1
|
Cristina Bianchi P, Palombo P, Antonagi Engi S, Eduardo Carneiro de Oliveira P, Emily Boaventura Tavares G, Anjos-Santos A, Suemi Yokoyama T, da Silva Planeta C, Cardoso Cruz F, Molini Leão R. Involvement of Pre-limbic Cortex-Nucleus accumbens projections in Context-Induced alcohol seeking. Brain Res 2024; 1841:149086. [PMID: 38876319 DOI: 10.1016/j.brainres.2024.149086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Alcohol use disorder (AUD) remains a critical public health issue worldwide, characterized by high relapse rates often triggered by contextual cues. This research investigates the neural mechanisms behind context-induced reinstatement of alcohol-seeking behavior, focusing on the nucleus accumbens and its interactions with the prelimbic cortex, employing Male Long-Evans rats in an ABA renewal model. In our experimental setup, rats were trained to self-administer 10 % ethanol in Context A, followed by extinction of lever pressing in the presence of discrete cues in Context B. The context-induced reinstatement of ethanol-seeking was then assessed by re-exposing rats to Context A or B under extinction conditions, aiming to simulate the environmental cues' influence on relapse behaviors. Three experiments were conducted: Experiment 1 utilized Fos-immunohistochemistry to examine neuronal activation in the nucleus accumbens; Experiment 2 applied the baclofen + muscimol inactivation technique to probe the functional importance of the nucleus accumbens core; Experiment 3 used Fos-immunofluorescence along with Retrobeads injection to investigate activation of neurons projecting from the prelimbic cortex to the nucleus accumbens core. Our findings revealed significant increases in Fos-immunoreactive nuclei within the nucleus accumbens core and shell during the reinstatement phase in Context A, underscoring the environment's potent effect on ethanol-seeking behavior. Additionally, inactivation of the nucleus accumbens core markedly reduced reinstatement, and there was a notable activation of neurons from the prelimbic cortex to the nucleus accumbens core in the ethanol-associated context. These results highlight the critical role of the nucleus accumbens core and its corticostriatal projections in the neural circuitry underlying context-driven ethanol seeking.
Collapse
Affiliation(s)
- Paula Cristina Bianchi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Paola Palombo
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Sheila Antonagi Engi
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | | | | | - Alexia Anjos-Santos
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Thais Suemi Yokoyama
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Cleopatra da Silva Planeta
- Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Fabio Cardoso Cruz
- Laboratory of Behavioral Neuroscience, Paulista Medicine School, Universidade Federal de São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Graduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia/MG, Brazil.
| |
Collapse
|
2
|
Towers EB, Williams IL, Qillawala EI, Rissman EF, Lynch WJ. Sex/Gender Differences in the Time-Course for the Development of Substance Use Disorder: A Focus on the Telescoping Effect. Pharmacol Rev 2023; 75:217-249. [PMID: 36781217 PMCID: PMC9969523 DOI: 10.1124/pharmrev.121.000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Sex/gender effects have been demonstrated for multiple aspects of addiction, with one of the most commonly cited examples being the "telescoping effect" where women meet criteria and/or seek treatment of substance use disorder (SUD) after fewer years of drug use as compared with men. This phenomenon has been reported for multiple drug classes including opioids, psychostimulants, alcohol, and cannabis, as well as nonpharmacological addictions, such as gambling. However, there are some inconsistent reports that show either no difference between men and women or opposite effects and a faster course to addiction in men than women. Thus, the goals of this review are to evaluate evidence for and against the telescoping effect in women and to determine the conditions/populations for which the telescoping effect is most relevant. We also discuss evidence from preclinical studies, which strongly support the validity of the telescoping effect and show that female animals develop addiction-like features (e.g., compulsive drug use, an enhanced motivation for the drug, and enhanced drug-craving/vulnerability to relapse) more readily than male animals. We also discuss biologic factors that may contribute to the telescoping effect, such as ovarian hormones, and its neurobiological basis focusing on the mesolimbic dopamine reward pathway and the corticomesolimbic glutamatergic pathway considering the critical roles these pathways play in the rewarding/reinforcing effects of addictive drugs and SUD. We conclude with future research directions, including intervention strategies to prevent the development of SUD in women. SIGNIFICANCE STATEMENT: One of the most widely cited gender/sex differences in substance use disorder (SUD) is the "telescoping effect," which reflects an accelerated course in women versus men for the development and/or seeking treatment for SUD. This review evaluates evidence for and against a telescoping effect drawing upon data from both clinical and preclinical studies. We also discuss the contribution of biological factors and underlying neurobiological mechanisms and highlight potential targets to prevent the development of SUD in women.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Ivy L Williams
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emaan I Qillawala
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emilie F Rissman
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| |
Collapse
|
3
|
Amirteymori H, Karimi-Haghighi S, Mirmohammadi M, Majidinezhad M, Khosrowabadi E, Haghparast A. Hypocretin/orexin system in the nucleus accumbens as a promising player in the extinction and reinstatement of methamphetamine-induced CPP. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110616. [PMID: 35988849 DOI: 10.1016/j.pnpbp.2022.110616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
One of the main obstacles in treating psychostimulant addiction is relapse even after long-term abstinence. The nucleus accumbens (NAc) is located in the basal forebrain, responsible for regulating several behaviors, specifically reward-related effect of psychostimulants. In the current study, an unbiased place conditioning paradigm was performed to inquire the role of the hypocretin/orexin system in the NAc in the extinction and reinstatement of methamphetamine (Meth)-induced conditioned place preference (CPP). Similar to previous investigations, rats were conditioned with Meth (1 mg/kg; sc) for five consecutive days to elicit CPP. The rats underwent Meth conditioning protocol received SB334867 or TCS OX2 29, an orexin receptor 1 (OXr1) antagonist or orexin receptor 2 (OXr2) antagonist (0, 3, 10, and 30 nmol/0.5 μL DMSO %12) in the NAc during the extinction period to elucidate the role of OXrs on the extinction of Meth-induced CPP. Meanwhile, extinguished rats received SB334867 or TCS OX2 29 (0, 1, 3, 10, and 30 nmol/0.5 μL DMSO %12) in the NAc prior to an effective priming dose of Meth to evaluate the impact of OXr antagonists on the reinstatement of Meth-induced CPP. The current data pointed out intra-NAc microinjection of SB334867 or TCS OX2 29 blocked both extinction and reinstatement of Meth-induced CPP. In addition, the OXr1 antagonist was more potent than the OXr2 antagonist to suppress both extinction and reinstatement phases of Meth-induced CPP. Based on the current data, the OX system in the NAc is extensively implicated in the reward properties of Meth; therefore, modulation of this system has therapeutic potential in treating psychostimulant use disorders.
Collapse
Affiliation(s)
- Haleh Amirteymori
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Mirmohammadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Majidinezhad
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Khosrowabadi
- Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Biochemical Neuroadaptations in the Rat Striatal Dopaminergic System after Prolonged Exposure to Methamphetamine Self-Administration. Int J Mol Sci 2022; 23:ijms231710092. [PMID: 36077488 PMCID: PMC9456063 DOI: 10.3390/ijms231710092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Perturbations in striatal dopamine (DA) homeostasis might underlie the behavioral and pathobiological consequences of METH use disorder in humans. To identify potential consequences of long-term METH exposure, we modeled the adverse consequence DSM criterion of substance use disorders by giving footshocks to rats that had escalated their intake of METH during a drug self-administration procedure. Next, DA D1 receptor antagonist, SCH23390 was injected. Thereafter, rats were euthanized to measure several indices of the striatal dopaminergic system. Footshocks split the METH rats into two phenotypes: (i) shock-sensitive that decreased their METH-intake and (ii) shock-resistant that continued their METH intake. SCH23390 caused substantial dose-dependent reduction of METH taking in both groups. Stopping SCH23390 caused re-emergence of compulsive METH taking in shock-resistant rats. Compulsive METH takers also exhibited greater incubation of METH seeking than non-compulsive rats during withdrawal from METH SA. Analyses of DA metabolism revealed non-significant decreases (about 35%) in DA levels in resistant and sensitive rats. However, striatal contents of the deaminated metabolites, DOPAL and DOPAC, were significantly increased in sensitive rats. VMAT2 and DAT protein levels were decreased in both phenotypes. Moreover, protein expression levels of the D1-like DA receptor, D5R, and D2-like DA receptors, D3R and D4R, were significantly decreased in the compulsive METH takers. Our results parallel findings in post-mortem striatal tissues of human METH users who develop Parkinsonism after long-term METH intake and support the use of this model to investigate potential therapeutic interventions for METH use disorder.
