1
|
Ma J, Long LH, Hu ZL, Zhang H, Han J, Ni L, Wang F, Chen JG, Wu PF. Activation of D1-like receptor-dependent phosphatidylinositol signal pathway by SKF83959 inhibits voltage-gated sodium channels in cultured striatal neurons. Brain Res 2015; 1615:71-79. [PMID: 25912434 DOI: 10.1016/j.brainres.2015.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 11/15/2022]
Abstract
Dopamine, a key neurotransmitter mediating the rewarding effects, exerts some of its effects by modulating neuronal excitability of striatal medium spiny neurons. A D1-like dopamine receptor-dependent phosphatidylinositol signal pathway exists in the striatum, however little is known about its role in the dopaminergic modulation of striatal neuronal excitability. 3-Methyl-6-chloro-7, 8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) is a selective D1 receptor agonist with high-affinity. Here, we observed its effect on the voltage-gated sodium channels (VGSCs) in primary cultured striatal neurons by whole cell patch-clamp technique. We found that SKF83959 induced an inhibition on VGSCs in a dose-dependent manner in striatal neurons (IC50 value: 3.31 ± 0.39 μM), which could be prevented by antagonist of D1 receptor, but not that of D2, α1 adrenergic, or cholinoceptor. The effect of SKF83959 on VGSCs was also prevented by pretreatment with inhibitors of phospholipase C (PLC) and protein kinases C (PKC), but the inositol-1,4,5-phosphate 3 (IP3) antagonist did not occlude SKF83959 (1μM)-induced reduction of VGSCs. These data indicate that SKF83959 inhibits VGSCs in cultured striatal neurons via D1-like receptor-phosphatidylinositol-PKC pathway, which may underlie the dopaminergic modulation on striatal neuronal excitability.
Collapse
Affiliation(s)
- Jin Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jun Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, Hubei 430030, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
A systematic microdialysis study of dopamine transmission in the accumbens shell/core and prefrontal cortex after acute antipsychotics. Psychopharmacology (Berl) 2015; 232:1427-40. [PMID: 25345736 DOI: 10.1007/s00213-014-3780-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE The only systematic in vivo studies comparing antipsychotic (AP) effects on nucleus accumbens (NAc) shell and core dopamine (DA) transmission are voltammetric studies performed in pargyline-pretreated, halothane-anaesthetized rats. Studies in freely moving rats not pretreated with pargyline are not available. This study was intended to fill this gap by the use of in vivo microdialysis in freely moving rats. METHODS Male Sprague-Dawley rats were implanted with microdialysis probes in the NAc shell and core and medial prefrontal cortex (PFCX). The next day, rats were administered intravenously with two or three doses of APs, and dialysate DA was monitored in 10-min samples. Some rats were pretreated with pargyline (75 mg/kg i.p.) and after 1 h were given clozapine or risperidone. RESULTS Clozapine, risperidone, quetiapine, raclopride, sulpiride and amisulpride increased DA preferentially in the NAc shell. Such preferential effect on shell DA was not observed after haloperidol, chlorpromazine and olanzapine. In contrast to voltammetric studies, a preferential effect on NAc core DA was not observed after any dose of AP. Pargyline pretreatment did not reduce but actually amplified the preferential effect of clozapine and risperidone on NAc shell DA. CONCLUSIONS Apart from raclopride and olanzapine, the APs with lower extrapyramidal effects could be distinguished from typical APs on the basis of their ability to preferentially stimulate DA transmission in the NAc shell. There was no relationship between stimulation of PFCX DA and atypical APs profile. The differences between this study and voltammetry studies were not attributable to pargyline pretreatment.
