1
|
McDonald ES, Pan TC, Pant DK, Troester MA, Kossenkov AV, Mankoff DA, Mach RH, Chodosh LA. Ternary Complex Components Responsible for Rapid LDL Internalization as Biomarkers for Breast Cancer Associated with Proliferation and Early Recurrence. CANCER RESEARCH COMMUNICATIONS 2025; 5:226-239. [PMID: 39804138 PMCID: PMC11791746 DOI: 10.1158/2767-9764.crc-23-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/16/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
SIGNIFICANCE This first large-scale analysis of the putative ternary complex responsible for rapid low-density lipoprotein internalization in breast cancer reveals a link between component expression and recurrence, with prognostic implications for identifying patients needing supplemental posttreatment surveillance and/or additional therapeutic approaches.
Collapse
Affiliation(s)
- Elizabeth S. McDonald
- Division of Breast Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tien-Chi Pan
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dhruv K. Pant
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa A. Troester
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - David A. Mankoff
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Mach
- Radiochemistry, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Hong VM, Rade AD, Yan SM, Bhaskara A, Yousuf MS, Chen M, Martin SF, Liebl DJ, Price TJ, Kolber BJ. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024; 11:ENEURO.0488-23.2024. [PMID: 38866499 PMCID: PMC11228697 DOI: 10.1523/eneuro.0488-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.
Collapse
Affiliation(s)
- Veronica M Hong
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Avaneesh D Rade
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Shen M Yan
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Amulya Bhaskara
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Muhammad Saad Yousuf
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Min Chen
- Department of Mathematical Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080
| | - Stephen F Martin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, Florida 33146
| | - Theodore J Price
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Benedict J Kolber
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
3
|
Robinson TS, Osman MA. An Emerging Role for Sigma Receptor 1 in Personalized Treatment of Breast Cancer. Cancers (Basel) 2023; 15:3464. [PMID: 37444574 PMCID: PMC10340381 DOI: 10.3390/cancers15133464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the major progress in treating breast cancer, recurrence remains a problem and types such as triple-negative breast cancer still lack targeted medicine. The orphan Sigma receptor1 (SigmaR1) has emerged as a target in breast cancer, but its mechanism of action is unclear and hinders clinical utility. SigmaR1 is widely expressed in organ tissues and localized to various sub-cellular compartments, particularly the endoplasmic reticulum (ER), the mitochondrial-associated membranes (MAMs) and the nuclear envelope. As such, it involves diverse cellular functions, including protein quality control/ER stress, calcium signaling, cholesterol homeostasis, mitochondrial integrity and energy metabolism. Consequently, SigmaR1 has been implicated in a number of cancers and degenerative diseases and thus has been intensively pursued as a therapeutic target. Because SigmaR1 binds a number of structurally unrelated ligands, it presents an excellent context-dependent therapeutic target. Here, we review its role in breast cancer and the current therapies that have been considered based on its known functions. As SigmaR1 is not classified as an oncoprotein, we propose a model in which it serves as an oligomerization adaptor in key cellular pathways, which may help illuminate its association with variable diseases and pave the way for clinical utility in personalized medicine.
Collapse
Affiliation(s)
| | - Mahasin A. Osman
- Department of Medicine, Division of Oncology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
4
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Hough A, Criswell C, Faruk A, Cavanaugh JE, Kolber BJ, Tidgewell KJ. Barbamide Displays Affinity for Membrane-Bound Receptors and Impacts Store-Operated Calcium Entry in Mouse Sensory Neurons. Mar Drugs 2023; 21:110. [PMID: 36827151 PMCID: PMC9966578 DOI: 10.3390/md21020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Marine cyanobacteria are a rich source of bio-active metabolites that have been utilized as leads for drug discovery and pharmacological tools for basic science research. Here, we describe the re-isolation of a well-known metabolite, barbamide, from Curaçao on three different occasions and the characterization of barbamide's biological interactions with targets of the mammalian nervous system. Barbamide was originally discovered as a molluscicidal agent from a filamentous marine cyanobacterium. In our hands, we found little evidence of toxicity against mammalian cell cultures. However, barbamide showed several affinities when screened for binding affinity for a panel of 45 receptors and transporters known to be involved in nociception and sensory neuron activity. We found high levels of binding affinity for the dopamine transporter, the kappa opioid receptor, and the sigma receptors (sigma-1 and sigma-2 also known as transmembrane protein 97; TMEM97). We tested barbamide in vitro in isolated sensory neurons from female mice to explore its functional impact on calcium flux in these cells. Barbamide by itself had no observable impact on calcium flux. However, barbamide enhanced the effect of the TRPV1 agonist capsaicin and enhanced store-operated calcium entry (SOCE) responses after depletion of intracellular calcium. Overall, these results demonstrate the biological potential of barbamide at sensory neurons with implications for future drug development projects surrounding this molecule.
Collapse
Affiliation(s)
- Andrea Hough
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Connor Criswell
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Asef Faruk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jane E. Cavanaugh
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Benedict J. Kolber
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kevin J. Tidgewell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
6
|
Dvorácskó S, Lázár L, Fülöp F, Palkó M, Zalán Z, Penke B, Fülöp L, Tömböly C, Bogár F. Novel High Affinity Sigma-1 Receptor Ligands from Minimal Ensemble Docking-Based Virtual Screening. Int J Mol Sci 2021; 22:8112. [PMID: 34360878 PMCID: PMC8347176 DOI: 10.3390/ijms22158112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Sigma-1 receptor (S1R) is an intracellular, multi-functional, ligand operated protein that also acts as a chaperone. It is considered as a pluripotent drug target in several pathologies. The publication of agonist and antagonist bound receptor structures has paved the way for receptor-based in silico drug design. However, recent studies on this subject payed no attention to the structural differences of agonist and antagonist binding. In this work, we have developed a new ensemble docking-based virtual screening protocol utilizing both agonist and antagonist bound S1R structures. This protocol was used to screen our in-house compound library. The S1R binding affinities of the 40 highest ranked compounds were measured in competitive radioligand binding assays and the sigma-2 receptor (S2R) affinities of the best S1R binders were also determined. This way three novel high affinity S1R ligands were identified and one of them exhibited a notable S1R/S2R selectivity.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Biological Research Centre, Institute of Biochemistry, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - László Lázár
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Márta Palkó
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Zita Zalán
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (L.L.); (F.F.); (M.P.); (Z.Z.)
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Csaba Tömböly
- Biological Research Centre, Institute of Biochemistry, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (S.D.); (C.T.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
8
|
Zeng C, Riad A, Mach RH. The Biological Function of Sigma-2 Receptor/TMEM97 and Its Utility in PET Imaging Studies in Cancer. Cancers (Basel) 2020; 12:E1877. [PMID: 32668577 PMCID: PMC7409002 DOI: 10.3390/cancers12071877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022] Open
Abstract
The sigma-2 receptor was originally defined pharmacologically and recently identified as TMEM97. TMEM97 has been validated as a biomarker of proliferative status and the radioligand of TMEM97, [18F]ISO-1, has been developed and validated as a PET imaging biomarker of proliferative status of tumors and as a predictor of the cancer therapy response. [18F]ISO-1 PET imaging should be useful to guide treatment for cancer patients. TMEM97 is a membrane-bound protein and localizes in multiple subcellular organelles including endoplasmic reticulum and lysosomes. TMEM97 plays distinct roles in cancer. It is reported that TMEM97 is upregulated in some tumors but downregulated in other tumors and it is required for cell proliferation in certain tumor cells. TMEM97 plays important roles in cholesterol homeostasis. TMEM97 expression is regulated by cholesterol-regulating signals such as sterol depletion and SREBP expression levels. TMEM97 regulates cholesterol trafficking processes such as low density lipoprotein (LDL) uptake by forming complexes with PGRMC1 and low density lipoprotein receptor (LDLR), as well as cholesterol transport out of lysosome by interacting with and regulating NPC1 protein. Understanding molecular functions of TMEM97 in proliferation and cholesterol metabolism will be important to develop strategies to diagnose and treat cancer and cholesterol disorders using a rich collection of TMEM97 radiotracers and ligands.