Collapse
|
5
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
6
|
Nicolas C, Zlebnik NE, Farokhnia M, Leggio L, Ikemoto S, Shaham Y. Sex Differences in Opioid and Psychostimulant Craving and Relapse: A Critical Review. Pharmacol Rev 2022; 74:119-140. [PMID: 34987089 PMCID: PMC11060335 DOI: 10.1124/pharmrev.121.000367] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/15/2021] [Indexed: 01/11/2023] Open
Abstract
A widely held dogma in the preclinical addiction field is that females are more vulnerable than males to drug craving and relapse. Here, we first review clinical studies on sex differences in psychostimulant and opioid craving and relapse. Next, we review preclinical studies on sex differences in psychostimulant and opioid reinstatement of drug seeking after extinction of drug self-administration, and incubation of drug craving (time-dependent increase in drug seeking during abstinence). We also discuss ovarian hormones' role in relapse and craving in humans and animal models and speculate on brain mechanisms underlying their role in cocaine craving and relapse in rodent models. Finally, we discuss imaging studies on brain responses to cocaine cues and stress in men and women.The results of the clinical studies reviewed do not appear to support the notion that women are more vulnerable to psychostimulant and opioid craving and relapse. However, this conclusion is tentative because most of the studies reviewed were correlational, not sufficiently powered, and not a priori designed to detect sex differences. Additionally, imaging studies suggest sex differences in brain responses to cocaine cues and stress. The results of the preclinical studies reviewed provide evidence for sex differences in stress-induced reinstatement and incubation of cocaine craving but not cue- or cocaine-induced reinstatement of cocaine seeking. These sex differences are modulated in part by ovarian hormones. In contrast, the available data do not support the notion of sex differences in craving and relapse/reinstatement for methamphetamine or opioids in rodent models. SIGNIFICANCE STATEMENT: This systematic review summarizes clinical and preclinical studies on sex differences in psychostimulant and opioid craving and relapse. Results of the clinical studies reviewed do not appear to support the notion that women are more vulnerable to psychostimulant and opioid craving and relapse. Results of preclinical studies reviewed provide evidence for sex differences in reinstatement and incubation of cocaine seeking but not for reinstatement or incubation of methamphetamine or opioid seeking.
Collapse
Affiliation(s)
- Céline Nicolas
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| | - Natalie E Zlebnik
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| | - Mehdi Farokhnia
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| | - Lorenzo Leggio
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| | - Satoshi Ikemoto
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| | - Yavin Shaham
- Neurocentre Magendie, University of Bordeaux, Bordeaux, France (C.N.); Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, Present address: Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA (N.E.Z.); Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD (M.F., L.L., S.I., Y.S.); and Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD (M.F., L.L.)
| |
Collapse
|
7
|
Zhu C, Tao H, Rong S, Xiao L, Li X, Jiang S, Guo B, Wang L, Ding J, Gao C, Chang H, Sun T, Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice. Front Pharmacol 2021; 12:694476. [PMID: 34349653 PMCID: PMC8327264 DOI: 10.3389/fphar.2021.694476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Exendin-4 (Ex4), a long-lasting glucagon-like peptide-1 analog, was reported to exert favourable actions on inhibiting cocaine-associated rewarding and reinforcing effects of drug in animal models of addiction. However, the therapeutic potential of different dose of GLP-1 receptor agonist Ex4 in different behavioral paradigms and the underlying pharmacological mechanisms of action are incompletely understood. Herein, we firstly investigated the effects of Ex4 on cocaine-induced condition place preference (CPP) as well as extinction and reinstatement in male C57BL/6J mice. Additionally, we sought to elucidate the underlying pharmacological mechanism of these actions of Ex4. The paradigm of cocaine-induced CPP was established using 20 mg/kg cocaine or saline alternately during conditioning, while the reinstatement paradigm was modeled using 10 mg/kg cocaine on the reinstatement day. Different dose of Ex4 was administrated intraperitoneally either during conditioning or during extinction state or only on the test day. To elucidate the molecular mechanism underlying the potential effects of Ex4 on maladaptive behaviors of cocaine, the TLR4-related inflammation within the hippocampus was observed by immunofluorescence staining, and the expression levels of toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were detected by Western blotting. As a consequence, systemic administration of different dose of Ex4 was sufficient to inhibit the acquisition and expression of cocaine-induced CPP, facilitate the extinction of cocaine-associated reward and attenuate reinstatement of cocaine-induced behavior. Furthermore, Ex4 treatment diminished expression levels of TLR4, TNF-α, and IL-1β, which were up-regulated by cocaine exposure. Altogether, our results indicated that Ex4 effectively ameliorated cocaine-induced behaviors likely through neurobiological mechanisms partly attributable to the inhibition of TLR4, TNF-α and IL-1β in mice. Consequently, our findings improved our understanding of the efficacy of Ex4 for the amelioration of cocaine-induced behavior and suggested that Ex4 may be applied as a drug candidate for cocaine addiction.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shikuo Rong
- Department of General Surgery, Chengdu Second Hospital, Chendu, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haigang Chang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebro Cranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Calpe-López C, Gasparyan A, Navarrete F, Manzanares J, Miñarro J, Aguilar MA. Cannabidiol prevents priming- and stress-induced reinstatement of the conditioned place preference induced by cocaine in mice. J Psychopharmacol 2021; 35:864-874. [PMID: 33427014 DOI: 10.1177/0269881120965952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cocaine dependence is an important problem without any effective pharmacological treatment. Some preclinical studies have suggested that cannabidiol (CBD), a component of the Cannabis sativa plant, could be useful for the treatment of cocaine use disorders. AIMS This work aims to evaluate the ability of CBD to reduce priming- and stress-induced reinstatement of the conditioned place preference (CPP) induced by cocaine. METHODS Young adult CD-1 male mice were allocated to 10 groups (n = 12/group), conditioned with cocaine (10 mg/kg) and exposed to extinction of CPP (two sessions per week). When extinction was achieved, each group received the corresponding treatment before the reinstatement test. In experiment 1, six groups were used: vehicle+saline (Veh+Sal), 5 mg/kg cocaine alone (Veh+Coc) or with CBD 30 or 60 mg/kg (CBD30+Coc, CBD60+Coc) and CBD alone (CBD30+Sal, CBD60+Sal). In experiment 2, four groups were used: exploration (Veh+Expl), social defeat (Veh+SD) and social defeat with CBD (CBD30+SD and CBD60+SD). Furthermore, the relative gene expression of the dopamine transporter (DAT) in the ventral tegmental area was measured. RESULTS All mice acquired cocaine CPP and extinguished it after three or four weeks. Only the groups treated with cocaine priming (Veh+Coc) or exposed to social defeat (Veh+SD) showed reinstatement of CPP. Interestingly, CBD itself did not induce reinstatement and blocked the reinstating effects of cocaine priming and social defeat. Furthermore, cocaine priming increased DAT gene expression in the ventral tegmental area and CBD completely reversed this effect. CONCLUSION These results suggest that CBD could reduce reinstatement to cocaine seeking after a period of abstinence.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Unit of Research 'Neurobehavioural mechanisms and endophenotypes of addictive behaviour', Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jose Miñarro
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Maria A Aguilar
- Unit of Research 'Neurobehavioural mechanisms and endophenotypes of addictive behaviour', Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
9
|
Fischer KD, Knackstedt LA, Rosenberg PA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int 2021; 144:104896. [PMID: 33159978 PMCID: PMC8489281 DOI: 10.1016/j.neuint.2020.104896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Cocaine, amphetamine, and methamphetamine abuse disorders are serious worldwide health problems. To date, there are no FDA-approved medications for the treatment of these disorders. Elucidation of the biochemical underpinnings contributing to psychostimulant addiction is critical for the development of effective therapies. Excitatory signaling and glutamate homeostasis are well known pathophysiological substrates underlying addiction-related behaviors spanning multiple types of psychostimulants. To alleviate relapse behavior to psychostimulants, considerable interest has focused on GLT-1, the major glutamate transporter in the brain. While many brain regions are implicated in addiction behavior, this review focuses on two regions well known for their role in mediating the effects of cocaine and amphetamines, namely the nucleus accumbens (NAc) and the ventral tegmental area (VTA). In addition, because many investigators have utilized Cre-driver lines to selectively control gene expression in defined cell populations relevant for psychostimulant addiction, we discuss potential off-target effects of Cre-recombinase that should be considered in the design and interpretation of such experiments.