Collapse
|
3
|
Perreault ML, Shen MYF, Fan T, George SR. Regulation of c-fos expression by the dopamine D1-D2 receptor heteromer. Neuroscience 2014; 285:194-203. [PMID: 25446350 DOI: 10.1016/j.neuroscience.2014.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
The dopamine D1 and D2 receptors form the D1-D2 receptor heteromer in a subset of neurons and couple to the Gq protein to regulate intracellular calcium signaling. In the present study the effect of D1-D2 heteromer activation and disruption on neuronal activation in the rat brain was mapped. This was accomplished using the dopamine agonist SKF 83959 to activate the D1-D2 heteromer in combination with a TAT-D1 disrupting peptide we developed, and which has been shown to disrupt the D1/D2 receptor interaction and antagonize D1-D2 heteromer-induced cell signaling and behavior. Acute SKF 83959 administration to rats induced significant c-fos expression in the nucleus accumbens that was significantly inhibited by TAT-D1 pretreatment. No effects of SKF 83959 were seen in caudate putamen. D1-D2 heteromer disruption by TAT-D1 did not have any effects in any striatal subregions, but induced significant c-fos immunoreactivity in a number of cortical regions including the orbitofrontal cortex, prelimbic and infralimbic cortices and piriform cortex. The induction of c-fos by TAT-D1 was also evident in the anterior olfactory nucleus, as well as the lateral habenula and thalamic nuclei. These findings show for the first time that the D1-D2 heteromer can differentially regulate c-fos expression in a region-dependent manner either through its activation or through tonic inhibition of neuronal activity.
Collapse
Affiliation(s)
- M L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - T Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - S R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Stolzenberg DS, Zhang KY, Luskin K, Ranker L, Bress J, Numan M. Dopamine D(1) receptor activation of adenylyl cyclase, not phospholipase C, in the nucleus accumbens promotes maternal behavior onset in rats. Horm Behav 2010; 57:96-104. [PMID: 19799904 DOI: 10.1016/j.yhbeh.2009.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
Abstract
A body of evidence supports the idea that the mesolimbic dopamine (DA) system modulates the natural increase in responsiveness female rats show toward offspring (biological or foster) at birth. In the absence of the full hormonal changes associated with pregnancy and birth, female rats do not show immediate responsiveness toward foster offspring. Activation of the mesolimbic DA system can produce an immediate onset of maternal behavior in these females. For example, female rats that are hysterectomized and ovariectomized on day 15 of pregnancy (15HO) and presented with pups 48 hours later normally show maternal behavior after 2-3 days of pup exposure, but will show maternal behavior on day 0 of testing after microinjection of the DA D(1) receptor agonist, SKF 38393, into the nucleus accumbens (NA) at the time of pup presentation. DA D(1) receptor stimulation is known to activate cAMP intracellular signaling cascades via its stimulation of adenylyl cyclase (AC). However, some DA D(1) receptors are also linked to phospholipase C (PLC) and are capable of activating phosphatidylinositol signaling cascades. SKF 38393 stimulates both types of D(1) receptors. Here we provide evidence that the facilitatory effects of DA D(1) receptor stimulation in the NA on maternal behavior are mediated by AC-linked DA D(1) receptors. By examining the effects of intra-NA application of SKF 83822, a drug which selectively binds DA D(1)-AC receptors, or SKF 83959, a drug which selectively activates D(1)-PLC-linked receptors, we find that only SKF 83822 facilitates maternal behavior onset.