Collapse
Affiliation(s)
| | | | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.Z.); (A.R.)
| |
Collapse
|
9
|
Lever JR, Fergason-Cantrell EA. Allosteric modulation of sigma receptors by BH3 mimetics ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax). Pharmacol Res 2019; 142:87-100. [PMID: 30721730 DOI: 10.1016/j.phrs.2019.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022]
Abstract
ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax) are under intensive preclinical and clinical investigation as treatments for hematologic and other malignancies. These small molecules mimic pro-death B-cell lymphoma-2 (Bcl-2) Homology 3 (BH3) domain-only proteins. They also bear a structural resemblance to certain sigma (σ) receptor ligands. Moreover, the Bcl-2 and σ receptor protein families are both located primarily at the endoplasmic reticulum, mediate cell death and survival through protein-protein interactions, and physically associate. Accordingly, we examined the ability of the ABT series of BH3 mimetics to interact with σ receptors using radioligand-binding techniques. Negative allosteric modulation of [3H](+)-pentazocine, an agonist, binding to σ1 receptors in guinea pig brain membranes was observed for ABT-737, ABT-263 and ABT-199. Findings included reduction of specific binding to distinct plateaus in concentration-dependent fashion, significant slowing of radioligand dissociation kinetics, and decreases in radioligand affinity with no or modest changes in maximal receptor densities. Using a ternary complex model, dissociation constants (KX) for modulator binding to the σ1 receptor ranged from 1 to 2.5 μM, while negative cooperativity factors (α), representing the changes in affinity of ligand and modulator when bound as a ternary complex with the receptor, ranged from 0.15 to 0.42. These observations were extended and reinforced by studies using intact small cell (NCI-H69) and non-small cell (NCI-H23) lung cancer cells, and by using an antagonist σ1 receptor radioligand, E-N-1-(3'-[125I]iodoallyl)-N'-4-(3″,4″-dimethoxyphenethyl)piperazine, in mouse brain membranes. By contrast, exploratory studies indicate marked enhancement of the σ2 receptor binding of [3H]1,3-di-(o-tolyl)guanidine/(+)-pentazocine in NCI-H23 cells and guinea pig brain membranes. These findings raise intriguing questions regarding mechanism and potential functional outcomes.
Collapse
Affiliation(s)
- John R Lever
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Emily A Fergason-Cantrell
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| |
Collapse
|
10
|
Sigma-2 receptor: past, present and perspectives on multiple therapeutic exploitations. Future Med Chem 2018; 10:1997-2018. [DOI: 10.4155/fmc-2018-0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identification of sigma-2 receptor (sig-2R) has been controversial. Nevertheless, interest in sig-2R is high for its overexpression in tumors and potentials in oncology. Additionally, sig-2R antagonists inhibit Aβ binding at neurons, blocking the cognitive impairments of Alzheimer's disease. The most representative classes of sig-2R ligands are herein treated with focus on compounds that served to study sig-2R biology and to produce sig-2R: fluorescent ligands; multifunctional anticancer agents; and targeting nanoparticles. Although fluorescent ligands serve as ‘green’ pharmacological tools, sig-2R-multifunctional conjugates and sig-2R-targeted nanoparticles show how sig-2R targeting increases the activity of anticancer drugs in tumors with reduced toxicity. Altogether, this review draws a picture of the multiple approaches of sig-2R ligands in cancer therapy and as Alzheimer's disease modifying disease agents.
Collapse
|
11
|
Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, Paolillo M, Curti D, Rui M, Rossi D, Collina S. Sigma Receptors as Endoplasmic Reticulum Stress "Gatekeepers" and their Modulators as Emerging New Weapons in the Fight Against Cancer. Front Pharmacol 2018; 9:711. [PMID: 30042674 PMCID: PMC6048940 DOI: 10.3389/fphar.2018.00711] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Mayra Paolillo
- Pharmacology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Curti
- Laboratory of Cellular and Molecular Neuropharmacology, Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Dinoff A, Herrmann N, Lanctôt KL. Ceramides and depression: A systematic review. J Affect Disord 2017; 213:35-43. [PMID: 28189963 DOI: 10.1016/j.jad.2017.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major depressive disorder is a significant contributor to global disability and mortality. The mechanisms of depression are vast and not fully understood, and as a result current treatment of depression is suboptimal. Aberrant sphingolipid metabolism has been observed in some cases of depression, specifically alterations in ceramide concentrations. The role of ceramides and other sphingolipids in depression is a novel concept. This review summarizes and evaluates the current state of evidence for a role of ceramides in depression pathophysiology and the potential for novel depression pharmacotherapies targeting ceramide metabolism. METHODS Medline, Embase, and PsycINFO databases were searched through October 2016 for English-language studies using combinations of the search terms: ceramide, depression, sphingolipid, and depressive symptoms. RESULTS Of the 489 articles screened, 14 were included in the qualitative synthesis of this review article. Pre-clinical and clinical evidence suggest that ceramide species may contribute to depression pathophysiology. In human studies, ceramides C18:0 and C20:0 are the species most strongly linked to depression. Evidence for altered ceramide metabolism in depression is present, but data for a causal role of ceramides in depression are lacking. LIMITATIONS This review was limited by potential reporting bias. Furthermore, a lack of specificity of which ceramides were altered in depression was common. CONCLUSIONS Pharmacotherapy targeting ceramide metabolism may be a novel treatment option for depression. A number of pharmacological targets exists for ceramide reduction and a number of currently approved medications inhibit ceramide production. More evidence, pre-clinical and clinical, is warranted to determine the extent and consistency of the role of ceramides in depression.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Zeng C, McDonald ES, Mach RH. Molecular Probes for Imaging the Sigma-2 Receptor: In Vitro and In Vivo Imaging Studies. Handb Exp Pharmacol 2017; 244:309-330. [PMID: 28176045 DOI: 10.1007/164_2016_96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sigma-2 (σ2) receptor has been validated as a biomarker of the proliferative status of solid tumors. Therefore, radiotracers having a high affinity and high selectivity for σ2 receptors have the potential to assess the proliferative status of human tumors using noninvasive imaging techniques such as Positron Emission Tomography (PET). Since the σ2 receptor has not been cloned, the current knowledge of this receptor has relied on receptor binding studies with the radiolabeled probes and investigation of the effects of the σ2 receptor ligands on tumor cells. The development of the σ2 selective fluorescent probes has proven to be useful for studying subcellular localization and biological functions of the σ2 receptor, for revealing pharmacological properties of the σ2 receptor ligands, and for imaging cell proliferation. Preliminary clinical imaging studies with [18F]ISO-1, a σ2 receptor probe, have shown promising results in cancer patients. However, the full utility of imaging the σ2 receptor status of solid tumors in the diagnosis and prediction of cancer therapeutic response will rely on elucidation of the functional role of this protein in normal and tumor cell biology.
Collapse
Affiliation(s)
- Chenbo Zeng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Hiranita T. Identification of the Sigma-2 Receptor: Distinct from the Progesterone Receptor Membrane Component 1 (PGRMC1). ACTA ACUST UNITED AC 2016; 4. [PMID: 27376101 PMCID: PMC4930110 DOI: 10.4172/2329-6488.1000e130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA
| |
Collapse
|
15
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
16
|
Shanmugam AK, Mysona BA, Wang J, Zhao J, Tawfik A, Sanders A, Markand S, Zorrilla E, Ganapathy V, Bollinger KE, Smith SB. Progesterone Receptor Membrane Component 1 (PGRMC1) Expression in Murine Retina. Curr Eye Res 2015; 41:1105-1112. [PMID: 26642738 DOI: 10.3109/02713683.2015.1085579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Sigma receptors 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1-/- mice. METHODS Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild-type mouse retina. Tissues from σR1-/- mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. RESULTS In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1-/- mice did not differ from wild-type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild-type and σR1-/- mice. In contrast, liver, brain, and intestine showed increased Pgrmc1 gene expression in σR1-/- mice. CONCLUSION Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1-/- mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicates a possible tissue-specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function.
