptide, delivering more FDA-approved pirfenidone (PFD) to the cross-talk within the foci. Once the drug reached fibroblastic foci, the azobenzene group acted as a hypoxia-responsive linker to trigger effective and rapid drug release. Hypoxic responsiveness and FnBAP5-modification of Fn-Azo-BSA@PEG synergistically inhibited the secretion of proteins closely related to fibrogenesis. BSA's inherent transport and metabolic pathways in the pulmonary reduced the side effects of the main organs. The multivalent BSA nanoparticles efficiently inhibited IPF-fibrosis progress and preserved the lung architecture by regulating the fibroblastic foci and hypoxia.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bokai Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shiqin Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
16
|
Liu J, Gao D, Ding Q, Zhang B, Zhu W, Shi Y. Sparganii Rhizoma alleviates pulmonary fibrosis by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition mediated by TGF-β1/ Smad2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116305. [PMID: 36878395 DOI: 10.1016/j.jep.2023.116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF), a lethal lung disease, can lead to structural destruction of the alveoli until death. Sparganii Rhizoma (SR), primarily distributed in East Asia, has been used clinically for hundreds of years against organ fibrosis and inflammation. AIM OF THE STUDY We intended to verify the effect of SR alleviate PF and further explore mechanisms. METHODS Murine model of PF was established by endotracheal infusion of bleomycin. We detected the anti-PF effect of SR through lung coefficient, hydroxyproline content, lung function and pathological staining. Then, we used Western Blot and RT-PCR to verify the mechanism. In vitro experiments, MRC-5 and BEAS-2B were induced to phenotypic transformation by TGF-β1 and then RT-PCR, WB and IF were conducted to verify the effect of SR. RESULTS SR significantly reduced BLM-induced PF in mice, improved lung function, slowed the degree of lung tissue lesions, and reduced collagen deposition. SR alleviated PF by inhibiting fibroblasts differentiation and epithelial-mesenchymal transition. In vivo studies explored the mechanism and found that it was related to TGF-β1/Smad2/3 pathway. CONCLUSIONS Our research proved SR could effectively treat PF, providing a fresh idea and approach for the treatment of PF with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongyang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qi Ding
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenxiang Zhu
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| |
Collapse
|
17
|
Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci 2023; 636:388-400. [PMID: 36640550 DOI: 10.1016/j.jcis.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, where M2 macrophages play an irreplaceable role in the anti-inflammatory progress. Targeting M2 macrophages and regulating their polarization may be a potential treatment strategy for IPF. Herein, we designed a magnetic liposome based dual-targeting delivery system for the IPF treatment, constructed by mannose-modified magnetic nanoparticles (MAN-MNPs) loaded on the surface of the liposome (MAN-MNPs@LP). The delivery system is capable of responding to a static magnetic field (SMF) and then recognizing in situ of M2 macrophages through the mannose receptor-dependent internalization. Firstly, a series of physical and chemical assays were used to characterize these nanoparticles. Subsequently, magnetic liposomes accumulation in the damaged lung with/without mannose modification and SMF were compared by in vivo imaging system. Finally, the reduction of M2 macrophages and inhibition of their polarization confirmed that the development of IPF was retarded due to the in situ release of encapsulated dexamethasone (Dex) in lungs under the SMF. Further investigation demonstrated that the expression of α-SMA and collagen deposition was reduced. Altogether, this dual-targeting delivery system can effectively deliver Dex into M2 macrophages in the lung, making it a novel and promising therapeutic system for the IPF treatment.