Collapse
Affiliation(s)
- Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Paul A Rosenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Liu Y, Jean-Richard-Dit-Bressel P, Yau JOY, Willing A, Prasad AA, Power JM, Killcross S, Clifford CWG, McNally GP. The Mesolimbic Dopamine Activity Signatures of Relapse to Alcohol-Seeking. J Neurosci 2020; 40:6409-6427. [PMID: 32669355 PMCID: PMC7424877 DOI: 10.1523/jneurosci.0724-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The mesolimbic dopamine system comprises distinct compartments supporting different functions in learning and motivation. Less well understood is how complex addiction-related behaviors emerge from activity patterns across these compartments. Here we show how different forms of relapse to alcohol-seeking in male rats are assembled from activity across the VTA and the nucleus accumbens. First, we used chemogenetic approaches to show a causal role for VTA TH neurons in two forms of relapse to alcohol-seeking: renewal (context-induced reinstatement) and reacquisition. Then, using gCaMP fiber photometry of VTA TH neurons, we identified medial and lateral VTA TH neuron activity profiles during self-administration, renewal, and reacquisition. Next, we used optogenetic inhibition of VTA TH neurons to show distinct causal roles for VTA subregions in distinct forms of relapse. We then used dLight fiber photometry to measure dopamine binding across the ventral striatum (medial accumbens shell, accumbens core, lateral accumbens shell) and showed complex and heterogeneous profiles of dopamine binding during self-administration and relapse. Finally, we used representational similarity analysis to identify mesolimbic dopamine signatures of self-administration, extinction, and relapse. Our results show that signatures of relapse can be identified from heterogeneous activity profiles across the mesolimbic dopamine system and that these signatures are unique for different forms of relapse.SIGNIFICANCE STATEMENT It is axiomatic that the actions of dopamine are critical to drug addiction. Yet how relapse to drug-seeking is assembled from activity across the mesolimbic dopamine system is poorly understood. Here we show how relapse to alcohol-seeking relates to activity in specific VTA and accumbens compartments, how these change for different forms of relapse, and how relapse-associated activity relates to activity during self-administration and extinction. We report the mesolimbic dopamine activity signatures for relapse and show that these signatures are unique for different forms of relapse.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | | | - Joanna Oi-Yue Yau
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Alexandra Willing
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Asheeta A Prasad
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - John M Power
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Simon Killcross
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Colin W G Clifford
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Yu C, Resendiz-Gutierrez F, Hall FS. Molecular-container Calabadion-2: Can Sweeping the Brain of Drugs Promote Abstinence? Int J Neuropsychopharmacol 2020; 23:406-408. [PMID: 32403121 PMCID: PMC7311643 DOI: 10.1093/ijnp/pyaa037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Chen Yu
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio
| | | | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio,Correspondence: F. Scott Hall, PhD, Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, MS 1015, Toledo, OH 43614 ()
| |
Collapse
|
13
|
Exton-McGuinness MTJ, Drame ML, Flavell CR, Lee JLC. On the Resistance to Relapse to Cocaine-Seeking Following Impairment of Instrumental Cocaine Memory Reconsolidation. Front Behav Neurosci 2019; 13:242. [PMID: 31680897 PMCID: PMC6803497 DOI: 10.3389/fnbeh.2019.00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/26/2019] [Indexed: 12/02/2022] Open
Abstract
Reconsolidation normally functions to update and maintain memories in the long-term. However, this process can be disrupted pharmacologically to weaken memories. Exploiting such experimental amnesia to disrupt the maladaptive reward memories underpinning addiction may provide a novel therapeutic avenue to prevent relapse. Here, we tested whether targeted disruption of the reconsolidation of instrumental (operant) lever pressing for cocaine resulted in protection against different forms of relapse in a rat self-administration model. We first confirmed that systemic injection of the non-competitive N-methyl–D-aspartate receptor (NMDAR) antagonist MK-801 did impair reconsolidation to reduce spontaneous instrumental drug-seeking memory at test. This deficit was not rescued by pharmacological induction of stress with the anxiogenic α2-noradrenergic receptor antagonist yohimbine. In contrast, cocaine-seeking was restored to control levels following priming with cocaine itself, or presentation of a cocaine-associated cue. These results suggest that while stress-induced relapse can be reduced by disruption of instrumental memory reconsolidation, the apparent sparing of the pavlovian cue-drug memory permitted other routes to relapse. Therefore, future reconsolidation-based therapeutic strategies for addictive drug-seeking may need to target both instrumental and pavlovian memories.
Collapse
Affiliation(s)
| | - Mohamed L Drame
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | | | - Jonathan L C Lee
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Relapse to cocaine use persists following extinction of drug-primed craving. Neuropharmacology 2019; 155:185-193. [DOI: 10.1016/j.neuropharm.2019.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 11/17/2022]
|
15
|
Incubation of Cocaine Craving After Intermittent-Access Self-administration: Sex Differences and Estrous Cycle. Biol Psychiatry 2019; 85:915-924. [PMID: 30846301 PMCID: PMC6534474 DOI: 10.1016/j.biopsych.2019.01.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Studies using continuous-access drug self-administration showed that cocaine seeking increases during abstinence (incubation of cocaine craving). Recently, studies using intermittent-access self-administration showed increased motivation to self-administer and seek cocaine. We examined whether intermittent cocaine self-administration would potentiate incubation of craving in male and female rats and examined the estrous cycle's role in this incubation. METHODS In experiment 1, male and female rats self-administered cocaine either continuously (8 hours/day) or intermittently (5 minutes ON, 25 minutes OFF × 16) for 12 days, followed by relapse tests after 2 or 29 days. In experiments 2 and 3, female rats self-administered cocaine intermittently for six, 12, or 18 sessions. In experiment 4, female rats self-administered cocaine continuously followed by relapse tests after 2 or 29 days. In experiments 3 and 4, the estrous cycle was measured using a vaginal smear test. RESULTS Incubation of cocaine craving was observed in both sexes after either intermittent or continuous drug self-administration. Independent of access condition and abstinence day, cocaine seeking was higher in female rats than in male rats. In both sexes, cocaine seeking on both abstinence days was higher after intermittent drug access than after continuous drug access. In female rats, incubation of craving after either intermittent or continuous drug access was significantly higher during estrus than during non-estrus; for intermittent drug access, this effect was independent of the training duration. CONCLUSIONS In both sexes, intermittent cocaine access caused time-independent increases in drug seeking during abstinence. In female rats, the time-dependent increase in drug seeking (incubation) is critically dependent on the estrous cycle phase.
Collapse
|
16
|
Hernandez NS, Schmidt HD. Central GLP-1 receptors: Novel molecular targets for cocaine use disorder. Physiol Behav 2019; 206:93-105. [PMID: 30930091 DOI: 10.1016/j.physbeh.2019.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022]
Abstract
Given that the search for effective pharmacotherapies for cocaine use disorder has, thus far, been fruitless, there remains a critical need for conceptually innovative approaches toward identifying new medications to treat this disease. A better understanding of the neurocircuits and neurobiological mechanisms underlying cocaine taking and seeking may identify molecular substrates that could serve as targets for novel pharmacotherapies to treat cocaine use disorder. Recent preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) receptor agonists could be re-purposed to treat cocaine craving-induced relapse. This review endeavors to comprehensively summarize the current literature investigating the efficacy of GLP-1 receptor agonists in reducing the rewarding and reinforcing effects of cocaine in animal models of cocaine use disorder. The role of central endogenous GLP-1 circuits in voluntary cocaine taking and seeking is also discussed. Behavioral, neurochemical, electrophysiological and molecular biology studies indicate that central GLP-1 receptor activation functionally modulates the mesolimbic reward system and decreases addiction-like phenotypes in rodents. Overall, an emerging preclinical literature provides compelling evidence to advance GLP-1 receptor agonists into clinical trials testing the efficacy of these medications in preventing cocaine craving-induced relapse.
Collapse
Affiliation(s)
- N S Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - H D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
17
|
Hernandez NS, O'Donovan B, Ortinski PI, Schmidt HD. Activation of glucagon-like peptide-1 receptors in the nucleus accumbens attenuates cocaine seeking in rats. Addict Biol 2019; 24:170-181. [PMID: 29226617 DOI: 10.1111/adb.12583] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 02/03/2023]
Abstract
Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors reduces cocaine-mediated behaviors and cocaine-evoked dopamine release in the nucleus accumbens (NAc). However, no studies have examined the role of NAc GLP-1 receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we show that systemic infusion of a behaviorally relevant dose of the GLP-1 receptor agonist exendin-4 penetrated the brain and localized with neurons and astrocytes in the NAc. Administration of exendin-4 directly into the NAc core and shell subregions significantly attenuated cocaine priming-induced reinstatement of drug-seeking behavior. These effects were not due to deficits in operant responding or suppression of locomotor activity as intra-accumbal exendin-4 administration had no effect on sucrose-seeking behavior. To determine the effects of GLP-1 receptor activation on neuronal excitability, exendin-4 was bath applied to ex vivo NAc slices from cocaine-experienced and saline-experienced rats following extinction of cocaine-taking behavior. Exendin-4 increased the frequency of action potential firing of NAc core and shell medium spiny neurons in cocaine-experienced rats while no effect was observed in saline controls. In contrast, exendin-4 did not affect the frequency or amplitude of spontaneous excitatory postsynaptic currents or alter the paired-pulse ratios of evoked excitatory postsynaptic currents. These effects were not associated with altered expression of GLP-1 receptors in the NAc following cocaine self-administration. Taken together, these findings indicate that increased activation of GLP-1 receptors in the NAc during cocaine abstinence increases intrinsic, but not synaptic, excitability of medium spiny neurons and is sufficient to reduce cocaine-seeking behavior.
Collapse
Affiliation(s)
- Nicole S. Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology and Neuroscience; University of South Carolina School of Medicine; Columbia SC USA
| | - Pavel I. Ortinski
- Department of Pharmacology, Physiology and Neuroscience; University of South Carolina School of Medicine; Columbia SC USA
| | - Heath D. Schmidt
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
- Department of Biobehavioral Health Sciences, School of Nursing; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
18
|
Wimmer ME, Vassoler FM, White SL, Schmidt HD, Sidoli S, Han Y, Garcia BA, Pierce RC. Impaired cocaine-induced behavioral plasticity in the male offspring of cocaine-experienced sires. Eur J Neurosci 2019; 49:1115-1126. [PMID: 30565761 DOI: 10.1111/ejn.14310] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/19/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
Our previous work indicated that male, but not female, offspring of cocaine-experienced sires display blunted cocaine self-administration. We extended this line of investigation to examine behavioral sensitization, a commonly used model of cocaine-induced behavioral and neuronal plasticity. Results indicated that male, but not female, offspring of cocaine-taking sires showed deficits in the ability of repeated systemic cocaine injections to induce augmented locomotor activity. The reduced cocaine sensitization phenotype in male progeny was associated with changes in histone post-translational modifications, epigenetic processes that regulate gene expression by controlling the accessibility of genes to transcriptional machinery, in the nucleus accumbens of first-generation male progeny. Thus, five histone post-translational modifications were significantly altered in the male progeny of cocaine-exposed sires. In contrast, self-administration of nicotine was unaltered in male and female offspring suggesting that the intergenerational effects of paternal cocaine taking may be drug-specific. Interestingly, the reduced sensitivity to cocaine previously observed in the male offspring of cocaine-taking sires dissipated in the grand-offspring. Both male and female grand-progeny of cocaine-exposed sires showed unaltered cocaine-induced behavioral sensitization and cocaine self-administration. Taken together, these findings indicate that paternal cocaine taking produces changes in multiple cocaine addiction-related behaviors in male progeny, which do not persist beyond the first generation of offspring. Moreover, the altered sensitivity to cocaine in first-generation male progeny of cocaine-sired male offspring was associated with epigenetic modifications in the nucleus accumbens, a nucleus that plays a critical role in cocaine-associated behavioral plasticity.