Collapse
Affiliation(s)
- Arul K Shanmugam
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Barbara A Mysona
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Wang
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Jing Zhao
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Amany Tawfik
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - A Sanders
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Shanu Markand
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA
| | - Eric Zorrilla
- d Harold L. Dorris Neurological Research Institute , The Scripps Research Institute , La Jolla , CA , USA
| | - Vadivel Ganapathy
- b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,e Department of Cell Biology and Biochemistry , Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Kathryn E Bollinger
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Sylvia B Smith
- a Department of Cellular Biology and Anatomy , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA.,b James & Jean Culver Vision Discovery Institute , Georgia Regents University , Augusta , GA , USA.,c Department of Ophthalmology , Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
17
|
Chu UB, Mavlyutov TA, Chu ML, Yang H, Schulman A, Mesangeau C, McCurdy CR, Guo LW, Ruoho AE. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes. EBioMedicine 2015; 2:1806-13. [PMID: 26870805 PMCID: PMC4740303 DOI: 10.1016/j.ebiom.2015.10.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 11/12/2022] Open
Abstract
The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. The sigma-2 receptor is an important drug target but its molecular identity has remained a hot topic of debate. PGRMC1 has recently been reported to be the sigma-2 binding site (Nature Communications, 2011, 2:380). Our data clarify that PGRMC1 and the sigma-2 receptor are distinct binding sites expressed by different genes.
The sigma-2 receptor (S2R) is a potential important therapeutic target for cancer and neuronal diseases, yet its gene identity is a long-held mystery. While a recent prominent report concluded that a progesterone-binding protein (PGRMC1) is the sigma-2 receptor, the critical defining evidence was missing. We re-tested this conclusion using a genome-editing technology combined with chemical biology and pharmacological determinations. The unambiguous results indicate that PGRMC1 is not the originally defined true sigma-2 receptor. This study may benefit public health by guiding future discovery of the true identity of the sigma-2 drug binding site.
Collapse
Affiliation(s)
- Uyen B Chu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Timur A Mavlyutov
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ming-Liang Chu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Huan Yang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amanda Schulman
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christophe Mesangeau
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, United States
| | - Christopher R McCurdy
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Arnold E Ruoho
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
18
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
19
|
Lever JR, Miller DK, Green CL, Fergason-Cantrell EA, Watkinson LD, Carmack TL, Fan KH, Lever SZ. A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice. Synapse 2014; 68:73-84. [PMID: 24123353 DOI: 10.1002/syn.21717] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/07/2013] [Indexed: 11/06/2022]
Abstract
Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects.
Collapse
Affiliation(s)
- John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, 65201; Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri, 65211; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Matsumoto RR, Nguyen L, Kaushal N, Robson MJ. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:323-86. [PMID: 24484982 DOI: 10.1016/b978-0-12-420118-7.00009-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many psychostimulants, including cocaine and methamphetamine, interact with sigma (σ) receptors at physiologically relevant concentrations. The potential therapeutic relevance of this interaction is underscored by the ability to selectively target σ receptors to mitigate many behavioral and physiological effects of psychostimulants in animal and cell-based model systems. This chapter begins with an overview of these enigmatic proteins. Provocative preclinical data showing that σ ligands modulate an array of cocaine and methamphetamine effects are summarized, along with emerging areas of research. Together, the literature suggests targeting of σ receptors as an innovative option for combating undesired actions of psychostimulants through both neuronal and glial mechanisms.
Collapse
Affiliation(s)
- Rae R Matsumoto
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA.
| | - Linda Nguyen
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Nidhi Kaushal
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Matthew J Robson
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Kaushal N, Robson MJ, Rosen A, McCurdy CR, Matsumoto RR. Neuroprotective targets through which 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a sigma receptor ligand, mitigates the effects of methamphetamine in vitro. Eur J Pharmacol 2013; 724:193-203. [PMID: 24380829 DOI: 10.1016/j.ejphar.2013.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/16/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Exposure to high or repeated doses of methamphetamine can cause hyperthermia and neurotoxicity, which are thought to increase the risk of developing a variety of neurological conditions. Sigma receptor antagonism can prevent methamphetamine-induced hyperthermia and neurotoxicity, but the underlying cellular targets through which the neuroprotection is conveyed remain unknown. Differentiated NG108-15 cells were thus used as a model system to begin elucidating the neuroprotective mechanisms targeted by sigma receptor antagonists to mitigate the effects of methamphetamine. In differentiated NG108-15 cells, methamphetamine caused the generation of reactive oxygen/nitrogen species, an increase in PERK-mediated endoplasmic reticulum stress and the activation of caspase-3, -8 and -9, ultimately resulting in apoptosis at micromolar concentrations, and necrotic cell death at higher concentrations. The sigma receptor antagonist, 6-acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), attenuated methamphetamine-induced increases in reactive oxygen/nitrogen species, activation of caspase-3, -8 and -9 and accompanying cellular toxicity. In contrast, 1,3-di(2-tolyl)-guanidine (DTG), a sigma receptor agonist, shifted the dose response curve of methamphetamine-induced cell death towards the left. To probe the effect of temperature on neurotoxicity, NG108-15 cells maintained at an elevated temperature (40 °C) exhibited a significant and synergistic increase in cell death in response to methamphetamine, compared to cells maintained at a normal cell culture temperature (37 °C). SN79 attenuated the enhanced cell death observed in the methamphetamine-treated cells at 40 °C. Together, the data demonstrate that SN79 reduces methamphetamine-induced reactive oxygen/nitrogen species generation and caspase activation, thereby conveying neuroprotective effects against methamphetamine under regular and elevated temperature conditions.
Collapse
Affiliation(s)
- Nidhi Kaushal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Abagail Rosen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Rae R Matsumoto
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
22
|
Su DA, Jiang RY, Liu N, Ding LC, Wang DAM, Yu HY, Yan ES, Zhu MH, Zhu B. Effects of BD1047, a σ 1 receptor antagonist, on the expression of mTOR, Camk2γ and GSK-3β in fluvoxamine-treated N2a cells. Exp Ther Med 2013; 7:435-438. [PMID: 24396420 PMCID: PMC3881039 DOI: 10.3892/etm.2013.1438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 11/27/2013] [Indexed: 11/06/2022] Open
Abstract
Fluvoxamine, a common antidepressant agent, is designed to exert its pharmacological effect by inhibiting synaptic serotonin reuptake. However, increasing evidence has demonstrated that σ1 receptors are likely to be involved in the mechanism of action of fluvoxamine. The present study aimed to observe the effects of fluvoxamine on the expression levels of mammalian target of rapamycin (mTOR), Ca2+/calmodulin-dependent protein kinase 2γ (Camk2γ) and glycogen synthase kinase-3β (GSK-3β) in fluvoxamine-treated N2a cells and attempted to elucidate whether σ1 receptors mediate the pharmacological effects of fluvoxamine. The N2a cells were randomly divided into three groups (each n=6): DMEM group (D group), 0.5 μmol/l fluvoxamine group (F group) and 0.2 μmol/l BD1047 (a σ1 receptor antagonist) + 0.5 μmol/l fluvoxamine group (BF group). Western blotting was used to determine the expression levels of mTOR, Camk2γ and GSK-3β in the cultured N2a cells after two days of incubation. The F group exhibited significant increases in the expression levels of mTOR and Camk2γ and a significant reduction in the expression levels of GSK-3β compared with those in the D group (P<0.01). By contrast, the BF group demonstrated significant reductions in the expression levels of mTOR and Camk2γ and a significant increase in the expression levels of GSK-3β, compared with those in the F group (P<0.01). These results suggest that σ1 receptors mediate fluvoxamine-elicited changes in the expression levels of mTOR, Camk2γ and GSK-3β in N2a cells, which indicates that σ1 receptors are likely to be involved in the pharmacological effects of fluvoxamine.