Collapse
|
5
|
Arylbenzazepines are potent modulators for the delayed rectifier K+ channel: a potential mechanism for their neuroprotective effects. PLoS One 2009; 4:e5811. [PMID: 19503734 PMCID: PMC2690691 DOI: 10.1371/journal.pone.0005811] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/06/2009] [Indexed: 11/19/2022] Open
Abstract
(+/-) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D(1)-like dopamine receptor agonistic activity. The precise mechanism for the (+/-) SKF83959-mediated neuroprotection remains elusive. We report here that (+/-) SKF83959 is a potent blocker for delayed rectifier K(+) channel. (+/-) SKF83959 inhibited the delayed rectifier K(+) current (I(K)) dose-dependently in rat hippocampal neurons. The IC(50) value for inhibition of I(K) was 41.9+/-2.3 microM (Hill coefficient = 1.81+/-0.13, n = 6), whereas that for inhibition of I(A) was 307.9+/-38.5 microM (Hill coefficient = 1.37+/-0.08, n = 6). Thus, (+/-) SKF83959 is 7.3-fold more potent in suppressing I(K) than I(A). Moreover, the inhibition of I(K) by (+/-) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (+/-) SKF83959 with the K(+) channel. The intracellular application of (+/-) SKF83959 had no effects of on I(K), indicating that the compound most likely acts at the outer mouth of the pore of K(+) channel. We also tested the enantiomers of (+/-) SKF83959, R-(+) SKF83959 (MCL-201), and S-(-) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I(K). However, (+/-) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I(K) , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (+/-) SKF83959.
Collapse
|
6
|
Phosphatidylinositol-linked novel D(1) dopamine receptor facilitates long-term depression in rat hippocampal CA1 synapses. Neuropharmacology 2009; 57:164-71. [PMID: 19465033 DOI: 10.1016/j.neuropharm.2009.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 11/23/2022]
Abstract
Recent work has demonstrated that a phosphatidylinositol (PI)-linked D(1) dopamine receptor selective agonist, SKF83959, mediates phosphatidylinositol hydrolysis via activation of phospholipase C(beta) in brain. Specific contributions of SKF83959 to synaptic plasticity have not been well elucidated. The aim of the current investigation was to characterize the role of SKF83959 on long-term depression (LTD) in the CA1 region of rat hippocampal slices and to explore the molecular events leading to these changes. The results indicated that SKF83959 stimulation significantly depressed field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner and facilitated the induction of LTD by LFS. SKF83959-facilitated LTD required activation of phospholipase C (PLC). NMDA receptors were involved in this response. Calcium chelator, BAPTA-AM prevented SKF83959-facilitated LTD, indicating that cytosolic free calcium concentration ([Ca(2+)](i)) elevation could account for this response. Furthermore, SKF83959-facilitated LTD was significantly depressed in the presence of calcineurin (PP2B) inhibitors cyclosporin A (CsA) and associated with a persistent increase in the expression of calcineurin A. Taken together, these findings demonstrate a novel role for PI-linked D(1) dopamine receptor in the neuromodulation of hippocampal LTD.
Collapse
|
7
|
Liu J, Wang F, Huang C, Long LH, Wu WN, Cai F, Wang JH, Ma LQ, Chen JG. Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell Mol Neurobiol 2009; 29:317-28. [PMID: 18975071 DOI: 10.1007/s10571-008-9323-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/09/2008] [Indexed: 12/23/2022]
Abstract
Recent evidences indicate the existence of an atypical D(1) dopamine receptor other than traditional D(1) dopamine receptor in the brain that mediates PI hydrolysis via activation of phospholipase C(beta) (PLC(beta)). To further understand the basic physiological function of this receptor in brain, the effects of a selective phosphoinositide (PI)-linked D(1) dopamine receptor agonist SKF83959 on cytosolic free calcium concentration ([Ca(2+)](i)) in cultured rat prefrontal cortical astrocytes were investigated by calcium imaging. The results indicated that SKF83959 caused a transient dose-dependent increase in [Ca(2+)](i). Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinergic antagonist prevented SKF83959-induced [Ca(2+)](i) rise, indicating that activation of the D(1) dopamine receptor was essential for this response. Increase in [Ca(2+)](i) was a two-step process characterized by an initial increase in [Ca(2+)](i) mediated by release from intracellular stores, supplemented by influx through voltage-gated calcium channels, receptor-operated calcium channels, and capacitative Ca(2+) entry. Furthermore, SKF83959-stimulated increase in [Ca(2+)](i) was abolished following treatment with a PLC inhibitor. Overall, these results suggested that activation of D(1) receptor by SKF83959 mediates a dose-dependent mobilization of [Ca(2+)](i) via the PLC signaling pathway in cultured rat prefrontal cortical astrocytes.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Astrocytes/drug effects