Collapse
Affiliation(s)
- Mathieu E Wimmer
- Department of Psychology and Neuroscience Program, College of Liberal Arts, Temple University, Philadelphia, Pennsylvania
| | - Fair M Vassoler
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts
| | - Samantha L White
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yumiao Han
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - R Christopher Pierce
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Farrell MR, Schoch H, Mahler SV. Modeling cocaine relapse in rodents: Behavioral considerations and circuit mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:33-47. [PMID: 29305936 PMCID: PMC6034989 DOI: 10.1016/j.pnpbp.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder, in that most addicted individuals who choose to quit taking drugs fail to maintain abstinence in the long-term. Relapse is especially likely when recovering addicts encounter risk factors like small "priming" doses of drug, stress, or drug-associated cues and locations. In rodents, these same factors reinstate cocaine seeking after a period of abstinence, and extensive preclinical work has used priming, stress, or cue reinstatement models to uncover brain circuits underlying cocaine reinstatement. Here, we review common rat models of cocaine relapse, and discuss how specific features of each model influence the neural circuits recruited during reinstated drug seeking. To illustrate this point, we highlight the surprisingly specific roles played by ventral pallidum subcircuits in cocaine seeking reinstated by either cocaine-associated cues, or cocaine itself. One goal of such studies is to identify, and eventually to reverse the specific circuit activity that underlies the inability of some humans to control their drug use. Based on preclinical findings, we posit that circuit activity in humans also differs based on the triggers that precipitate craving and relapse, and that associated neural responses could help predict the triggers most likely to elicit relapse in a given person. If so, examining circuit activity could facilitate diagnosis of subgroups of addicted people, allowing individualized treatment based on the most problematic risk factors.
Collapse
Affiliation(s)
- Mitchell R Farrell
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Hannah Schoch
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States
| | - Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, 1203 McGaugh Hall, Irvine, United States.
| |
Collapse
|
20
|
Zhang T, Deyama S, Domoto M, Wada S, Yanagida J, Sasase H, Hinoi E, Nishitani N, Nagayasu K, Kaneko S, Kaneda K. Activation of GABAergic Neurons in the Nucleus Accumbens Mediates the Expression of Cocaine-Associated Memory. Biol Pharm Bull 2018; 41:1084-1088. [PMID: 29962403 DOI: 10.1248/bpb.b18-00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocaine-associated environmental cues elicit craving and relapse to cocaine use by recalling the rewarding memory of cocaine. However, the neuronal mechanisms underlying the expression of cocaine-associated memory are not fully understood. Here, we investigated the possible contribution of γ-aminobutyrate (GABA)ergic neurons in the nucleus accumbens (NAc), a key brain region associated with the rewarding and reinforcing effects of cocaine, to the expression of cocaine-associated memory using the conditioned place preference (CPP) paradigm combined with designer receptors exclusively activated by designer drugs (DREADD) technology. The inhibitory DREADD hM4Di was selectively expressed in NAc GABAergic neurons of vesicular GABA transporter-Cre (vGAT-Cre) mice by infusing adeno-associated virus (AAV) vectors. Ex vivo electrophysiological recordings revealed that bath application of clozapine-N-oxide (CNO) significantly hyperpolarized membrane potentials and reduced the number of spikes induced by depolarizing current injections in hM4Di-positive NAc neurons. Additionally, systemic CNO injections into cocaine-conditioned mice 30 min before posttest session significantly reduced CPP scores compared to saline-injected mice. These results indicate that chemogenetic inhibition of NAc GABAergic neurons attenuated the expression of cocaine CPP, suggesting that NAc GABAergic neuronal activation is required for the environmental context-induced expression of cocaine-associated memory.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Masaki Domoto
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Junko Yanagida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Hitoki Sasase
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
21
|
Zhang YX, Akumuo RC, España RA, Yan CX, Gao WJ, Li YC. The histone demethylase KDM6B in the medial prefrontal cortex epigenetically regulates cocaine reward memory. Neuropharmacology 2018; 141:113-125. [PMID: 30165076 PMCID: PMC6170674 DOI: 10.1016/j.neuropharm.2018.08.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic remodeling contributes to synaptic plasticity via modification of gene expression, which underlies cocaine-induced long-term memory. A prevailing hypothesis in drug addiction is that drugs of abuse rejuvenate developmental machinery to render reward circuitry highly plastic and thus engender drug memories to be highly stable. Identification and reversal of these pathological pathways are therefore critical for cocaine abuse treatment. Previous studies revealed an interesting finding in which the mRNA of histone lysine demethylase, KDM6B, is upregulated in the medial prefrontal cortex (mPFC) during early cocaine withdrawal. However, whether and how it contributes to drug-seeking behavior remain unknown. Here we used a conditioned place preference paradigm to investigate the potential role of KDM6B in drug-associated memory. We found that KDM6B protein levels selectively increased in the mPFC during cocaine withdrawal. Notably, systemic injection of KDM6B inhibitor, GSK-J4, disrupted both reconsolidation of cocaine-conditioned memory and cocaine-primed reinstatement, suggesting dual effects of KDM6B in cocaine reward memory. In addition, we found that NMDAR expression and function were both enhanced during early cocaine withdrawal in mPFC. Injection of GSK-J4 selectively reversed this cocaine-induced increase of NR2A expression and synaptic function, suggesting that mal-adaptation of cocaine-induced synaptic plasticity in mPFC largely underlies KDM6B-mediated cocaine-associated memory. Altogether, these data suggest that KDM6B plays an essential role in cocaine-associated memory, which mainly acts through enhancing cocaine-induced synaptic plasticity in the mPFC. Our findings revealed a novel role of KDM6B in cocaine-associated memory and inhibition of KDM6B is a potential strategy to alleviate drug-seeking behavior.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Rita C Akumuo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
22
|
Hernandez NS, Ige KY, Mietlicki-Baase EG, Molina-Castro GC, Turner CA, Hayes MR, Schmidt HD. Glucagon-like peptide-1 receptor activation in the ventral tegmental area attenuates cocaine seeking in rats. Neuropsychopharmacology 2018; 43:2000-2008. [PMID: 29497166 PMCID: PMC6098066 DOI: 10.1038/s41386-018-0010-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Novel molecular targets are needed to develop new medications for the treatment of cocaine addiction. Here we investigated a role for glucagon-like peptide-1 (GLP-1) receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. We showed that peripheral administration of the GLP-1 receptor agonist exendin-4 dose dependently reduced cocaine seeking in rats at doses that did not affect ad libitum food intake, meal patterns or body weight. We also demonstrated that systemic exendin-4 penetrated the brain where it putatively bound receptors on both neurons and astrocytes in the ventral tegmental area (VTA). The effects of systemic exendin-4 on cocaine reinstatement were attenuated in rats pretreated with intra-VTA infusions of the GLP-1 receptor antagonist exendin-(9-39), indicating that the suppressive effects of systemic exendin-4 on cocaine seeking were due, in part, to activation of GLP-1 receptors in the VTA. Consistent with these effects, infusions of exendin-4 directly into the VTA reduced cocaine seeking. Finally, extinction following cocaine self-administration was associated with decreased preproglucagon mRNA expression in the caudal brainstem. Thus, our study demonstrated a novel role for GLP-1 receptors in the reinstatement of cocaine-seeking behavior and identified behaviorally relevant doses of a GLP-1 receptor agonist that selectively reduced cocaine seeking and did not produce adverse effects.