Collapse
Affiliation(s)
- Dong-An Su
- Department of Anesthesiology, The PLA 102 Hospital, Second Military Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Ri-Yue Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Ning Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Liang-Cai Ding
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - DA-Ming Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hai-Ying Yu
- Department of Psychiatry, The PLA 102 Hospital, Second Military Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - En-Shi Yan
- Department of Anesthesiology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Hua Zhu
- Department of Anesthesiology, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
23
|
Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 2013; 34:532-66. [PMID: 23922215 DOI: 10.1002/med.21297] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sigma-2 receptor is highly expressed in various rapidly proliferating cancer cells and regarded as a cancer cell biomarker. Selective sigma-2 ligands have been shown to specifically label the tumor sites, induce cancer cells to undergo apoptosis, and inhibit tumor growth. Sigma-2 ligands are potentially useful as cancer diagnostics, anticancer therapeutics, or adjuvant anticancer treatment agents. However, both the cloning of this receptor and the identification of its endogenous ligand have not been successful, and the lack of structural information has severely hindered the understanding of its physiological roles, its signaling pathways, and the development of more selective sigma-2 ligands. Recent data have implicated that sigma-2 binding sites are within the lipid rafts and that PGRMC1 (progesterone receptor membrane component 1) complex and sigma-2 receptor may be coupled with EGFR (epidermal growth factor receptor), mTOR (mammalian target of rapamycin), caspases, and ion channels. Due to its promising applications in cancer management, there are rapidly increasing research efforts that are being directed into this field. This review article updates the current understanding of sigma-2 receptor and its potential physiological roles, applications, interaction with other effectors, with special focuses on the development of sigma-2 ligands, their chemical structures, pharmacological profiles, applications in imaging and anticancer therapy.
Collapse
Affiliation(s)
- Yun-Sheng Huang
- School of Pharmacy, Guangdong Medical College, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, Guangdong, 523808, China
| | | | | | | |
Collapse
|
24
|
Mach RH, Zeng C, Hawkins WG. The σ2 receptor: a novel protein for the imaging and treatment of cancer. J Med Chem 2013; 56:7137-60. [PMID: 23734634 DOI: 10.1021/jm301545c] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The σ2 receptor is an important target for the development of molecular probes in oncology because of its 10-fold higher density in proliferating tumor cells compared with that in quiescent tumor cells and because of the observation that σ2 receptor agonists are able to kill tumor cells via apoptotic and nonapoptotic mechanisms. Although recent evidence indicates that the σ2 receptor binding site is localized within the progesterone receptor membrane component 1 (PGRMC1), most information regarding this protein has been obtained using either radiolabeled or fluorescent receptor-based probes and from biochemical analysis of the effect of σ2 selective ligands on cells grown in culture. This article reviews the development of σ2 receptor ligands and presents an overview of how they have been used in vitro and in vivo to increase our understanding of the role of the σ2 receptor in cancer and proliferation.
Collapse
Affiliation(s)
- Robert H Mach
- Mallinckrodt Institute of Radiology and ‡Department of Surgery, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | | | |
Collapse
|
25
|
Matsumoto RR. Targeting sigma receptors: novel medication development for drug abuse and addiction. Expert Rev Clin Pharmacol 2012; 2:351-8. [PMID: 22112179 DOI: 10.1586/ecp.09.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychostimulant abuse is a serious health and societal problem in industrialized and developing countries. However, the identification of an effective pharmacotherapy to treat it has remained elusive. It has long been known that many psychostimulant drugs, including cocaine and methamphetamine, interact with sigma receptors in the brain and heart, offering a logical target for medication development efforts. However, selective pharmacological agents and molecular biological tools have only recently become available to rigorously evaluate these receptors as viable medication development targets. The current review will summarize provocative preclinical data, demonstrating the ability of sigma receptor antagonists and antisense oligonucleotides to ameliorate cocaine-induced convulsions, lethality, locomotor activity and sensitization, and conditioned place-preference in rodents. Recent studies suggest that the protective effects of sigma receptor antagonists also extend to actions produced by methamphetamine, 3,4-methylenedioxymethamphetamine, ethanol and other abused substances. Together, the data indicate that targeting sigma receptors, particularly the σ(1)-subtype, may offer an innovative approach for combating the effects of cocaine, and perhaps other abused substances.
Collapse
Affiliation(s)
- Rae R Matsumoto
- School of Pharmacy, West Virginia University, PO Box 9500, Morgantown, WV 26506, USA.
| |
Collapse
|
26
|
Santiago JM, Torrado AI, Arocho LC, Rosas OR, Rodríguez AE, Toro FK, Salgado IK, Torres YA, Silva WI, Miranda JD. Expression profile of flotillin-2 and its pathophysiological role after spinal cord injury. J Mol Neurosci 2012; 49:347-59. [PMID: 22878913 DOI: 10.1007/s12031-012-9873-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022]
Abstract
Some receptors that block axonal regeneration or promote cell death after spinal cord injury (SCI) are localized in membrane rafts. Flotillin-2 (Flot-2) is an essential protein associated with the formation of these domains and the clustering of membranal proteins, which may have signaling activities. Our hypothesis is that trauma will change Flot-2 expression and interference of this lipid raft marker will promote functional locomotor recovery after SCI. Analyses were conducted to determine the spatiotemporal profile of Flot-2 expression in adult rats after SCI, using the MASCIS impactor device. Immunoblots showed that SCI produced a significant decrease in the level of Flot-2 at 2 days post-injury (DPI) that increased until 28 DPI. Confocal microscopy revealed Flot-2 expression in neurons, reactive astrocytes and oligodendrocytes specifically associated to myelin structures near or close to the axons of the cord. In the open field test and grid walking assays, to monitor locomotor recovery of injured rats infused intrathecally with Flot-2 antisense oligonucleotides for 28 days showed significant behavioral improvement at 14, 21 and 28 DPI. These findings suggest that Flot-2 has a role in the nonpermissive environment that blocks locomotor recovery after SCI by clustering unfavorable proteins in membrane rafts.
Collapse
Affiliation(s)
- José M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, 00984, Puerto Rico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A 96-well filtration method for radioligand binding analysis of σ receptor ligands. J Pharm Biomed Anal 2012; 71:157-61. [PMID: 22910107 DOI: 10.1016/j.jpba.2012.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 07/18/2012] [Accepted: 07/22/2012] [Indexed: 11/24/2022]
Abstract
σ receptors represent a potential drug target for numerous therapeutic indications including cancer, depression, psychostimulant abuse, and stroke. Most published radioligand binding studies for σ receptors utilize a low throughput method employing a "cell harvester." Higher throughput methods are required to facilitate efficient screening of large numbers of novel compounds. In this study, a series of reference compounds was analyzed with a new medium-throughput 96-well filtration method and the results were compared to those obtained using the conventional cell harvester-based method. The 96-well assay utilized rat liver membranes for the determination of both known σ receptor subtypes (σ(1) and σ(2)) because this tissue contains high densities of both subtypes and fulfills criteria required for reliable use with the 96-well format. The new method gave comparable K(i) values for reference ligands analyzed in parallel with samples prepared in rat brain membranes and processed on the traditional cell harvester. For σ(1) receptors, equivalent affinity values were observed for both methods/tissues. For σ(2) receptors, approximately 2-fold higher affinities were observed for most compounds in liver, as compared to brain membranes, but excellent correlation with brain-derived values was maintained. To further demonstrate the utility of the new method it was used to screen a novel series of 2(3H)-benzothiazolone compounds, resulting in the identification of several analogues with nanomolar affinity and greater than 50-fold specificity for σ(1) versus σ(2) receptors.