- Astrocytes/enzymology
- Astrocytes/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Enzyme Activation/drug effects
- Extracellular Space/drug effects
- Extracellular Space/metabolism
- Female
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Space/drug effects
- Intracellular Space/metabolism
- Male
- Phosphatidylinositols/metabolism
- Prefrontal Cortex/cytology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/metabolism
- Signal Transduction/drug effects
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yu Y, Wang JR, Sun PH, Guo Y, Zhang ZJ, Jin GZ, Zhen X. Neuroprotective effects of atypical D1 receptor agonist SKF83959 are mediated via D1 receptor-dependent inhibition of glycogen synthase kinase-3 beta and a receptor-independent anti-oxidative action. J Neurochem 2007; 104:946-56. [PMID: 18005341 DOI: 10.1111/j.1471-4159.2007.05062.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang H, Ma L, Wang F, Chen J, Zhen X. Chronic SKF83959 induced less severe dyskinesia and attenuated L-DOPA-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson's disease. Neuropharmacology 2007; 53:125-33. [PMID: 17553535 DOI: 10.1016/j.neuropharm.2007.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/04/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
SKF83959, a recently identified selective agonist of putative phosphoinositide-linked (PI-linked) D(1) dopamine (DA) receptor, is found to elicit excellent anti-parkinsonism effects in monkeys and rodents. In the present study, the effects of SKF83959 on L-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) were assessed in a unilateral 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson's disease (PD). The results indicated that chronic L-DOPA (6 mg/kg) induced a progressive dyskinesia-like behavior in PD rats, whereas SKF83959 (0.5 mg/kg) elicited significantly less severe dyskinesia while exerts its anti-parkinsonian action effectively. Application of D(1) receptor, but not D(2), alpha or 5-HT receptor antagonist attenuated SKF83959-induced dyskinesia, indicating that a D(1) receptor-mediated events, assumed via PI-linked D(1) receptor. Interestingly, chronic co-administration of SKF83959 significantly reduced LID at no expanse of reduction in the anti-parkinsonian potency in PD rats. However, this anti-dyskinesia effect was not observed while SKF83959 was acutely administered in rats with established LID. This implies that chronic SKF83959 attenuated the development of dyskinesia. Immediate early gene FosB is previously reported to positively associate with dyskinesia. However, we found that the anti-dyskinesia effect of chronic SKF83959 was independent of FosB since SKF83959 produced stronger FosB expression in the lesioned striatum than that of L-DOPA while exerting its anti-dyskinesia action. The present data demonstrated that SKF83959 reduces LID by attenuating the development of dyskinesia; the underlying signaling pathway for the anti-dyskinesia action of SKF83959 appears not to depend on FosB.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/adverse effects
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- Analysis of Variance
- Animals
- Disease Models, Animal
- Dopamine Agonists/adverse effects
- Dopamine Antagonists/administration & dosage
- Drug Administration Schedule
- Drug Interactions
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/etiology
- Levodopa/adverse effects
- Male
- Movement/drug effects
- Oxidopamine/toxicity
- Parkinson Disease/drug therapy
- Parkinson Disease/etiology
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Serotonin Antagonists/administration & dosage
- Spiperone/administration & dosage
- Sympatholytics/toxicity
- Time Factors
Collapse
Affiliation(s)
- Hai Zhang
- Hubei Provincial Key Laboratory for Neural Diseases, Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
