1
|
Lupu A, Fotea S, Jechel E, Starcea IM, Ioniuc I, Knieling A, Salaru DL, Sasaran MO, Cirstea O, Revenco N, Mihai CM, Lupu VV, Nedelcu AH. Is oxidative stress - antioxidants imbalance the physiopathogenic core in pediatric obesity? Front Immunol 2024; 15:1394869. [PMID: 39176098 PMCID: PMC11338799 DOI: 10.3389/fimmu.2024.1394869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Despite the early recognition of obesity as an epidemic with global implications, research on its pathogenesis and therapeutic approach is still on the rise. The literature of the 21st century records an excess weight found in up to 1/3 of children. Both the determining factors and its systemic effects are multiple and variable. Regarding its involvement in the potentiation of cardio-vascular, pulmonary, digestive, metabolic, neuro-psychic or even dermatological diseases, the information is already broadly outlined. The connection between the underlying disease and the associated comorbidities seems to be partially attributable to oxidative stress. In addition to these, and in the light of the recent COVID-19 pandemic, the role played by oxidative stress in the induction, maintenance and potentiation of chronic inflammation among overweight children and adolescents becomes a topic of interest again. Thus, this review's purpose is to update general data on obesity, with an emphasis on the physiopathological mechanisms that underlie it and involve oxidative stress. At the same time, we briefly present the latest principles of pathology diagnosis and management. Among these, we will mainly emphasize the impact played by endogenous and exogenous antioxidants in the evolutionary course of pediatric obesity. In order to achieve our objectives, we will refer to the most recent studies published in the specialized literature.
Collapse
Affiliation(s)
- Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, Romania
| | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Pediatrics, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Olga Cirstea
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ninel Revenco
- Pediatrics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
2
|
Abdoon ASS, Hegazy AM, Abdel-Azeem AS, Al-Atrash AM, Mohammed DM. The protective effects of some herbs on mitigating HFD-induced obesity via enhancing biochemical indicators and fertility in female rats. Heliyon 2024; 10:e30249. [PMID: 38726161 PMCID: PMC11078881 DOI: 10.1016/j.heliyon.2024.e30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The potential of plant-based diets and drugs to prevent and control obesity has been attributed to the presence of several biologically active phytochemicals. The study aimed to assess herb consumption's impact on alleviating the risks and hazards associated with obesity induced by a high-fat diet (HFD) and the promotion of fertility. Eighty rats were allocated into four distinct groups. Group 1 (G1) was provided with a basal diet and acted as the control group. Group 2 (G2) was provided with an HFD. Group 3 (G3) was provided with HFD supplemented with chia seeds and Hibiscus sabdariffa L. The fourth group of subjects was provided with HFD supplemented with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander). The feeding session was sustained for 10 weeks, and the biochemical parameters were evaluated. The administration of Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander) (G4) resulted in a more significant reduction in all biochemical parameters compared to G3, which received a diet consisting of chia seeds and Hibiscus sabdariffa L. Additionally, the average number of embryonic lobes and the average number of offspring after birth were found to be considerably more significant in the normal control group (G1) and group (G4) compared to the HFD group (G2) and group (G3) (P < 0.01). Group 4 (G4) was administered a diet enriched with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander), which demonstrated superior outcomes in many biochemical indicators and the promotion of fertility in obese female rats.