Collapse
Affiliation(s)
- Nicole S. Hernandez
- 0000 0004 1936 8972grid.25879.31Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kelsey Y. Ige
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Elizabeth G. Mietlicki-Baase
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Gian Carlo Molina-Castro
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christopher A. Turner
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Heath D. Schmidt
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,0000 0004 1936 8972grid.25879.31Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
23
|
Choi JK, Lim G, Chen YCI, Jenkins BG. Abstinence to chronic methamphetamine switches connectivity between striatal, hippocampal and sensorimotor regions and increases cerebral blood volume response. Neuroimage 2018. [PMID: 29518566 DOI: 10.1016/j.neuroimage.2018.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methamphetamine (meth), and other psychostimulants such as cocaine, present a persistent problem for society with chronic users being highly prone to relapse. We show, in a chronic methamphetamine administration model, that discontinuation of drug for more than a week produces much larger changes in overall meth-induced brain connectivity and cerebral blood volume (CBV) response than changes that occur immediately following meth administration. Areas showing the largest changes were hippocampal, limbic striatum and sensorimotor cortical regions as well as brain stem areas including the pedunculopontine tegmentum (PPTg) and pontine nuclei - regions known to be important in mediating reinstatement of drug-taking after abstinence. These changes occur concomitantly with behavioral sensitization and appear to be mediated through increases in dopamine D1 and D3 and decreases in D2 receptor protein and mRNA expression. We further identify a novel region of dorsal caudate/putamen, with a low density of calbindin neurons, that has an opposite hemodynamic response to meth than the rest of the caudate/putamen and accumbens and shows very strong correlation with dorsal CA1 and CA3 hippocampus. This correlation switches following meth abstinence from CA1/CA3 to strong connections with ventral hippocampus (ventral subiculum) and nucleus accumbens. These data provide novel evidence for temporal alterations in brain connectivity where chronic meth can subvert hippocampal - striatal interactions from cognitive control regions to regions that mediate drug reinstatement. Our results also demonstrate that the signs and magnitudes of the induced CBV changes following challenge with meth or a D3-preferring agonist are a complementary read out of the relative changes that occur in D1, D2 and D3 receptors using protein or mRNA levels.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Grewo Lim
- Department of Anesthesiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Bruce G Jenkins
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
24
|
Effects of muscarinic M 1 and M 4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning. Psychopharmacology (Berl) 2018; 235:815-827. [PMID: 29250738 PMCID: PMC6472894 DOI: 10.1007/s00213-017-4797-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023]
Abstract
RATIONALE Stimulating muscarinic M1/M4 receptors can blunt reinforcing and other effects of cocaine. A hallmark of addiction is continued drug seeking/craving after abstinence and relapse. OBJECTIVES We tested whether stimulating M1 and/or M4 receptors could facilitate extinction of cocaine seeking, and whether this was mediated via memory consolidation. METHODS Experimentally naïve C57BL/6J mice were allowed to acquire self-administration of intravenous cocaine (1 mg/kg/infusion) under a fixed-ratio 1 schedule of reinforcement. Then, saline was substituted for cocaine until responding extinguished to ≤30% of cocaine-reinforced responding. Immediately after each extinction session, mice received saline, the M1/M4 receptor-preferring agonist xanomeline, the M1 receptor-selective allosteric agonist VU0357017, the M4 receptor-selective positive allosteric modulator VU0152100, or VU0357017 + VU0152100. In additional experiments, xanomeline was administered delayed after the session or in the home cage before extinction training began. In the latter group, reinstatement of responding by a 10-mg/kg cocaine injection was also tested. RESULTS Stimulating M1 + M4 receptors significantly expedited extinction from 17.2 sessions to 8.3 using xanomeline or 7.8 using VU0357017 + VU0152100. VU0357017 alone and VU0152100 alone did not significantly modify rates of extinction (12.6 and 14.6 sessions). The effect of xanomeline was fully preserved when administered delayed after or unpaired from extinction sessions (7.5 and 6.4 sessions). Xanomeline-treated mice showed no cocaine-induced reinstatement. CONCLUSIONS These findings show that M1/M4 receptor stimulation can decrease cocaine seeking in mice. The effect lasted beyond treatment duration and was not dependent upon extinction learning. This suggests that M1/M4 receptor stimulation modulated or reversed some neurochemical effects of cocaine exposure.
Collapse
|
25
|
Jin W, Kim MS, Jang EY, Lee JY, Lee JG, Kim HY, Yoon SS, Lee BH, Chang S, Kim JH, Choi KH, Koo H, Gwak YS, Steffensen SC, Ryu YH, Kim HY, Yang CH. Acupuncture reduces relapse to cocaine-seeking behavior via activation of GABA neurons in the ventral tegmental area. Addict Biol 2018; 23:165-181. [PMID: 28271626 DOI: 10.1111/adb.12499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
There is growing public interest in alternative approaches to addiction treatment and scientific interest in elucidating the neurobiological underpinnings of acupuncture. Our previous studies showed that acupuncture at a specific Shenmen (HT7) points reduced dopamine (DA) release in the nucleus accumbens (NAc) induced by drugs of abuse. The present study was carried out to evaluate the effects of HT7 acupuncture on γ-aminobutyric acid (GABA) neuronal activity in the ventral tegmental area (VTA) and the reinstatement of cocaine-seeking behavior. Using microdialysis and in vivo single-unit electrophysiology, we evaluated the effects of HT7 acupuncture on VTA GABA and NAc DA release and VTA GABA neuronal activity in rats. Using a within-session reinstatement paradigm in rats self-administering cocaine, we evaluated the effects of HT7 stimulation on cocaine-primed reinstatement. Acupuncture at HT7 significantly reduced cocaine suppression of GABA release and GABA neuron firing rates in the VTA. HT7 acupuncture attenuated cocaine-primed reinstatement, which was blocked by VTA infusions of the selective GABAB receptor antagonist 2-hydroxysaclofen. HT7 stimulation significantly decreased acute cocaine-induced DA release in the NAc, which was also blocked by 2-hydroxysaclofen. HT7 acupuncture also attenuated cocaine-induced sensitization of extracellular DA levels in the NAc. Moreover, HT7 acupuncture reduced both locomotor activity and neuronal activation in the NAc induced by acute cocaine in a needle-penetration depth-dependent fashion. These results suggest that acupuncture may suppress cocaine-induced DA release in the NAc and cocaine-seeking behavior through activation of VTA GABA neurons. Acupuncture may be an effective therapy to reduce cocaine relapse by enhancing GABAergic inhibition in the VTA.
Collapse
Affiliation(s)
- Wyju Jin
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Min Sun Kim
- Department of Physiology, School of Medicine; Wonkwang University; Iksan South Korea
| | - Eun Young Jang
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
- Convergence Research Center, College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Jun Yeon Lee
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Hong Yu Kim
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Seong Shoon Yoon
- Research Center of Safety Pharmacology; Korea Institute of Toxicity; Daejeon South Korea
| | - Bong Hyo Lee
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Suchan Chang
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Jae Hyo Kim
- Department of Meridian & Acupoint, College of Korean Medicine; Wonkwang University; Iksan South Korea
| | - Kwang H. Choi
- Department of Psychiatry; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Ho Koo
- Department of Physiology, School of Medicine; Wonkwang University; Iksan South Korea
| | - Young Seob Gwak
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
- Convergence Research Center, College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Scott C. Steffensen
- Department of Psychology and Center for Neuroscience; Brigham Young University; Provo UT USA
| | - Yeon-Hee Ryu
- Acupuncture, Moxibustion & Meridian Research Center, Division of Standard Research; Korea Institute of Oriental Medicine; Daejeon South Korea
| | - Hee Young Kim
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
| | - Chae Ha Yang
- College of Korean Medicine; Daegu Haany University; Daegu South Korea
- Convergence Research Center, College of Korean Medicine; Daegu Haany University; Daegu South Korea
| |
Collapse
|
26
|
Wunsch AM, Yager LM, Donckels EA, Le CT, Neumaier JF, Ferguson SM. Chemogenetic inhibition reveals midline thalamic nuclei and thalamo-accumbens projections mediate cocaine-seeking in rats. Eur J Neurosci 2017; 46:1850-1862. [PMID: 28664636 DOI: 10.1111/ejn.13631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Drug addiction is a chronic disease that is shaped by alterations in neuronal function within the cortical-basal ganglia-thalamic circuit. However, our understanding of how this circuit regulates drug-seeking remains incomplete, and relapse rates remain high. The midline thalamic nuclei are an integral component of the cortical-basal ganglia-thalamic circuit and are poised to mediate addiction behaviors, including relapse. It is surprising that little research has examined the contribution of midline thalamic nuclei and their efferent projections in relapse. To address this, we expressed inhibitory, Gi/o -coupled DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in a subset of the midline thalamic nuclei or in midline thalamic nuclei neurons projecting to either the nucleus accumbens or the amygdala. We examined the effect of transiently decreasing activity of these neuronal populations on cue-induced and cocaine-primed reinstatement of cocaine-seeking. Reducing activity of midline thalamic nuclei neurons attenuated both cue-induced and cocaine-primed reinstatement, but had no effect on cue-induced reinstatement of sucrose-seeking or locomotor activity. Interestingly, attenuating activity of efferent projections from the anterior portion of midline thalamic nuclei to the nucleus accumbens blocked cocaine-primed reinstatement but enhanced cue-induced reinstatement. Decreasing activity of efferent projections from either the posterior midline thalamic nuclei to the nucleus accumbens or the midline thalamic nuclei to amygdala had no effect. These results reveal a novel contribution of subsets of midline thalamic nuclei neurons in drug-seeking behaviors and suggest that modulation of midline thalamic nuclei activity may be a promising therapeutic target for preventing relapse.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Lindsay M Yager
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Elizabeth A Donckels
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Calvin T Le
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - John F Neumaier
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Liu JF, Siemian JN, Seaman R, Zhang Y, Li JX. Role of TAAR1 within the Subregions of the Mesocorticolimbic Dopaminergic System in Cocaine-Seeking Behavior. J Neurosci 2017; 37:882-892. [PMID: 28123023 PMCID: PMC5296782 DOI: 10.1523/jneurosci.2006-16.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 01/02/2023] Open
Abstract
A novel G-protein coupled receptor, trace amine-associated receptor 1 (TAAR1), has been shown to be a promising target to prevent stimulant relapse. Our recent studies showed that systemic administration of TAAR1 agonists decreased abuse-related behaviors of cocaine. However, the role of TAAR1 in specific subregions of the reward system in drug addiction is unknown. Here, using a local pharmacological activation method, we assessed the role of TAAR1 within the subregions of the mesocorticolimbic system: that is, the VTA, the prelimbic cortex (PrL), and infralimbic cortex of medial prefrontal cortex, the core and shell of NAc, BLA, and CeA, on cue- and drug-induced cocaine-seeking in the rat cocaine reinstatement model. We first showed that TAAR1 mRNA was expressed throughout these brain regions. Rats underwent cocaine self-administration, followed by extinction training. RO5166017 (1.5 or 5.0 μg/side) or vehicle was microinjected into each brain region immediately before cue- and drug-induced reinstatement of cocaine-seeking. The results showed that microinjection of RO5166017 into the VTA and PrL decreased both cue- and drug priming-induced cocaine-seeking. Microinjection of RO5166017 into the NAc core and shell inhibited cue- and drug-induced cocaine-seeking, respectively. Locomotor activity or food reinforced operant responding was unaffected by microinjection of RO5166017 into these brain regions. Cocaine-seeking behaviors were not affected by RO5166017 when microinjected into the substantia nigra, infralimbic cortex, BLA, and CeA. Together, these results indicate that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior. SIGNIFICANCE STATEMENT TAAR1 has been indicated as a modulator of the dopaminergic system. Previous research showed that systemic administration of TAAR1 agonists could attenuate cocaine-related behaviors, suggesting that TAAR1 may be a promising drug target for the treatment of cocaine addiction. However, the specific role of TAAR1 in subregions of the mesocorticolimbic system in drug addiction is unknown. Here, we first showed that TAAR1 mRNA is expressed throughout the subregions of the mesocorticolimbic system. Then, by using a local pharmacological activation method, we demonstrated that TAAR1 in different subregions of the mesocorticolimbic system distinctly contributes to cue- and drug-induced reinstatement of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Jian-Feng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York 14214, and
| |
Collapse
|
28
|
RETRACTED: Exploring the mechanism by which accumbal deep brain stimulation attenuates morphine-induced reinstatement through manganese-enhanced MRI and pharmacological intervention. Exp Neurol 2017; 290:29-40. [PMID: 28038985 DOI: 10.1016/j.expneurol.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors.