Collapse
|
28
|
Kaushal N, Matsumoto RR. Role of sigma receptors in methamphetamine-induced neurotoxicity. Curr Neuropharmacol 2011; 9:54-7. [PMID: 21886562 PMCID: PMC3137201 DOI: 10.2174/157015911795016930] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a widely abused substance world over. Currently, there is no effective pharmacotherapy to treat its effects. This necessitates identification of potential novel therapeutic targets. METH interacts with sigma (σ) receptors at physiologically relevant micromolar concentrations. In addition, σ receptors are present in organs like the brain, heart, and lungs at which METH acts. Additionally, σ receptors have been implicated in various acute and subchronic effects like locomotor stimulation, development of sensitization and neurotoxicity, where σ receptor antagonists attenuate these effects. σ Receptors may also have a role in METH-induced psychiatric complications such as depression, psychosis, cognitive and motor deficits. The neurotoxic effects of METH, which are cause for concern, can be prevented by σ receptor antagonists in mice. Mechanistically, METH-induced neurotoxicity involves factors like dopamine release, oxidative stress, endoplasmic reticulum stress, activation of mitochondrial death cascades, glutamate release, apoptosis, microglial activation, and hyperthermia. This review compiles studies from the literature that suggests an important role for σ receptors in many of the mechanisms of METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Nidhi Kaushal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
29
|
Zeng C, Vangveravong S, Jones LA, Hyrc K, Chang KC, Xu J, Rothfuss JM, Goldberg MP, Hotchkiss RS, Mach RH. Characterization and Evaluation of Two Novel Fluorescent Sigma-2 Receptor Ligands as Proliferation Probes. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We synthesized and characterized two novel fluorescent sigma-2 receptor selective ligands, SW120 and SW116, and evaluated these ligands as potential probes for imaging cell proliferation. Both ligands are highly selective for sigma-2 receptors versus sigma-1 receptors. SW120 and SW116 were internalized into MDA-MB-435 cells, and 50% of the maximum fluorescent intensity was reached in 11 and 24 minutes, respectively. In vitro studies showed that 50% of SW120 or SW116 washed out of cells in 1 hour. The internalization of SW120 was reduced ≈30% by phenylarsine oxide, an inhibitor of endocytosis, suggesting that sigma-2 ligands are internalized, in part, by an endocytotic pathway. Subcellular localization studies using confocal and two-photon microscopy showed that SW120 and SW116 partially colocalized with fluorescent markers of mitochondria, endoplasmic reticulum, lysosomes, and the plasma membrane, suggesting that sigma-2 receptors localized to the cytoplasmic organelles and plasma membrane. SW120 did not colocalize with the nuclear dye 4′,6-diamidino-2-phenylindole. In vivo studies showed that the uptake of SW120 in solid tumors and peripheral blood mononuclear cells of mice positively correlated with the expression level of the cell proliferation marker Ki-67, suggesting that sigma-2 fluorescent probes may be used to image cell proliferation in mice.
Collapse
Affiliation(s)
- Chenbo Zeng
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Suwanna Vangveravong
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Lynne A. Jones
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Krzysztof Hyrc
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Katherine C. Chang
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Jinbin Xu
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Justin M. Rothfuss
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Mark P. Goldberg
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Richard S. Hotchkiss
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| | - Robert H. Mach
- From the Departments of Radiology, Cell Biology and Physiology, Biochemistry and Molecular Biophysics, Neurology, and Anesthesiology, and Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
30
|
Matsumoto RR, Li SM, Katz JL, Fantegrossi WE, Coop A. Effects of the selective sigma receptor ligand, 1-(2-phenethyl)piperidine oxalate (AC927), on the behavioral and toxic effects of cocaine. Drug Alcohol Depend 2011; 118:40-7. [PMID: 21420799 PMCID: PMC3662542 DOI: 10.1016/j.drugalcdep.2011.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/11/2010] [Accepted: 02/20/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sigma receptors represent a unique structural class of proteins and they have become increasingly studied as viable medication development targets for neurological and psychiatric disorders, including drug abuse. Earlier studies have shown that cocaine and many other abused substances interact with sigma receptors and that antagonism of these proteins can mitigate their actions. METHODS In the present study, AC927 (1-(2-phenethyl)piperidine oxalate), a selective sigma receptor ligand, was tested against the behavioral and toxic effects of cocaine in laboratory animals. RESULTS Acute administration of AC927 in male, Swiss Webster mice significantly attenuated cocaine-induced convulsions, lethality, and locomotor activity, at doses that alone had no significant effects on behavior. Subchronic administration of AC927 also attenuated cocaine-induced conditioned place preference in mice, at doses that alone had no effects on place conditioning. In drug discrimination studies in male, Sprague-Dawley rats, AC927 partially substituted for the discriminative stimulus effects of cocaine. When it was administered with cocaine, AC927 shifted the cocaine dose-response curve to the left, suggesting an enhancement of the discriminative stimulus effects of cocaine. In non-human primates, AC927 was self-administered, maintaining responding that was intermediate between contingent saline and a maintenance dose of cocaine. CONCLUSION The ability of AC927 to elicit some cocaine-like appetitive properties and to also reduce many cocaine-induced behaviors suggests that it is a promising lead for the development of a medication to treat cocaine abuse.
Collapse
Affiliation(s)
- Rae R. Matsumoto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center and Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University,Corresponding author: Rae R. Matsumoto, Ph.D., West Virginia University, Department of Basic Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV 26506. Tel.: +1 304 293 1450; fax: +1 304 293 2576.
| | - Su-Min Li
- Psychobiology Section, National Institute on Drug Abuse
| | | | - William E. Fantegrossi
- Department of Pharmacology, University of Michigan Medical School and Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences
| | - Andrew Coop
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland
| |
Collapse
|
31
|
Hiranita T, Soto PL, Kohut SJ, Kopajtic T, Cao J, Newman AH, Tanda G, Katz JL. Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors. J Pharmacol Exp Ther 2011; 339:662-77. [PMID: 21859929 DOI: 10.1124/jpet.111.185025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of cocaine, neither rimcazole analogs nor typical σR antagonists (NE-100 and AC927) maintained responding above control levels across a wide range of doses. These findings suggest that the unique effects of rimcazole analogs are due to dual actions at the DAT and σRs and that a combined target approach may have utility in development of medical treatments for cocaine abuse.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Medications Discovery Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F. Fluorescent derivatives of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells. J Med Chem 2011; 54:5858-67. [PMID: 21744858 DOI: 10.1021/jm200591t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function. NBD-bearing compound 16 displayed high σ(2) affinity (K(i) = 10.8 nM) and optimal fluorescent properties. Its uptake in pancreatic tumor cells was evaluated by flow cytometry, showing that it partially occurs through endocytosis. In proliferating cells, the uptake was higher supporting that σ(2) receptors are markers of cell proliferation and that the higher the proliferation is, the stronger the antiproliferative effect of σ(2) agonists is. Colocalization of 16 with subcellular organelles was studied by confocal microscopy: the greatest was in endoplasmic reticulum and lysosomes. Fluorescent σ(2) ligands show their potential in clarifying the mechanisms of action of σ(2) receptors.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2011; 2:380. [PMID: 21730960 PMCID: PMC3624020 DOI: 10.1038/ncomms1386] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/09/2011] [Indexed: 01/11/2023] Open
Abstract
The sigma-2 receptor, whose gene remains to be cloned, has been validated as a biomarker for tumor cell proliferation. Here we report the use of a novel photoaffinity probe, WC-21, to identify the sigma-2 receptor binding site. WC-21, a sigma-2 ligand containing both a photoactive moiety azide and a fluorescein isothiocyanate group, irreversibly labels sigma-2 receptors in rat liver; the membrane-bound protein was then identified as PGRMC1 (progesterone receptor membrane component-1). Immunocytochemistry reveals that both PGRMC1 and SW120, a fluorescent sigma-2 receptor ligand, colocalizes with molecular markers of the endoplasmic reticulum and mitochondria in HeLa cells. Overexpression and knockdown of the PGRMC1 protein results in an increase and a decrease in binding of a sigma-2 selective radioligand, respectively. The identification of the putative sigma-2 receptor binding site as PGRMC1 should stimulate the development of unique imaging agents and cancer therapeutics that target the sigma-2 receptor/PGRMC1 complex.