Collapse
Affiliation(s)
- Ahmed Sabry S. Abdoon
- Animal Reproduction, Veterinary Research division, National Research Centre, Dokki, Giza, Egypt
| | - Amany M. Hegazy
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Amal S. Abdel-Azeem
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M. Al-Atrash
- Medical Administration, Nuclear Materials Authority, Kattmya, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Świętek M, Marková I, Malínská H, Hüttl M, Miklánková D, Černá K, Konefał R, Horák D. Tannic acid- and N-acetylcysteine-chitosan-modified magnetic nanoparticles reduce hepatic oxidative stress in prediabetic rats. Colloids Surf B Biointerfaces 2024; 235:113791. [PMID: 38335769 DOI: 10.1016/j.colsurfb.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Magnetic nanoparticles (MNPs) modified with tannic acid (TA) have shown remarkable success as an antioxidant and antimicrobial therapeutic agent. Herein, we report a synthetic procedure for the preparation of silica-coated MNPs modified with N-acetylcysteine-modified chitosan and TA. This was achieved by free-radical grafting of NAC onto chitosan (CS), a layer-by-layer technique for modifying negatively charged MNP@SiO2 nanoparticles with positively charged CS-NAC, and crosslinking CS with TA. The antioxidant and metabolic effects of MNP@SiO2-CS-NAC and MNP@SiO2-CS-NAC-TA nanoparticles were tested in a model of prediabetic rats with hepatic steatosis, the hereditary hypertriglyceridemic rats (HHTg). The particles exhibited significant antioxidant properties in the liver, increasing the activity of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx), decreasing the concentration of the lipoperoxidation product malondialdehyde (MDA), and improving the antioxidant status determined as the ratio of reduced to oxidized glutathione; in particular, TA increased some antioxidant parameters. MNPs carrying antioxidants such as NAC and TA could thus represent a promising therapeutic agent for the treatment of various diseases accompanied by increased oxidative stress.
Collapse
Affiliation(s)
- Małgorzata Świętek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Prague 6, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Prague 4, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Prague 4, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Prague 4, Czech Republic
| | - Denisa Miklánková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Prague 4, Czech Republic
| | - Kristýna Černá
- Institute for Clinical and Experimental Medicine, Vídeňská 1958, 140 21 Prague 4, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského Nám. 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
5
|
Dumlu Bilgin G, Büyükuslu N, Eyüpoğlu OE, Cumbul A. Co-administration of curcumin and polyamines in high-fat diet induced obese rats: Assessment of changes in serum polyamine levels and some tissue parameters. Prostaglandins Other Lipid Mediat 2023; 169:106784. [PMID: 37726052 DOI: 10.1016/j.prostaglandins.2023.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
Obesity is a non-communicable chronic disease that continues to increase around the world. Recently, it has been shown that curcumin positively affects lipid, energy metabolism, and body weight change. Moreover, polyamines are aliphatic polycations, which can be found in all mammalian cells and foods and have been shown to prevent obesity through many different mechanisms. However, whether the co-administration of curcumin and polyamines has synergistic effects has yet to be clarified. Our study aimed to examine the effects of curcumin and polyamines on obesity and to assess the changes in serum polyamine levels and tissue parameters. 28 Sprague-Dawley male rats were fed a high-fat diet for 10 weeks to develop obesity, and then they were randomly divided into 4 groups as the control group (CONT), curcumin group (CUR), polyamine group (POL), curcumin and polyamine group (CUR+POL) and supplements were administered for 6 weeks. As a result, the lowest feed consumption in rats was recorded in the CUR+POL group, and the group with the lowest weight after supplements was the POL group, then the CUR+POL, CONT, and CUR groups, respectively. N-acetyl putrescine and GABA levels increased significantly after obesity development. The total histopathological score in fat, liver, and kidney tissues increased significantly in the CONT group. In the CUR+POL group, damage to the tissues was in the direction of recovery compared to the other groups, and the expression of NF-κB was significantly low. These results suggest that combined curcumin and polyamines may have protective effects.
Collapse
Affiliation(s)
- Gözde Dumlu Bilgin
- Yeditepe University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey.