Collapse
|
18
|
Li D, Zhao A, Zhu J, Wang C, Shen J, Zheng Z, Pan F, Liu Z, Chen Q, Yang Y. Inhaled Lipid Nanoparticles Alleviate Established Pulmonary Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300545. [PMID: 37058092 DOI: 10.1002/smll.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Pulmonary fibrosis, a sequela of lung injury resulting from severe infection such as severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) infection, is a kind of life-threatening lung disease with limited therapeutic options. Herein, inhalable liposomes encapsulating metformin, a first-line antidiabetic drug that has been reported to effectively reverse pulmonary fibrosis by modulating multiple metabolic pathways, and nintedanib, a well-known antifibrotic drug that has been widely used in the clinic, are developed for pulmonary fibrosis treatment. The composition of liposomes made of neutral, cationic or anionic lipids, and poly(ethylene glycol) (PEG) is optimized by evaluating their retention in the lung after inhalation. Neutral liposomes with suitable PEG shielding are found to be ideal delivery carriers for metformin and nintedanib with significantly prolonged retention in the lung. Moreover, repeated noninvasive aerosol inhalation delivery of metformin and nintedanib loaded liposomes can effectively diminish the development of fibrosis and improve pulmonary function in bleomycin-induced pulmonary fibrosis by promoting myofibroblast deactivation and apoptosis, inhibiting transforming growth factor 1 (TGFβ1) action, suppressing collagen formation, and inducing lipogenic differentiation. Therefore, this work presents a versatile platform with promising clinical translation potential for the noninvasive inhalation delivery of drugs for respiratory disease treatment.
Collapse
Affiliation(s)
- Dongjun Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Ang Zhao
- Department of medical affair, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Chunjie Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| |
Collapse
|
19
|
Yao J, Li Y, Meng F, Shen W, Wen H. Enhancement of suppression oxidative stress and inflammation of quercetin by nano-decoration for ameliorating silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37017410 DOI: 10.1002/tox.23781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Silicosis is a life-threatening lung fibrotic disease caused by excessive inhalation of environmental exposure to crystalline silica-containing dust, whereas achieving therapeutic cures are constrained. Antioxidation and anti-inflammation are currently recognized as effective strategies to counteract organ fibrosis. Using naturally occurring phytomedicines quercetin (Qu) has emerged in antagonizing fibrotic disorders involving oxidative stress and inflammation, but unfortunately the hydrophilicity deficiency. Herein, chitosan-assisted encapsulation of Qu in nanoparticles (Qu/CS-NPs) was first fabricated for silicosis-associated fibrosis treatment by pulmonary delivery. Qu/CS-NPs with spherical diameters of ~160 nm, demonstrated a high Qu encapsulated capability, excellent hydrophilic stability, fantastic oxidation radical scavenging action, and outstanding controlled as well as slow release Qu action. A silicosis rat model induced by intratracheal instillation silica was established to estimate the anti-fibrosis effect of Qu/CS-NPs. After intratracheal administration, CS-NPs markedly enhanced Qu anti-fibrotic therapy efficacy, accompanying the evident changes in reducing ROS and MDA production to mitigate oxidative stress, inhibiting IL-1β and TNF-α release, improving lung histological architecture, down-regulating α-SAM levels and suppressing ECM deposition, and thereby ameliorating silica-induced pulmonary fibrosis. Results manifested that the augmented antioxidant and anti-inflammatory activities of Qu by CS-NPs delivery was a result of achieving this remarkable improvement in curative effects. Combined with negligible systemic toxicity, nano-decorated Qu may provide a feasible therapeutic option for silicosis therapy.