Collapse
|
34
|
Sigma (σ) receptor ligand, AC927 (N-phenethylpiperidine oxalate), attenuates methamphetamine-induced hyperthermia and serotonin damage in mice. Pharmacol Biochem Behav 2010; 98:12-20. [PMID: 21130800 DOI: 10.1016/j.pbb.2010.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/30/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
Abstract
Methamphetamine interacts with sigma (σ) receptors and AC927, a selective σ receptor ligand, protects against methamphetamine-induced dopaminergic neurotoxicity. In the present study, the effects of AC927 on methamphetamine-induced hyperthermia and striatal serotonergic neurotoxicity were evaluated. Male, Swiss Webster mice were injected (i.p.) every 2 h, for a total of four times, with one of the following treatments: Saline+Saline; Saline+Methamphetamine (5 mg/kg); AC927 (5, 10, 20 mg/kg)+Methamphetamine (5 mg/kg); or AC927 (5, 10, 20 mg/kg)+Saline. Pretreatment with AC927 (10 mg/kg) significantly attenuated methamphetamine-induced striatal serotonin depletions, striatal serotonin transporter reductions, and hyperthermia. At the doses tested, AC927 itself had no significant effects on serotonin levels, serotonin transporter expression, or body temperature. To evaluate the effects of higher ambient temperature on methamphetamine-induced neurotoxicity, groups of mice were treated at 37 °C. Overall, there was an inverse correlation between the body temperature of the animals and striatal serotonin levels. Together, the data suggest that AC927 (10 mg/kg) protects against methamphetamine-induced neurotoxicity. The reduction of methamphetamine-induced hyperthermia by AC927 may contribute to the observed neuroprotection in vivo.
Collapse
|
35
|
Hornick JR, Xu J, Vangveravong S, Tu Z, Mitchem JB, Spitzer D, Goedegebuure P, Mach RH, Hawkins WG. The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer 2010; 9:298. [PMID: 21092190 PMCID: PMC3106998 DOI: 10.1186/1476-4598-9-298] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/22/2010] [Indexed: 11/25/2022] Open
Abstract
Background Sigma-2 receptors are over-expressed in proliferating cancer cells, making an attractive target for the targeted treatment of pancreatic cancer. In this study, we investigated the role of the novel sigma-2 receptor ligand SW43 to induce apoptosis and augment standard chemotherapy. Results The binding affinity for sigma-2 ligands is high in pancreas cancer, and they induce apoptosis with a rank order of SV119 < SW43 < SRM in vitro. Combining these compounds with gemcitabine further increased apoptosis and decreased viability. Our in vivo model showed that sigma-2 ligand treatment decreased tumor volume to the same extent as gemcitabine. However, SW43 combination treatment with gemcitabine was superior to the other compounds and resulted in stabilization of tumor volume during treatment, with minimal toxicities. Conclusions This study shows that the sigma-2 ligand SW43 has the greatest capacity to augment gemcitabine in a pre-clinical model of pancreas cancer and has provided us with the rationale to move this compound forward with clinical investigations for patients with pancreatic cancer.
Collapse
Affiliation(s)
- John R Hornick
- Department of Surgery, Washington University School of Medicine, S, Euclid Avenue, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hayashi T, Fujimoto M. Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 2010; 77:517-28. [PMID: 20053954 PMCID: PMC2845942 DOI: 10.1124/mol.109.062539] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
Sigma-1 receptors (Sig-1Rs) that bind diverse synthetic and endogenous compounds have been implicated in the pathophysiology of several human diseases such as drug addiction, depression, neurodegenerative disorders, pain-related disorders, and cancer. Sig-1Rs were identified recently as novel ligand-operated molecular chaperones. Although Sig-1Rs are predominantly expressed at endoplasmic reticulum (ER) subdomains apposing mitochondria [i.e., the mitochondria-associated ER membrane (MAM)], they dynamically change the cellular distribution, thus regulating both MAM-specific and plasma membrane proteins. However, what determines the location of Sig-1R at the MAM and how the receptor translocation is initiated is unknown. Here we report that the detergent-resistant membranes (DRMs) play an important role in anchoring Sig-1Rs to the MAM. The MAM, which is highly capable of accumulating ceramides, is enriched with both cholesterol and simple sphingolipids, thus forming Triton X-114-resistant DRMs. Sig-1Rs associate with MAM-derived DRMs but not with those from microsomes. A lipid overlay assay found that solubilized Sig-1Rs preferentially associate with simple sphingolipids such as ceramides. Disrupting DRMs by lowering cholesterol or inhibiting de novo synthesis of ceramides at the ER largely decreases Sig-1R at DRMs and causes translocation of Sig-1R from the MAM to ER cisternae. These findings suggest that the MAM, bearing cholesterol and ceramide-enriched microdomains at the ER, may use the microdomains to anchor Sig-1Rs to the location; thus, it serves to stage Sig-1R at ER-mitochondria junctions.
Collapse
Affiliation(s)
- Teruo Hayashi
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | |
Collapse
|
37
|
Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC, Pasternak GW. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 2010; 77:695-703. [PMID: 20089882 PMCID: PMC2845939 DOI: 10.1124/mol.109.057083] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 12/28/2009] [Indexed: 11/22/2022] Open
Abstract
sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Felix J Kim
- Laboratory of Molecular Neuropharmacology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mach RH, Wheeler KT. Development of molecular probes for imaging sigma-2 receptors in vitro and in vivo. Cent Nerv Syst Agents Med Chem 2010; 9:230-45. [PMID: 20021357 DOI: 10.2174/1871524910909030230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sigma-2 (sigma(2)) receptor is proving to be an important protein in the field of cancer biology. The observations that sigma(2) receptors have a 10-fold higher density in proliferating tumor cells than in quiescent tumor cells, and that sigma(2) receptor agonists are capable of killing tumor cells via apoptotic and non-apoptotic mechanisms, indicate that this receptor is an important molecular target for the development of radiotracers for imaging tumors using techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) and for the development of cancer chemotherapeutic agents. In spite of recent promising results towards achieving these goals, research in this field has been hampered by the fact that the molecular identity of the protein sequence of the sigma(2) receptor is currently not known. Consequently, most of what is known about this protein has been obtained using either radiolabeled or fluorescent probes for this receptor, or biochemical analysis of the effect of sigma(2) selective ligands on cells growing under tissue culture conditions. This article provides a review of the development and use of sigma(2) receptor ligands, and how these ligands have been used with a variety of in vitro and in vivo models to gain a greater understanding of the role this receptor plays in cancer.