10
|
Zavala AR, Biswas S, Harlan RE, Neisewander JL. Fos and glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking behavior in abstinent rats. Neuroscience 2007; 145:438-52. [PMID: 17276011 PMCID: PMC1876753 DOI: 10.1016/j.neuroscience.2006.12.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/03/2006] [Accepted: 12/12/2006] [Indexed: 11/18/2022]
Abstract
Cocaine-associated cues acquire incentive motivational effects that manifest as craving in humans and cocaine-seeking behavior in rats. We have reported an increase in neuronal activation in rats, measured by Fos protein expression, in various limbic and cortical regions following exposure to cocaine-associated cues. This study examined whether the conditioned neuronal activation involves glutamate AMPA receptors by measuring coexpression of Fos and AMPA glutamate receptor subunits (GluR1, GluR2/3, or GluR4). Rats trained to self-administer cocaine subsequently underwent 22 days of abstinence, during which they were exposed daily to either the self-administration environment with presentations of the light/tone cues previously paired with cocaine infusions (Extinction group) or an alternate environment (No Extinction group). All rats were then tested for cocaine-seeking behavior (i.e. responses without cocaine reinforcement) and Fos and AMPA glutamate receptor subunits were measured postmortem using immunocytochemistry. The No Extinction group exhibited increases in cocaine-seeking behavior and Fos expression in limbic and cortical regions relative to the Extinction group. A large number of Fos immunoreactive cells coexpressed GluR1, GluR2/3, and GluR4, suggesting that an action of glutamate at AMPA receptors may in part drive cue-elicited Fos expression. Importantly, there was an increase in the percentage of cells colabeled with Fos and GluR1 in the anterior cingulate and nucleus accumbens shell and cells colabeled with Fos and GluR4 in the infralimbic cortex, suggesting that within these regions, a greater, and perhaps even different, population of AMPA receptor subunit-expressing neurons is activated in rats engaged in cocaine-seeking behavior.
Collapse
Affiliation(s)
- Arturo R. Zavala
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85287-1104
| | - Sudipta Biswas
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85287-1104
| | - Richard E. Harlan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Box SL49, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Janet L. Neisewander
- Department of Psychology, Arizona State University, Box 871104, Tempe, AZ 85287-1104
| |
Collapse
|
11
|
Colebrooke RE, Chan PM, Lynch PJ, Mooslehner K, Emson PC. Differential gene expression in the striatum of mice with very low expression of the vesicular monoamine transporter type 2 gene. Brain Res 2007; 1152:10-6. [PMID: 17433807 DOI: 10.1016/j.brainres.2007.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/04/2007] [Accepted: 03/10/2007] [Indexed: 01/22/2023]
Abstract
The vesicular monoamine transporter type 2 (VMAT2) packages pre-synaptic monoamines into vesicles. Previously, we generated mice hypomorphic for the VMAT2 gene (Slc18a2), which results in a approximately 95% reduction in VMAT2 protein, disrupted vesicular storage, severe depletion of striatal dopamine and mice with moderate motor behaviour deficits. Dopamine released from mid-brain dopamine neurons acts on post-synaptic type 1 (D1) and 2 (D2) receptors located on striatal medium spiny neurons to initiate a signalling cascade that leads to altered transcription factor activity, gene expression and neuronal activity. We investigated striatal gene expression changes in VMAT2hypo mice by quantitative real-time PCR and in situ hybridisation. Despite unaltered expression of D1 and D2 dopamine receptors, there were dramatic alterations in striatal mRNAs encoding the neuropeptides substance P, dynorphin, enkephalin and cholecystokinin. The promoters of these genes are regulated by a combination of transcription factors that includes cAMP responsive element binding protein-1 (CREB) and c-Fos. Indeed, the changes in peptide mRNAs were associated with elevated expression of Creb1 and c-Fos. These data indicate that striatal dopamine depletion, as a consequence of deficient vesicular storage in this mouse, triggers a complex program of gene expression, consistent with this mouse being an excellent model of Parkinson's disease.