The authors have requested to retract this paper as the corresponding author had not sought the prior agreement of his co-authors to submit the paper for publication.
Collapse
|
29
|
Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Bystrowska B, Filip M. Cocaine self-administration, extinction training and drug-induced relapse change metabotropic glutamate mGlu5 receptors expression: Evidence from radioligand binding and immunohistochemistry assays. Brain Res 2016; 1655:66-76. [PMID: 27871824 DOI: 10.1016/j.brainres.2016.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
Several behavioral findings highlight the importance of glutamatergic transmission and its metabotropic receptor type 5 (mGlu5) in the controlling of cocaine reward and seeking behaviors. The molecular or neurochemical nature of such interactions is not well recognized, so in the present paper we determine if cocaine self-administration and extinction/reinstatement models with the yoked triad control procedure alter mGlu5 receptor density in rats. [³H]MPEP was used to evaluate mGlu5 receptors density and affinity in selected brain structures, while immunofluorescence analysis was used to detect changes in mGlu5 receptors' brain location. Cocaine self-administration and yoked cocaine delivery evoked a significant elevation in mGlu5 receptors' density in the dorsal striatum, while receptor protein expression was importantly elevated in the substantia nigra and reduced in the nucleus accumbens shell. Cocaine administration followed by 10 extinction training sessions resulted in biphasic mGlu5 receptor density changes in the prefrontal cortex-nucleus accumbens pathway. mGlu5 receptors' up-regulation was noted for cocaine self-administration and extinction training in the hippocampus and in yoked cocaine controls following drug abstinence in the dorsal striatum. A cocaine priming dose (but not a saline priming) resulted in a significant decrease of mGlu5 receptors' density in the nucleus accumbens of rats previously treated with the drug and in the hippocampus of rats previously self-administered cocaine. The latter decrease in mGlu5 receptors' density and protein expression in the hippocampus was parallel to an increase in [³H]MPEP affinity and opposite to a rise observed after single cocaine administration (ip) to drug-naïve yoked saline controls. Additionally, we also observed a significant elevation in the protein expression of the tested receptors in the limbic cortex in both cocaine groups. The present results shown modality dependent and brain-region specific changes in mGlu5 receptors' localization and membrane specific binding.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamiolo
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Joanna Miszkiel
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Malgorzata Frankowska
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Malgorzata Filip
- Institute of Pharmacology Polish Academy of Sciences, Laboratory of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
30
|
Taoka N, Kamiizawa R, Wada S, Minami M, Kaneda K. Chronic cocaine exposure induces noradrenergic modulation of inhibitory synaptic transmission to cholinergic neurons of the laterodorsal tegmental nucleus. Eur J Neurosci 2016; 44:3035-3045. [DOI: 10.1111/ejn.13405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 09/16/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Naofumi Taoka
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Ryota Kamiizawa
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Shintaro Wada
- Laboratory of Molecular Pharmacology; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Masabumi Minami
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology; Graduate School of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
- Laboratory of Molecular Pharmacology; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
31
|
Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, Van Nest DS, Guercio LA, Wimmer ME, Olivos DR, De Jonghe BC, Hayes MR. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine. Neuropsychopharmacology 2016; 41:1917-28. [PMID: 26675243 PMCID: PMC4869061 DOI: 10.1038/npp.2015.362] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/26/2023]
Abstract
Cocaine addiction continues to be a significant public health problem for which there are currently no effective FDA-approved treatments. Thus, there is a clear need to identify and develop novel pharmacotherapies for cocaine addiction. Recent evidence indicates that activation of glucagon-like peptide-1 (GLP-1) receptors in the ventral tegmental area (VTA) reduces intake of highly palatable food. As the neural circuits and neurobiological mechanisms underlying drug taking overlap to some degree with those regulating food intake, these findings suggest that activation of central GLP-1 receptors may also attenuate cocaine taking. Here, we show that intra-VTA administration of the GLP-1 receptor agonist exendin-4 (0.05 μg) significantly reduced cocaine, but not sucrose, self-administration in rats. We also demonstrate that cocaine taking is associated with elevated plasma corticosterone levels and that systemic infusion of cocaine activates GLP-1-expressing neurons in the nucleus tractus solitarius (NTS), a hindbrain nucleus that projects monosynaptically to the VTA. To determine the potential mechanisms by which cocaine activates NTS GLP-1-expressing neurons, we microinjected corticosterone (0.5 μg) directly into the hindbrain fourth ventricle. Intraventricular corticosterone attenuated cocaine self-administration and this effect was blocked in animals pretreated with the GLP-1 receptor antagonist exendin-(9-39) (10 μg) in the VTA. Finally, AAV-shRNA-mediated knockdown of VTA GLP-1 receptors was sufficient to augment cocaine self-administration. Taken together, these findings indicate that increased activation of NTS GLP-1-expressing neurons by corticosterone may represent a homeostatic response to cocaine taking, thereby reducing the reinforcing efficacy of cocaine. Therefore, central GLP-1 receptors may represent a novel target for cocaine addiction pharmacotherapies.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA,Department of Biobehavioral Health Sciences, School of Nursing, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104, USA, Tel: +1 215 573 8291, Fax: +1 215 573 7605, E-mail:
| | - Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey Y Ige
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Maurer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek J Zimmer
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Duncan S Van Nest
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo A Guercio
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA,Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. PROGRESS IN BRAIN RESEARCH 2015; 224:25-52. [PMID: 26822352 DOI: 10.1016/bs.pbr.2015.08.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High rates of relapse to drug use during abstinence is a defining feature of drug addiction. In abstinent drug users, drug relapse is often precipitated by acute exposure to the self-administered drug, drug-associated cues, stress, as well as by short-term and protracted withdrawal symptoms. In this review, we discuss different animal models that have been used to study behavioral and neuropharmacological mechanisms of these relapse-related phenomena. In the first part, we discuss relapse models in which abstinence is achieved through extinction training, including the established reinstatement model, as well as the reacquisition and resurgence models. In the second part, we discuss recent animal models in which drug relapse is assessed after either forced abstinence (e.g., the incubation of drug craving model) or voluntary (self-imposed) abstinence achieved either by introducing adverse consequences to ongoing drug self-administration (e.g., punishment) or by an alternative nondrug reward using a discrete choice (drug vs. palatable food) procedure. We conclude by briefly discussing the potential implications of the recent developments of animal models of drug relapse after voluntary abstinence to the development of medications for relapse prevention.
Collapse
Affiliation(s)
- Marco Venniro
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD, USA; Department of Public Health and Community Medicine, Neuropsychopharmacology Laboratory, Section of Pharmacology, University of Verona, Verona, Italy.