Collapse
Affiliation(s)
- Jingjing Yao
- School of Medicine, Anhui Provincial Engineering Laboratory of Occupational Health and Safety, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Yuxuan Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Meng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Wenwen Shen
- School of Medicine, Anhui Provincial Engineering Laboratory of Occupational Health and Safety, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, Huainan, China
| | - Hao Wen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
20
|
Xiong D, Gao F, Shao J, Pan Y, Wang S, Wei D, Ye S, Chen Y, Chen R, Yue B, Li J, Chen J. Arctiin-encapsulated DSPE-PEG bubble-like nanoparticles inhibit alveolar epithelial type 2 cell senescence to alleviate pulmonary fibrosis via the p38/p53/p21 pathway. Front Pharmacol 2023; 14:1141800. [PMID: 36998607 PMCID: PMC10043219 DOI: 10.3389/fphar.2023.1141800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Idiopathic pulmonary fibrosis is a severe and deadly form of diffuse parenchymal lung disease and treatment options are few. Alveolar epithelial type 2 (AEC2) cell senescence is implicated in the pathogenies of IPF. A major bioactive compound from the traditional Chinese medicine Fructus arctii, arctiin (ARC) has robust anti-inflammatory, anti-senescence, and anti-fibrosis functions. However, the potential therapeutic effects of ARC on IPF and the underlying mechanisms involved are still unknown.Methods: First of all, ARC was identified as an active ingredient by network pharmacology analysis and enrichment analysis of F. arctii in treating IPF. We developed ARC-encapsulated DSPE-PEG bubble-like nanoparticles (ARC@DPBNPs) to increase ARC hydrophilicity and achieve high pulmonary delivery efficiency. C57BL/6 mice were used to establish a bleomycin (BLM)-induced pulmonary fibrosis model for assessing the treatment effect of ARC@DPBNPs on lung fibrosis and the anti-senescence properties of AEC2. Meanwhile, p38/p53 signaling in AEC2 was detected in IPF lungs, BLM-induced mice, and an A549 senescence model. The effects of ARC@DPBNPs on p38/p53/p21 were assessed in vivo and in vitro.Results: Pulmonary route of administration of ARC@DPBNPs protected mice against BLM-induced pulmonary fibrosis without causing significant damage to the heart, liver, spleen, or kidney. ARC@DPBNPs blocked BLM-induced AEC2 senescence in vivo and in vitro. The p38/p53/p21 signaling axis was significantly activated in the lung tissues of patients with IPF, senescent AEC2, and BLM-induced lung fibrosis. ARC@DPBNPs attenuated AEC2 senescence and pulmonary fibrosis by inhibiting the p38/p53/p21 pathway.Conclusion: Our data suggest that the p38/p53/p21 signaling axis plays a pivotal role in AEC2 senescence in pulmonary fibrosis. The p38/p53/p21 signaling axis inhibition by ARC@DPBNPs provides an innovative approach to treating pulmonary fibrosis in clinical settings.
Collapse
Affiliation(s)
- Dian Xiong
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Fei Gao
- Department of Emergency, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Department of Emergency, Nanjing General Hospital of Nanjing Military Region, Nanjing, China
| | - Jingbo Shao
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yueyun Pan
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Song Wang
- Department of Intensive Care Medicine, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Dong Wei
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Shugao Ye
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Yuan Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Bingqing Yue
- Department of Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Li
- Department of Chemistry, Fudan University, Shanghai, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| | - Jingyu Chen
- Lung Transplantation Center, Department of Thoracic Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, China
- Key Laboratory of Clinical Laboratory Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Jingyu Chen, ; Juan Li,
| |
Collapse
|
21
|
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20:335-348. [PMID: 36720629 PMCID: PMC10699164 DOI: 10.1080/17425247.2023.2175814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Drugs delivered via the lungs are predominantly used to treat various respiratory disorders, including asthma, chronic obstructive pulmonary diseases, respiratory tract infections and lung cancers, and pulmonary vascular diseases such as pulmonary hypertension. To treat respiratory diseases, targeted, modified or controlled release inhalation formulations are desirable for improved patient compliance and superior therapeutic outcome. AREAS COVERED This review summarizes the important factors that have an impact on the inhalable modified release formulation approaches with a focus toward various formulation strategies, including dissolution rate-controlled systems, drug complexes, site-specific delivery, drug-polymer conjugates, and drug-polymer matrix systems, lipid matrix particles, nanosystems, and formulations that can bypass clearance via mucociliary system and alveolar macrophages. EXPERT OPINION Inhaled modified release formulations can potentially reduce dosing frequency by extending drug's residence time in the lungs. However, inhalable modified or controlled release drug delivery systems remain unexplored and underdeveloped from the commercialization perspective. This review paper addresses the current state-of-the-art of inhaled controlled release formulations, elaborates on the avenues for developing newer technologies for formulating various drugs with tailored release profiles after inhalational delivery and explains the challenges associated with translational feasibility of modified release inhalable formulations.