| | - Nihal Büyükuslu
- Istanbul Medipol University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey
| | - Ozan Emre Eyüpoğlu
- Istanbul Medipol University, School of Pharmacy, Department of Biochemistry, İstanbul, Turkey
| | - Alev Cumbul
- Yeditepe University, Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| |
Collapse
|
6
|
Alwadani AH, Almasri SA, Aloud AA, Albadr NA, Alshammari GM, Yahya MA. The Synergistic Protective Effect of γ-Oryzanol (OZ) and N-Acetylcysteine (NAC) against Experimentally Induced NAFLD in Rats Entails Hypoglycemic, Antioxidant, and PPARα Stimulatory Effects. Nutrients 2022; 15:nu15010106. [PMID: 36615764 PMCID: PMC9823776 DOI: 10.3390/nu15010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study estimated that the combined effect of γ-Oryzanol and N-acetylcysteine (NAC) against high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in rats also estimated some of their mechanisms of action. Adult male rats were divided into seven groups (n = 8 each) as control, control + NAC, control + γ-Oryzanol, HFD, HFD + NAC, HFD + γ-Oryzanol, and HFD + NAC + γ-Oryzanol. NAC was administered orally at a final concentration of 200 mg/kg, whereas γ-Oryzanol was added to diets at a concentration of 0.16. All treatments were conducted for 17 weeks and daily. Both NAC and γ-Oryzanol were able to reduce final body weights, fat weights, fasting glucose, fasting insulin, serum, and serum levels of liver function enzymes as well as the inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6), and leptin in HFD-fed rats. They also improved hepatic structure and glucose tolerance, increased adiponectin levels, and reduced serum and hepatic levels of triglycerides (TGs) and cholesterol (CHOL) in these rats. These effects were concomitant with a reduction in the hepatic levels of lipid peroxides (MDA) and serum levels of LDL-C, but also with an increment in the hepatic levels of superoxide dismutase (SOD) and glutathione (GSH). Interestingly, only treatment with γ-Oryzanol stimulated the mRNA levels of proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1 (CPT1) in the liver and white adipose tissue (WAT) of rats. Of note, the combination therapy of both drugs resulted in maximum effects and restored almost normal liver structure and basal levels of all the above-mentioned metabolic parameters. In conclusion, a combination therapy of γ-Oryzanol and NAC is an effective therapy to treat NAFLD, which can act via several mechanisms on the liver and adipose tissue.
Collapse
Affiliation(s)
- Ashwag H. Alwadani
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Home Economics, University College in Farasan, Jazan University, Jazan 54943, Saudi Arabia
| | - Soheir A. Almasri
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Amal A. Aloud
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A. Albadr
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Becchi S, Hood J, Kendig MD, Mohammadkhani A, Shipman ML, Balleine BW, Borgland SL, Corbit LH. Food for thought: diet-induced impairments to decision-making and amelioration by N-acetylcysteine in male rats. Psychopharmacology (Berl) 2022; 239:3495-3506. [PMID: 36219247 DOI: 10.1007/s00213-022-06223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Attempts to lose weight often fail despite knowledge of the health risks associated with obesity and determined efforts. We previously showed that rodents fed an obesogenic diet displayed premature habitual behavioural control and weakened flexible decision-making based on the current value of outcomes produced by their behaviour. Thus, habitual control may contribute to failed attempts to modify eating behaviours. OBJECTIVES To examine the effects of an obesogenic diet on behavioural control and glutamate transmission in dorsal striatum regions and to assess the ability of N-acetylcysteine (NAC) to reverse deficits. METHODS Here, we examined diet-induced changes to decision-making and used in vitro electrophysiology to investigate the effects of diet on glutamate transmission within the dorsomedial (DMS) and dorsolateral (DLS) striatum, areas that control goal-directed and habitual behaviours, respectively. We administered NAC in order to normalize glutamate release and tested whether this would restore goal-directed performance following an obesogenic diet. RESULTS We found that an obesogenic diet reduced sensitivity to outcome devaluation and increased glutamate release in the DMS, but not DLS. Administration of NAC restored goal-directed control and normalized mEPSCs in the DMS. Finally, NAC administered directly to the DMS was sufficient to reinstate sensitivity to outcome devaluation following an obesogenic diet. CONCLUSIONS These data indicate that obesogenic diets alter neural activity in the basal ganglia circuit responsible for goal-directed learning and control which leads to premature habitual control. While the effects of diet are numerous and widespread, normalization of glutamatergic activity in this circuit is sufficient for restoring goal-directed behaviour.