Collapse
Affiliation(s)
- R E Colebrooke
- Laboratory of Molecular Neuroscience, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | |
Collapse
|
12
|
Wirtshafter D. Rotation and immediate-early gene expression in rats treated with the atypical D1 dopamine agonist SKF 83822. Pharmacol Biochem Behav 2007; 86:505-10. [PMID: 17306871 PMCID: PMC1913484 DOI: 10.1016/j.pbb.2007.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/05/2007] [Accepted: 01/12/2007] [Indexed: 11/15/2022]
Abstract
Classical agonists of the dopamine D1 receptor activate both adenylyl cyclase and phospholipase C (PLC) signaling pathways. As a result, the extent to which these two pathways are essentially involved in various effects produced by D1 receptor agonists is currently uncertain. In the present report we examined the effects of SKF 83822, a dopamine D1 agonist which has been reported to activate adenylyl cyclase, but not PLC, on behavior and immediate early gene (IEG) expression in rats with unilateral 6-hydroxydopamine lesions. SKF 83822 (25-100 microg/kg) induced dose dependent contralateral rotation in these subjects, and, additionally, stimulated strong expression of the IEG products c-Fos, Fra2, Zif/268 and Arc in the deinnervated striatum. All of these effects could be antagonized by pretreatment with the selective D1 dopamine antagonist SCH 23390 (0.5 mg/kg). Although PLC may be involved in many effects mediated through dopamine D1 receptors, these results suggest that direct activation of PLC is not necessary for the induction of either rotation or IEG expression in dopamine depleted rats.
Collapse
Affiliation(s)
- David Wirtshafter
- Laboratory of Integrative Neuroscience, Department of Psychology, M/C 285, University of Illinois at Chicago, Chicago, IL 60607-7137, USA.
| |
Collapse
|
13
|
Shin EJ, Jeong JH, Kim HJ, Jang CG, Yamada K, Nabeshima T, Kim HC. Exposure to Extremely Low Frequency Magnetic Fields Enhances Locomotor Activity via Activation of Dopamine D1-Like Receptors in Mice. J Pharmacol Sci 2007; 105:367-71. [DOI: 10.1254/jphs.sc0070348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Ming Y, Zhang H, Long L, Wang F, Chen J, Zhen X. Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J Neurochem 2006; 98:1316-23. [PMID: 16771826 DOI: 10.1111/j.1471-4159.2006.03961.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates the existence of a putative novel phosphatidylinositol-linked D1 dopamine receptor in brain that mediates phosphatidylinositol hydrolysis via activation of phospholipase Cbeta. The present work was designed to characterize the Ca(2+) signals regulated by this phosphatidylinositol-linked D(1) dopamine receptor in primary cultures of hippocampal neurons. The results indicated that stimulation of phosphatidylinositol-linked D1 dopamine receptor by its newly identified selective agonist SKF83959 induced a long-lasting increase in basal [Ca(2+)](i) in a time- and dose-dependent manner. Stimulation was observable at 0.1 microm and reached the maximal effect at 30 microm. The [Ca(2+)](i) increase induced by 1 microm SKF83959 reached a plateau in 5 +/- 2.13 min, an average 96 +/- 5.6% increase over control. The sustained elevation of [Ca(2+)](i) was due to both intracellular calcium release and calcium influx. The initial component of Ca(2+) increase through release from intracellular stores was necessary for triggering the late component of Ca(2+) rise through influx. We further demonstrated that activation of phospholipase Cbeta/inositol triphosphate was responsible for SKF83959-induced Ca(2+) release from intracellular stores. Moreover, inhibition of voltage-operated calcium channel or NMDA receptor-gated calcium channel strongly attenuated SKF83959-induced Ca(2+) influx, indicating that both voltage-operated calcium channel and NMDA receptor contribute to phosphatidylinositol-linked D(1) receptor regulation of [Ca(2+)](i).
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Animals, Newborn/physiology
- Calcium/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Hippocampus/cytology
- Hippocampus/physiology
- Isoenzymes/metabolism
- Neurons/physiology
- Phosphatidylinositols/physiology
- Phospholipase C beta
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/physiology
- Second Messenger Systems/physiology
- Thapsigargin/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Yuling Ming
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, HUST, Wuhan, China
| | | | | | | | | | | |
Collapse
|