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD, USA
| | - Yavin Shaham
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD, USA.
| |
Collapse
|
33
|
Adinoff B, Gu H, Merrick C, McHugh M, Jeon-Slaughter H, Lu H, Yang Y, Stein EA. Basal Hippocampal Activity and Its Functional Connectivity Predicts Cocaine Relapse. Biol Psychiatry 2015; 78:496-504. [PMID: 25749098 PMCID: PMC5671769 DOI: 10.1016/j.biopsych.2014.12.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cocaine-induced neuroplastic changes may result in a heightened propensity for relapse. Using regional cerebral blood flow (rCBF) as a marker of basal neuronal activity, this study assessed alterations in rCBF and related resting state functional connectivity (rsFC) to prospectively predict relapse in patients following treatment for cocaine use disorder (CUD). METHODS Pseudocontinuous arterial spin labeling functional magnetic resonance imaging and resting blood oxygen level-dependent functional magnetic resonance imaging data were acquired in the same scan session in abstinent participants with CUD before residential treatment discharge and in 20 healthy matched control subjects. Substance use was assessed twice weekly following discharge. Relapsed participants were defined as those who used stimulants within 30 days following treatment discharge (n = 22); early remission participants (n = 18) did not. RESULTS Voxel-wise, whole-brain analysis revealed enhanced rCBF only in the left posterior hippocampus (pHp) in the relapsed group compared with the early remission and control groups. Using this pHp as a seed, increased rsFC strength with the posterior cingulate cortex (PCC)/precuneus was seen in the relapsed versus early remission subgroups. Together, both increased pHp rCBF and strengthened pHp-PCC rsFC predicted relapse with 75% accuracy at 30, 60, and 90 days following treatment. CONCLUSIONS In CUD participants at risk of early relapse, increased pHp basal activity and pHp-PCC circuit strength may reflect the propensity for heightened reactivity to cocaine cues and persistent cocaine-related ruminations. Mechanisms to mute hyperactivated brain regions and delink dysregulated neural circuits may prove useful to prevent relapse in patients with CUD.
Collapse
Affiliation(s)
- Bryon Adinoff
- Veterans Affairs North Texas Health Care System, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Hong Gu
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Carmen Merrick
- School of Behavior and Brain Sciences, University of Texas at Dallas
| | - Meredith McHugh
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | | | - Hanzhang Lu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yihong Yang
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| | - Elliot A Stein
- Intramural Research Program-Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
34
|
A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking. Nat Commun 2015; 6:7675. [PMID: 26169171 PMCID: PMC4510700 DOI: 10.1038/ncomms8675] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/01/2015] [Indexed: 02/08/2023] Open
Abstract
We recently reported that a conditioned stimulus (CS) memory retrieval-extinction procedure decreases reinstatement of cocaine and heroin seeking in rats and heroin craving in humans. Here we show that non-contingent cocaine or methylphenidate injections (UCS retrieval) 1 h before the extinction sessions decreases cocaine-priming-induced reinstatement, spontaneous recovery, and renewal of cocaine seeking in rats. Unlike the CS-based memory retrieval-extinction procedure, the UCS memory retrieval manipulation decreases renewal and reinstatement of cocaine seeking in the presence of cocaine cues that were not present during extinction training and also decreases cocaine seeking when the procedure commences after 28 days of abstinence. The inhibitory effect of the UCS retrieval manipulation on cocaine-priming-induced reinstatement is mediated by regulation of AMPA-receptor endocytosis in the basolateral amygdala. The UCS memory retrieval-extinction procedure has superior relapse prevention characteristics than the CS memory retrieval-extinction procedure and could be a promising method for decreasing relapse in human addicts. Cue-based therapies for treating drug addiction have proven to be only partially effective. Here the authors demonstrate a new memory retrieval based treatment protocol for drug addiction that results in long-lasting inhibition of drug seeking behavior in rodents.
Collapse
|
35
|
Ogbonmwan YE, Sciolino NR, Groves-Chapman JL, Freeman KG, Schroeder JP, Edwards GL, Holmes PV, Weinshenker D. The galanin receptor agonist, galnon, attenuates cocaine-induced reinstatement and dopamine overflow in the frontal cortex. Addict Biol 2015; 20:701-13. [PMID: 25053279 PMCID: PMC4305031 DOI: 10.1111/adb.12166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.
Collapse
Affiliation(s)
- Yvonne E. Ogbonmwan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Natale R. Sciolino
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Jessica L. Groves-Chapman
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
| | - Kimberly G. Freeman
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Gaylen L. Edwards
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Philip V. Holmes
- Graduate Program in Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602
- Department of Psychology, University of Georgia, Athens, GA 30602
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
36
|
Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 2015; 290:17-31. [PMID: 25907747 DOI: 10.1016/j.bbr.2015.04.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| | - Chen Yang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Aaron Tan
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology 2015; 40:1297-306. [PMID: 25475163 PMCID: PMC4367476 DOI: 10.1038/npp.2014.320] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this 'incubation of methamphetamine craving' are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under extinction conditions during early (2 days) or late (4-5 weeks) withdrawal. We first confirmed that 'incubation of methamphetamine craving' occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by GABAA+GABAB receptor agonists (muscimol+baclofen, 0.03+0.3 nmol) on cue-induced methamphetamine seeking during early and late withdrawal. We also assessed the effect of muscimol+baclofen reversible inactivation of vmPFC, dmPFC, and OFC on 'incubated' cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimol+baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal. Muscimol+baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine craving.
Collapse
|
38
|
Schmidt HD, Kimmey BA, Arreola AC, Pierce RC. Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addict Biol 2015; 20:285-96. [PMID: 24506432 PMCID: PMC4380181 DOI: 10.1111/adb.12122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that type I metabotropic glutamate receptors (mGluRs) in the nucleus accumbens play a critical role in cocaine seeking. The present study sought to determine the role of accumbens core mGluR1, mGluR5 and protein kinase C (PKC) in cocaine priming-induced reinstatement of drug seeking. Here, we show that intra-accumbens core administration of the mGluR1/5 agonist DHPG (250 μM) promoted cocaine seeking in rats. Consistent with these results, administration of an mGluR1 (50.0 μM YM 298198) or mGluR5 (9.0 μM MPEP) antagonist directly into the accumbens core prior to a priming injection of cocaine (10 mg/kg) attenuated the reinstatement of drug seeking. mGluR1/5 stimulation activates a signaling cascade including PKC. Intracore microinjection of PKC inhibitors (10 μM Ro 31-8220 or 30.0 μM chelerythrine) also blunted cocaine seeking. In addition, cocaine priming-induced reinstatement of drug seeking was associated with increased phosphorylation of PKCγ, but not PKCα or PKCβII, in the core. There were no effects of pharmacological inhibition of mGluR1, mGluR5 or PKC in the accumbens core on sucrose seeking. Together, these findings indicate that mGluR1 and mGluR5 activation in the accumbens core promotes cocaine seeking and that these effects are reinforcer specific. Furthermore, stimulation of mGluR1 and mGluR5 in the accumbens core may regulate cocaine seeking, in part, through activation of PKCγ.
Collapse
Affiliation(s)
- Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
39
|
Bajic D, Soiza-Reilly M, Spalding AL, Berde CB, Commons KG. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine. PLoS One 2015; 10:e0117601. [PMID: 25647082 PMCID: PMC4315441 DOI: 10.1371/journal.pone.0117601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/29/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Mariano Soiza-Reilly
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Allegra L. Spalding
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
| | - Charles B. Berde
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| | - Kathryn G. Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America
- Department of Anaesthesia, Harvard Medical School, 25 Shattuck St., Boston, MA, 02115, United States of America
| |
Collapse
|
40
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
41
|
Abstract
Drug addiction is a syndrome of dysregulated motivation, evidenced by intense drug craving and compulsive drug-seeking behavior. In the search for 'common neurobiological substrates of addiction to different classes of drugs, behavioral neuroscientists have attempted to determine the neural basis for a number of motivational concepts and describe how they are changed by repeated drug use. Here, we describe these concepts and summarize previous work describing three major neural systems that play distinct roles in different conceptual aspects of motivation: (1) a nigrostriatal system that is involved in two forms of instrumental learning, (2) a ventral striatal system that is involved in Pavlovian incentive motivation and negative reinforcement, and (3) frontal cortical areas that regulate decision making and motivational processes. Within striatal systems, drug addiction can involve a transition from goal-oriented, incentive processes to automatic, habit-based responding. In the cortex, weak inhibitory control is a predisposing factor to, as well as a consequence of, repeated drug intake. However, these transitions are not absolute, and addiction can occur without a transition to habit-based responding, occurring as a result of the overvaluation of drug outcomes and hypersensitivity to incentive properties of drug-associated cues. Finally, we point out that addiction is not monolithic and can depend not only on individual differences between addicts, but also on the neurochernical action of specific drug classes.
Collapse
|
42
|
Scherma M, Fattore L, Satta V, Businco F, Pigliacampo B, Goldberg SR, Dessi C, Fratta W, Fadda P. Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats. Br J Pharmacol 2014; 169:820-33. [PMID: 23072421 DOI: 10.1111/bph.12014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Binge eating disorder (BED) is characterized by excessive food intake during short periods of time. Recent evidence suggests that alterations in the endocannabinoid signalling could be involved in the pathophysiology of BED. In this study, we investigated whether pharmacological manipulation of endocannabinoid transmission may be effective in modulating the aberrant eating behaviour present in a validated rat model of BED. EXPERIMENTAL APPROACH Binge-type eating was induced in female rats by providing limited access to an optional source of dietary fat (margarine). Rats were divided into three groups, all with ad libitum access to chow and water: control (C), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days a week; high restriction (HR), with 2 h margarine access 3 days a week. KEY RESULTS Compared with the LR group, the HR group consumed more margarine and this was accompanied by an increase in body weight. The cannabinoid CB₁/CB₂ receptor agonist Δ⁹-tetrahydrocannabinol significantly increased margarine intake selectively in LR rats, while the fatty acid amide hydrolase inhibitor URB597 showed no effect. The CB₁ receptor inverse agonist/antagonist rimonabant dose-dependently reduced margarine intake in HR rats. Notably, in HR rats, chronic treatment with a low dose of rimonabant induced a selective long-lasting reduction in margarine intake that did not develop tolerance, and a significant and persistent reduction in body weight. CONCLUSIONS AND IMPLICATIONS Chronic pharmacological blockade of CB₁ receptors reduces binge eating behaviour in female rats and may prove effective in treating BED, with an associated significant reduction in body weight.