Collapse
Affiliation(s)
- Tanvirul Hye
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 48309, Rochester, MI, USA
| | - Sakib M. Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Tanoy Sarkar
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Trieu Nguyen
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Dipongkor Saha
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
- MedLuidics, 95757, Elk Grove, CA, USA
| |
Collapse
|
22
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
23
|
Preface. Eur J Pharm Biopharm 2022. [PMID: 36113704 DOI: 10.1016/j.ejpb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Kolb M, Orfanos SE, Lambers C, Flaherty K, Masters A, Lancaster L, Silverstein A, Nathan SD. The Antifibrotic Effects of Inhaled Treprostinil: An Emerging Option for ILD. Adv Ther 2022; 39:3881-3895. [PMID: 35781186 PMCID: PMC9402520 DOI: 10.1007/s12325-022-02229-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
Interstitial lung diseases (ILD) encompasses a heterogeneous group of parenchymal lung diseases characterized by variable amounts of inflammation and fibrosis. The targeting of fibroblasts and myofibroblasts with antifibrotic treatments is a potential therapeutic target for these potentially fatal diseases. Treprostinil is unique among the prostacyclin mimetics in that it has distinct actions at additional prostaglandin receptors. Preclinical and clinical evidence suggests that treprostinil has antifibrotic effects through the activation of the prostaglandin E receptor 2 (EP2), the prostaglandin D receptor 1 (DP1), and peroxisome proliferator-activated receptors (PPAR). In vivo studies of EP2 and the DP1 have found that administration of treprostinil resulted in a reduction in cell proliferation, reduced collagen secretion and synthesis, and reduced lung inflammation and fibrosis. In vitro and in vivo studies of PPARβ and PPARγ demonstrated that treprostinil inhibited fibroblast proliferation in a dose-dependent manner. Clinical data from a post hoc analysis of the INCREASE trial found that inhaled treprostinil improved forced vital capacity in the overall population as well as in idiopathic interstitial pneumonia and idiopathic pulmonary fibrosis subgroups. These preclinical and clinical findings suggest a dual benefit of treprostinil through the amelioration of both lung fibrosis and pulmonary hypertension.
Collapse
Affiliation(s)
- Martin Kolb
- Firestone Institute for Respiratory Health, Hamilton, ON, Canada
- McMaster University, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Stylianos E Orfanos
- 1st Department of Critical Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Pulmonary Hypertension Center Evangelismos Hospital, Athens, Greece
| | - Chris Lambers
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
- Department of Pneumology, Ordensklinikum Linz/Elisabethinen, Linz, Austria
| | | | - Alison Masters
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Lisa Lancaster
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Silverstein
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA.
| |
Collapse
|
25
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
26
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
27
|
Han M, Song Y, Liu S, Lu X, Su L, Liu M, Zhu X, Sun K, Lu Y, Wang A. Engineering of Stimulus-Responsive Pirfenidone Liposomes for Pulmonary Delivery During Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:882678. [PMID: 35548360 PMCID: PMC9081653 DOI: 10.3389/fphar.2022.882678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive and irreversible loss of lung function. Clinically safe and efficacious drug treatments for IPF are lacking. Pirfenidone (an anti-inflammatory, antioxidant and anti-fibrotic small-molecule drug) is considered a promising treatment for IPF. Unfortunately, several disadvantages of pirfenidone caused by traditional administration (e.g., gastrointestinal reactions, short elimination half-life) hinder its implementation. We designed pirfenidone pH-sensitive liposomes (PSLs) to target the acidic microenvironment of IPF and act directly at the disease site through pulmonary administration. Pirfenidone was encapsulated in liposomes to extend its half-life, and modified with polyethylene glycol on the surface of liposomes to improve the permeability of the mucus layer in airways. In vitro, the cytotoxicity of pirfenidone PSLs to pulmonary fibroblasts was increased significantly at 48 h compared with that using pirfenidone. In a murine and rat model of bleomycin-induced pulmonary fibrosis, pirfenidone PSLs inhibited IPF development and increased PSL accumulation in the lungs compared with that using pirfenidone solution or phosphate-buffered saline. Pirfenidone PSLs had potentially fewer side effects and stronger lung targeting. These results suggest that pirfenidone PSLs are promising preparations for IPF treatment.