Collapse
Affiliation(s)
- Robert Henry Mach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
39
|
Xu YT, Kaushal N, Shaikh J, Wilson LL, Mésangeau C, McCurdy CR, Matsumoto RR. A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice. J Pharmacol Exp Ther 2010; 333:491-500. [PMID: 20100904 DOI: 10.1124/jpet.109.161398] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cocaine is a highly abused drug without effective pharmacotherapies to treat it. It interacts with sigma (sigma) receptors, providing logical targets for the development of medications to counteract its actions. Cocaine causes toxic and stimulant effects that can be categorized as acute effects such as convulsions and locomotor hyperactivity and subchronic effects including sensitization and place conditioning. In the present study, 3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione (CM156), a novel compound, was developed and tested for interactions with sigma receptors using radioligand binding studies. It was also evaluated against cocaine-induced effects in behavioral studies. The results showed that CM156 has nanomolar affinities for each of the sigma receptor subtypes in the brain and much weaker affinities for non-sigma binding sites. Pretreatment of male Swiss-Webster mice with CM156, before administering either a convulsive or locomotor stimulant dose of cocaine, led to a significant attenuation of these acute effects. CM156 also significantly reduced the expression of behavioral sensitization and place conditioning evoked by subchronic exposure to cocaine. The protective effects of CM156 are consistent with sigma receptor-mediated actions. Together with previously reported findings, the data from CM156 and related sigma compounds indicate that sigma receptors can be targeted to alleviate deleterious actions of cocaine.
Collapse
Affiliation(s)
- Yan-Tong Xu
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51:381-98. [PMID: 20213551 PMCID: PMC3155710 DOI: 10.1007/978-90-481-8622-8_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against beta-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
41
|
Roperto S, Colabufo NA, Inglese C, Urraro C, Brun R, Mezza E, Staibano S, Raso C, Maiolino P, Russo V, Palma E, Roperto F. Sigma-2 receptor expression in bovine papillomavirus-associated urinary bladder tumours. J Comp Pathol 2009; 142:19-26. [PMID: 19631333 DOI: 10.1016/j.jcpa.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 05/19/2009] [Accepted: 06/04/2009] [Indexed: 01/07/2023]
Abstract
The expression of sigma-2 receptors was investigated in nine urothelial tumours of the urinary bladder of cattle. Each tumour was associated with the presence of DNA of bovine papillomavirus type-2 (BPV-2) and expression of the E5 viral oncoprotein. Five tumours were classified as low-grade carcinoma on the basis of morphological criteria and calculation of mean nuclear area (MNA) and mean nuclear perimeter (MNP). Four tumours were classified as high-grade carcinoma. Sigma-2 receptors were overexpressed in both types of carcinoma. In control normal bovine bladder tissue the density of receptors (expressed as the B(max)) was 0.37 pmol/mg of protein. Low-grade carcinomas had a mean B(max) of 1.37+/-0.32 pmol/mg of protein (range 1.03-1.86) and in high-grade carcinomas the mean B(max) was 10.9+/-2.8 pmol/mg of protein (range 8.2-14). The difference in B(max) between low- and high-grade carcinomas was statistically significant (P=0.0001).
Collapse
Affiliation(s)
- S Roperto
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, Naples University Federico II, 80137 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ramachandran S, Chu UB, Mavlyutov TA, Pal A, Pyne S, Ruoho AE. The sigma1 receptor interacts with N-alkyl amines and endogenous sphingolipids. Eur J Pharmacol 2009; 609:19-26. [PMID: 19285059 DOI: 10.1016/j.ejphar.2009.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/13/2009] [Accepted: 03/01/2009] [Indexed: 12/18/2022]
Abstract
The sigma1 receptor is distinguished for its ability to bind various pharmacological agents including drugs of abuse such as cocaine and methamphetamine. Some endogenous ligands have been identified as putative sigma1 receptor regulators. High affinity ligands for the sigma1 receptor contain a nitrogen atom connected to long alkyl chains. We found that long alkyl chain primary amines including endogenous amines belonging to the sphingolipid family such as D-erythro-sphingosine and sphinganine bind with considerable affinity to the sigma1 receptor but not to the sigma2 receptor. The binding of D-erythro-sphingosine to the sigma1 receptor appears to be competitive in nature as assessed against the radioligand [3H]-(+)-pentazocine. Interestingly, the well studied sphingolipid mediator sphingosine-1 phosphate did not bind to the sigma1 or the sigma2 receptor. Sphingosine is converted to sphingosine-1 phosphate by a family of sphingosine kinases that regulate the relative levels of these two bioactive lipids in the cell. The selective binding of sphingosine but not sphingosine-1 phosphate to the sigma1 receptor suggests a mechanism for regulation of sigma1 receptor activity by the sphingosine kinase. We have successfully reconstituted this hypothetical model in HEK-293 cells overexpressing both the sigma1 receptor and sphingosine kinase-1. The data presented here strongly supports sphingosine as an endogenous modulator of the sigma1 receptor.
Collapse
Affiliation(s)
- Subramaniam Ramachandran
- Department of Pharmacology, University Wisconsin-Madison, School of Medicine and Public Health, 1300 University Ave., Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Matsumoto RR, Shaikh J, Wilson LL, Vedam S, Coop A. Attenuation of methamphetamine-induced effects through the antagonism of sigma (sigma) receptors: Evidence from in vivo and in vitro studies. Eur Neuropsychopharmacol 2008; 18:871-81. [PMID: 18755577 PMCID: PMC2688716 DOI: 10.1016/j.euroneuro.2008.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/21/2008] [Accepted: 07/12/2008] [Indexed: 11/16/2022]
Abstract
Methamphetamine (METH) and many other abused substances interact with sigma receptors. sigma receptors are found on dopaminergic neurons and can modulate dopaminergic neurotransmission. Antisense knock down of sigma receptors also mitigates METH-induced stimulant effects, suggesting that these proteins are viable medication development targets for treating psychostimulant abuse. In the present study, AC927, a sigma receptor antagonist, was evaluated for its ability to attenuate METH-induced effects in vivo and in vitro. Radioligand binding studies showed that AC927 had preferential affinity for sigma receptors compared to 29 other receptors, transporters and ion channels. Pretreatment of male, Swiss Webster mice with AC927 significantly attenuated METH-induced locomotor stimulation, striatal dopamine depletions, striatal dopamine transporter reductions, and hyperthermia. When the neurotoxicity of METH was further examined in vitro under temperature-controlled conditions, co-incubation with AC927 mitigated METH-induced cytotoxicity. Together, the results demonstrate that AC927 protects against METH-induced effects, and suggests a new strategy for treating psychostimulant abuse.
Collapse
Affiliation(s)
- Rae R Matsumoto
- Department of Pharmacology, University of Mississippi, University, MS 38677, USA.
| | | | | | | | | |
Collapse
|
44
|
Parry MJ, Alakoskela JMI, Khandelia H, Kumar SA, Jäättelä M, Mahalka AK, Kinnunen PKJ. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidic acid. J Am Chem Soc 2008; 130:12953-60. [PMID: 18767848 DOI: 10.1021/ja800516w] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Siramesine (SRM) is a sigma-2 receptor agonist which has been recently shown to inhibit growth of cancer cells. Fluorescence spectroscopy experiments revealed two distinct binding sites for this drug in phospholipid membranes. More specifically, acidic phospholipids retain siramesine on the bilayer surface due to a high-affinity interaction, reaching saturation at an apparent 1:1 drug-acidic phospholipid stoichiometry, where after the drug penetrates into the hydrocarbon core of the membrane. This behavior was confirmed using Langmuir films. Of the anionic phospholipids, the highest affinity, comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of X(PA) = 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 +/- 80 x 10(6). An MD simulation on the siramesine:PA interaction was in agreement with the above data. Taking into account the key role of PA as a signaling molecule promoting cell growth our results suggest a new paradigm for the development of anticancer drugs, viz. design of small molecules specifically scavenging phospholipids involved in the signaling cascades controlling cell behavior.