Collapse
Affiliation(s)
- M Scherma
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (Cagliari), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, Lan Y, Balcita-Pedicino JJ, Wolf ME, Sesack SR, Shaham Y, Schlüter OM, Huang YH, Dong Y. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014; 83:1453-67. [PMID: 25199705 DOI: 10.1016/j.neuron.2014.08.023] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Glutamatergic projections from the medial prefrontal cortex (mPFC) to nucleus accumbens (NAc) contribute to cocaine relapse. Here we show that silent synapse-based remodeling of the two major mPFC-to-NAc projections differentially regulated the progressive increase in cue-induced cocaine seeking after withdrawal (incubation of cocaine craving). Specifically, cocaine self-administration in rats generated AMPA receptor-silent glutamatergic synapses within both infralimbic (IL) and prelimbic mPFC (PrL) to NAc projections, measured after 1 day of withdrawal. After 45 days of withdrawal, IL-to-NAc silent synapses became unsilenced/matured by recruiting calcium-permeable (CP) AMPARs, whereas PrL-to-NAc silent synapses matured by recruiting non-CP-AMPARs, resulting in differential remodeling of these projections. Optogenetic reversal of silent synapse-based remodeling of IL-to-NAc and PrL-to-NAc projections potentiated and inhibited, respectively, incubation of cocaine craving on withdrawal day 45. Thus, pro- and antirelapse circuitry remodeling is induced in parallel after cocaine self-administration. These results may provide substrates for utilizing endogenous antirelapse mechanisms to reduce cocaine relapse.
Collapse
Affiliation(s)
- Yao-Ying Ma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Xiusong Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Changyong Guo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lei Liu
- School of Life Science, Northeastern Normal University, Jilin, China
| | - Ranji Cui
- School of Life Science, Northeastern Normal University, Jilin, China
| | - Yan Lan
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Susan R Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Oliver M Schlüter
- Molecular Neurobiology and Cluster of Excellence "Nanoscale Microscopy and Molecular Physiology of the Brain," European Neuroscience Institute, 37077 Göttingen, Germany
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
44
|
Knapp CM, Ciraulo DA, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum. Behav Brain Res 2014; 274:291-301. [PMID: 25151622 DOI: 10.1016/j.bbr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Sleep-wake (S-W) disturbances are frequently associated with alcohol use disorders (AUD), occurring during periods of active drinking, withdrawal, and abstinence. These S-W disturbances can persist after months or even years of abstinence, suggesting that chronic alcohol consumption may have enduring negative effects on both homeostatic and circadian sleep processes. It is now generally accepted that S-W disturbances in alcohol-dependent individuals are a significant cause of relapse in drinking. Although significant progress has been made in identifying the socio-economic burden and health risks of alcohol addiction, the underlying neurobiological mechanisms that lead to S-W disorders in AUD are poorly understood. Marked progress has been made in understanding the basic neurobiological mechanisms of how different sleep stages are normally regulated. This review article in seeking to explain the neurobiological mechanisms underlying S-W disturbances associated with AUD, describes an evidence-based, easily testable, novel hypothesis that chronic alcohol consumption induces neuroadaptive changes in the cholinergic cell compartment of the pedunculopontine tegmentum (CCC-PPT). These changes include increases in N-methyl-d-aspartate (NMDA) and kainate receptor sensitivity and a decrease in gamma-aminobutyric acid (GABAB)-receptor sensitivity in the CCC-PPT. Together these changes are the primary pathophysiological mechanisms that underlie S-W disturbances in AUD. This review is targeted for both basic neuroscientists in alcohol addiction research and clinicians who are in search of new and more effective therapeutic interventions to treat and/or eliminate sleep disorders associated with AUD.
Collapse
Affiliation(s)
- Clifford M Knapp
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Domenic A Ciraulo
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA.
| |
Collapse
|
45
|
Kimmey BA, Rupprecht LE, Hayes MR, Schmidt HD. Donepezil, an acetylcholinesterase inhibitor, attenuates nicotine self-administration and reinstatement of nicotine seeking in rats. Addict Biol 2014; 19:539-51. [PMID: 23231479 DOI: 10.1111/adb.12014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotine craving and cognitive impairments represent core symptoms of nicotine withdrawal and predict relapse in abstinent smokers. Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Donepezil is an acetylcholinesterase inhibitor that has been shown previously to improve cognition in healthy non-treatment-seeking smokers. However, there are no studies examining the effects of donepezil on nicotine self-administration and/or the reinstatement of nicotine-seeking behavior in rodents. The present experiments were designed to determine the effects of acute donepezil administration on nicotine taking and the reinstatement of nicotine-seeking behavior, an animal model of relapse in abstinent human smokers. Moreover, the effects of acute donepezil administration on sucrose self-administration and sucrose seeking were also investigated in order to determine whether donepezil's effects generalized to other reinforced behaviors. Acute donepezil administration (1.0 or 3.0 mg/kg, i.p.) attenuated nicotine, but not sucrose self-administration maintained on a fixed-ratio 5 schedule of reinforcement. Donepezil administration also dose-dependently attenuated the reinstatement of both nicotine- and sucrose-seeking behaviors. Commonly reported adverse effects of donepezil treatment in humans are nausea and vomiting. However, at doses required to attenuate nicotine self-administration in rodents, no effects of donepezil on nausea/malaise as measured by pica were observed. Collectively, these results indicate that increased extracellular acetylcholine levels are sufficient to attenuate nicotine taking and seeking in rats and that these effects are not due to adverse malaise symptoms such as nausea.
Collapse
Affiliation(s)
- Blake A. Kimmey
- Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Laura E. Rupprecht
- Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Matthew R. Hayes
- Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Heath D. Schmidt
- Department of Psychiatry; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
46
|
Lutgen V, Kong L, Kau KS, Madayag A, Mantsch JR, Baker DA. Time course of cocaine-induced behavioral and neurochemical plasticity. Addict Biol 2014; 19:529-38. [PMID: 22970924 PMCID: PMC3525779 DOI: 10.1111/j.1369-1600.2012.00493.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Factors that result in augmented reinstatement, including increased withdrawal period duration and high levels of cocaine consumption, may provide insight into relapse vulnerability. The neural basis of augmented reinstatement may arise from more pronounced changes in plasticity required for reinstatement and/or the emergence of plasticity expressed only during a specific withdrawal period or under specific intake conditions. In this study, we examined the impact of withdrawal period duration and cocaine intake on the magnitude of cocaine-primed reinstatement and extracellular glutamate in the nucleus accumbens, which has been shown to be required for cocaine-primed reinstatement. Rats were assigned to self-administer under conditions resulting in low (2 hours/day; 0.5 mg/kg/infusion, IV) or high (6 hours/day; 1.0 mg/kg/infusion, IV) levels of cocaine intake. After 1, 21 or 60 days of withdrawal, drug seeking and extracellular glutamate levels in the nucleus accumbens were measured before and after a cocaine injection. Cocaine-reinstated lever pressing and elevated extracellular glutamate at every withdrawal time point tested, which is consistent with the conclusion that increased glutamatergic signaling in the nucleus accumbens, is required for cocaine-induced reinstatement. Interestingly, high-intake rats exhibited augmented reinstatement at every time point tested, yet failed to exhibit higher levels of cocaine-induced increases in extracellular glutamate relative to low-intake rats. Our current data indicate that augmented reinstatement in high-intake rats is not due to relative differences in extracellular levels of glutamate in the nucleus accumbens, but rather may stem from intake-dependent plasticity.
Collapse
Affiliation(s)
- Victoria Lutgen
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Linghai Kong
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Kristen S. Kau
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - Aric Madayag
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - John R. Mantsch
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| | - David A. Baker
- Department of Biomedical Sciences, Marquette University, Suite 446, 561 N. 15 St, Milwaukee, WI 53233
| |
Collapse
|
47
|
Simonson B, Morani AS, Ewald AWM, Walker L, Kumar N, Simpson D, Miller JH, Prisinzano TE, Kivell BM. Pharmacology and anti-addiction effects of the novel κ opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A. Br J Pharmacol 2014; 172:515-31. [PMID: 24641310 DOI: 10.1111/bph.12692] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile. EXPERIMENTAL APPROACH We evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists. KEY RESULTS Mesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT. CONCLUSIONS AND IMPLICATIONS SalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- B Simonson
- School of Biological Science, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The effects of N-acetylcysteine on cocaine reward and seeking behaviors in a rat model of depression. Behav Brain Res 2014; 266:108-18. [DOI: 10.1016/j.bbr.2014.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 12/20/2022]
|
49
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|
50
|
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014; 8:73. [PMID: 24653686 PMCID: PMC3949320 DOI: 10.3389/fnbeh.2014.00073] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Gilbert J Kirouac
- Departments of Oral Biology and Psychiatry, Faculties of Dentistry and Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jon-Kar Zubieta
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|