Collapse
Affiliation(s)
- Meishan Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yingjian Song
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Sha Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Linyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Meixuan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiaosu Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
- *Correspondence: Sha Liu, ; Kaoxiang Sun,
| | - Yanan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
28
|
Zhang Y, Sheng K, Song F, Pan Z, Zou X, Liu Y, Huang P. Efficacy of Qingfei oral liquid for idiopathic pulmonary fibrosis in rats and related network pharmacology study. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:53-61. [PMID: 35576111 PMCID: PMC9109760 DOI: 10.3724/zdxbyxb-2021-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 06/15/2023]
Abstract
To investigate the therapeutic effect and mechanism of Qingfei oral liquid in idiopathic pulmonary fibrosis. Seventy-two male SD rats were divided into control group, model group, pirofenidone group and Qingfei group with 18 animals in each group. The idiopathic pulmonary fibrosis was induced in last three groups by intratracheal injection of bleomycin; pirofenidone group was given oral administration of pirofenidone b.i.d for 21 d, and Qingfei group was given Qingfei oral liquid 3.6 mL/kg q.d for Lung tissues were obtained for HE staining, Masson staining and transforming growth factor (TGF)-β immunohistochemical staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were detected in tissue homogenates. The BATMAN-TCM database was used to retrieve the chemical components and their corresponding targets of Qingfei oral solution by network pharmacology method, and then the component-target-disease network diagram was constructed. Finally, the pathway enrichment analysis was carried out to explore the molecular mechanism of Qingfei oral liquid against idiopathic fibrosis. Histopathology results showed that Qingfei oral liquid had a similar relieving effect on pulmonary fibrosis as the positive drug pirfenidone; TGF-β secretion had a significant reduction in lung tissues of Qingfei group; and Qingfei oral liquid had better regulatory effect on SOD, MDA and GSH than pirfenidone. The results of component-target-disease network and pathway enrichment analysis showed that the related molecular pathways were concentrated in inflammation, extracellular matrix and cytokines. Qingfei oral liquid has a good therapeutic effect on idiopathic pulmonary fibrosis in rats via regulation of inflammation, extracellular matrix and cytokines.
Collapse
|
29
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
30
|
Liu Y, Wang S, Gong X, Wang Y, Xu T. Inhaled B7 alleviates bleomycin-induced pulmonary fibrosis in mice. Bioorg Med Chem 2021; 50:116482. [PMID: 34757292 DOI: 10.1016/j.bmc.2021.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Treatment options for the progression of pulmonary fibrosis (PF), which ultimately causes respiratory failure, are limited. According to recent studies, recombinant human relaxin is potentially therapeutic against fibrosis and contraction during pulmonary damage. However, the production of recombinant H2 relaxin is laborious and expensive, limiting its extensive application. Thankfully, alternative research has revealed that treatment with a single-chain peptide of relaxin attenuates organ fibrosis in rodent models too, with the production of a single-chain peptide of relaxin simple and cheap; it could be therapeutic against idiopathic pulmonary fibrosis. Here, we explored the probable inhibiting effects of B7, a B chain of recombinant human relaxin, on bleomycin-induced pulmonary inflammation. Inhaled B7 efficiently reduced the number of inflammatory leukocytes and neutrophils in the bronchoalveolar lavage fluid of mice with bleomycin-induced PF, significantly improved the structure of the damaged alveolar, reduced collagen deposition, suppressed the main pathological features of idiopathic pulmonary fibrosis, i.e. the expression of both pulmonary α-smooth muscle actin and pulmonary vimentin, and inhibited the transcription of inflammation and collagen deposition-related mRNAs, including fibronectin, α-smooth muscle actin (α-SMA), interleukin-1β (IL-1β), interleukin-6 (IL-6), and alpha-1 type 1 collagen (Col-1a), and the expression of inflammation-related proteins, such as IL-1β, IL-6, chemokines (KC), TIMP metallopeptidase inhibitor 1 (TIMP-1), and hydroxyproline (Hyp). Overall, our findings suggest that inhaled B7 exerts beneficial effects against pulmonary fibrosis via attenuating inflammation. It could be developed into a simple, highly effective therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuhua Liu
- Institute of Life Sciences, Nanchang University, Nanchang, China
| | - Shaofang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqi Gong
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Yingshuo Wang
- Department of Pulmonology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Tonghui Xu
- Institute of Life Sciences, Nanchang University, Nanchang, China; Department of Laboratory Animal Science, Fudan University, Shanghai, China.
| |
Collapse
|