Collapse
Affiliation(s)
- Mikko J Parry
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
45
|
Hanagama M, Inoue H, Kamiya M, Shinone K, Nata M. Gene expression on liver toxicity induced by administration of haloperidol in rats with severe fatty liver. Leg Med (Tokyo) 2008; 10:177-84. [PMID: 18280196 DOI: 10.1016/j.legalmed.2007.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/14/2007] [Accepted: 12/26/2007] [Indexed: 01/23/2023]
Abstract
Sudden deaths are often encountered in schizophrenic patients prescribed with antipsychotic drugs, and fatty liver may be more prevalent among patients with schizophrenia. The aim of this study is to investigate the adverse effects of antipsychotic drugs on fatty liver. We administered haloperidol intraperitoneally to fatty liver rats and examined the mRNA expression in the liver. Basic expressions of cytochrome P450 (CYP)1A2, CYP2C11 and CYP3A2 decreased, and response of these CYPs to haloperidol was reduced in the fatty liver. Metabolism of haloperidol was also suppressed in the fatty liver rats. Moreover, hepatic injury by administration of haloperidol was shown pathohistologically and molecular-biologically in severe fatty liver. These results suggest that fatty liver increases susceptibility to adverse effects of haloperidol, possibly leading to life-threatening events. It should be noted by clinicians that excessive dose of antipsychotic drugs may be more harmful in patients with fatty liver.
Collapse
Affiliation(s)
- Masakazu Hanagama
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan
| | | | | | | | | |
Collapse
|
46
|
Sandro S, Alessandro P. Membrane lipid domains and membrane lipid domain preparations: are they the same thing? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Palmer CP, Mahen R, Schnell E, Djamgoz MBA, Aydar E. Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 2007; 67:11166-75. [PMID: 18056441 DOI: 10.1158/0008-5472.can-07-1771] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid rafts are membrane platforms that spatially organize molecules for specific signaling pathways that regulate various cellular functions. Cholesterol is critical for liquid-ordered raft formation by serving as a spacer between the hydrocarbon chains of sphingolipids, and alterations in the cholesterol contents of the plasma membrane causes disruption of rafts. The role that sigma receptors play in cancer is not clear, although it is frequently up-regulated in human cancer cells and tissues and sigma receptors inhibit proliferation in carcinoma and melanoma cell lines, induce apoptosis in colon and mammary carcinoma cell lines, and reduce cellular adhesion in mammary carcinoma cell lines. In this study, we provide molecular and functional evidence for the involvement of the enigmatic sigma 1 receptors in lipid raft modeling by sigma 1 receptor-mediated cholesterol alteration of lipid rafts in breast cancer cell lines. Cholesterol binds to cholesterol recognition domains in the COOH terminus of the sigma 1 receptor. This binding is blocked by sigma receptor drugs because the cholesterol-binding domains form part of the sigma receptor drug-binding site, mutations of which abolish cholesterol binding. Furthermore, we outline a hypothetical functional model to explain the myriad of biological processes, including cancer, in which these mysterious receptors are involved. The findings of this study provide a biological basis for the potential therapeutic applications of lipid raft cholesterol regulation in cancer therapy using sigma receptor drugs.
Collapse
Affiliation(s)
- Christopher P Palmer
- Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College, London, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Wang J, Mack AL, Coop A, Matsumoto RR. Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur Neuropsychopharmacol 2007; 17:708-16. [PMID: 17376658 PMCID: PMC4041597 DOI: 10.1016/j.euroneuro.2007.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 01/12/2007] [Accepted: 02/06/2007] [Indexed: 01/25/2023]
Abstract
Many antidepressant drugs interact with sigma receptors and accumulating evidence suggests that these proteins mediate antidepressant-like effects in animals and humans. sigma Receptors are localized in brain regions affected in depression, further strengthening the hypothesis that they represent logical drug development targets. In this study, two novel sigma receptor agonists (UMB23, UMB82) were evaluated for antidepressant-like activity in mice. First, radioligand binding studies confirmed that the novel compounds had preferential affinity for sigma receptors. Second, the forced swim test, a well established animal model for screening potential antidepressant drugs, showed that both compounds dose-dependently reduced immobility time. The sigma receptor antagonist BD1047 attenuated the antidepressant-like effects of UMB23 and UMB82. Third, locomotor activity suggested that the effects of UMB23 and UMB82 in the forced swim test were not due to non-specific motor activating effects. Together, the data provide further evidence that sigma receptor agonists represent a possible new class of antidepressant medication.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pharmacology, University of Mississippi, University, MS 38677 USA
| | - Aisha L. Mack
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190 USA
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 USA
| | - Rae R. Matsumoto
- Department of Pharmacology, University of Mississippi, University, MS 38677 USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190 USA
- Corresponding author: Rae R. Matsumoto, Ph.D., Department of Pharmacology, School of Pharmacy, University of Mississippi, 303 Faser Hall, University, MS 38677. Telephone: +1-662-915-1466; Fax: +1-662-915-5148;
| |
Collapse
|
49
|
Zeng C, Vangveravong S, Xu J, Chang KC, Hotchkiss RS, Wheeler KT, Shen D, Zhuang ZP, Kung HF, Mach RH. Subcellular localization of sigma-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res 2007; 67:6708-16. [PMID: 17638881 DOI: 10.1158/0008-5472.can-06-3803] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sigma-2 receptor agonists have been shown to induce cell death via caspase-dependent and caspase-independent pathways. Unfortunately, there is little information regarding the molecular function of sigma-2 receptors that can explain these results. In this study, two fluorescent probes, SW107 and K05-138, were used to study the subcellular localization of sigma-2 receptors by two-photon and confocal microscopy. The results indicate that sigma-2 receptors colocalize with fluorescent markers of mitochondria, lysosomes, endoplasmic reticulum, and the plasma membrane in both EMT-6 mouse and MDA-MB-435 human breast cancer cells. The fluorescent probe, K05-138, was internalized rapidly, reaching a plateau of fluorescent intensity at 5 min. The internalization of K05-138 was reduced approximately 40% by phenylarsine oxide, an inhibitor of endocytosis. These data suggest that sigma-2 ligands are internalized, in part, by an endocytotic pathway. The localization of sigma-2 receptors in several organelles known to have a role in both caspase-dependent and caspase-independent pathways of cell death supports the conclusions of previous studies suggesting that sigma-2 receptor ligands should be evaluated as potential cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Chenbo Zeng
- Department of Radiology, Division of Radiological Sciences, Washington University School of Medicine, 510 S. Kingshighway Boulevard, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Egashira N, Harada S, Okuno R, Matsushita M, Nishimura R, Mishima K, Iwasaki K, Orito K, Fujiwara M. Involvement of the sigma1 receptor in inhibiting activity of fluvoxamine on marble-burying behavior: comparison with paroxetine. Eur J Pharmacol 2007; 563:149-54. [PMID: 17349995 DOI: 10.1016/j.ejphar.2007.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 11/26/2022]
Abstract
In the present study, we examined the involvement of the sigma1 receptor in the inhibitory effect of the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, compared with that of paroxetine, on marble-burying behavior, which is an animal model of obsessive-compulsive disorder. Sigma1 receptor agonists (+)-SKF 10047 and PRE-084 significantly inhibited marble-burying behavior. Sigma receptor antagonist BD 1047 and selective sigma1 receptor antagonist BD 1063 significantly attenuated the inhibition of marble-burying behavior by fluvoxamine. In contrast, selective sigma2 receptor antagonist SM-21 failed to affect the inhibition of marble-burying behavior by fluvoxamine. On the other hand, BD 1047 and BD 1063 had no effect on the inhibition of marble-burying behavior by paroxetine. These observations show that activation of the sigma1 receptor is a necessary component in the inhibitory effect of fluvoxamine on marble-burying behavior, and that the mechanism of its action is clearly different from that of paroxetine.
Collapse
Affiliation(s)
- Nobuaki Egashira
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka and Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|