Collapse
Affiliation(s)
- Serena Becchi
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joshua Hood
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Michael D Kendig
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Aida Mohammadkhani
- School of Life Sciences, University of Technology, Sydney, NSW, 2007, Australia
| | - Megan L Shipman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada
| | - Bernard W Balleine
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Laura H Corbit
- School of Life Sciences, University of Technology, Sydney, NSW, 2007, Australia.
| |
Collapse
|
8
|
Impact of N-Acetyl-Cysteine on Ischemic Stumps Following Major Lower Extremity Amputation: A Pilot Randomized Clinical Trial. Ann Surg 2022; 276:e302-e310. [PMID: 35129469 PMCID: PMC9987417 DOI: 10.1097/sla.0000000000005389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the impact of N-acetyl-cysteine (NAC) on amputation stump perfusion and healing in patients with critical limb-threatening ischemia (CLTI). BACKGROUND Patients with CLTI are at increased risk of poor amputation site healing leading to increased procedure-associated morbidity. METHODS In a pilot, double-blind, placebo-controlled, randomized controlled trial, patients with CLTI undergoing major elective lower extremity amputation were randomized 1:1 to intravenous NAC (1200 mg twice-daily) or placebo for up to 5 days postoperatively. Primary outcomes were change in stump perfusion at postoperative day 3 (POD3) and POD5, and healing at POD30. Stumps were serially evaluated for wound healing, and tissue perfusion was evaluated using noninvasive laser-assisted fluorescent angiography. RESULTS Thirty-three patients were randomized to NAC (n = 16) or placebo (n = 17). Thirty-one patients were eligible for intent-to-treat analysis (NAC14; placebo17). Twenty patients (NAC7; placebo13) had amputation stump perfusion defects at POD0 and were considered high-risk for poor healing. Intent-to-treat analysis revealed no significant differences between treatment groups. Subgroup analysis of high-risk patients revealed differences in stump perfusion defect size (NAC-0.53-fold, placebo +0.71-fold; 95% confidence interval -2.11 to-0.35; P < 0.05) and healing (NAC [100%], placebo [46%]; P < 0.01) between study treatments. CONCLUSIONS Postoperative NAC administration may improve amputation stump perfusion and healing in patients with CLTI and tissue perfusion defects at the time of amputation. Intraoperative laser-assisted fluorescent angiogra-phy may help surgeons identify high-risk patients with stump perfusion defects and provide early adjunctive interventions. Future studies can further explore the therapeutic benefits of NAC in the healing and perfusion of other surgical operative sites in high-risk individuals. TRIAL REGISTRATION clinicaltrials.gov, Identifier: NCT03253328.
Collapse
|
9
|
Yang W, Guo R, Pi A, Ding Q, Hao L, Song Q, Chen L, Dou X, Na L, Li S. Long non-coding RNA-EN_181 potentially contributes to the protective effects of N-acetylcysteine against non-alcoholic fatty liver disease in mice. Br J Nutr 2022; 129:1-15. [PMID: 35710106 DOI: 10.1017/s0007114522001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
N-acetylcysteine (NAC) possesses a strong capability to ameliorate high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in mice, but the underlying mechanism is still unknown. Our study aimed to clarify the involvement of long non-coding RNA (lncRNA) in the beneficial effects of NAC on HFD-induced NAFLD. C57BL/6J mice were fed a normal-fat diet (10 % fat), a HFD (45 % fat) or a HFD plus NAC (2 g/l). After 14-week of intervention, NAC rescued the deleterious alterations induced by HFD, including the changes in body and liver weights, hepatic TAG, plasma alanine aminotransferase, plasma aspartate transaminase and liver histomorphology (haematoxylin and eosin and Oil red O staining). Through whole-transcriptome sequencing, 52 167 (50 758 known and 1409 novel) hepatic lncRNA were detected. Our cross-comparison data revealed the expression of 175 lncRNA was changed by HFD but reversed by NAC. Five of those lncRNA, lncRNA-NONMMUT148902·1 (NO_902·1), lncRNA-XR_001781798·1 (XR_798·1), lncRNA-NONMMUT141720·1 (NO_720·1), lncRNA-XR_869907·1 (XR_907·1), and lncRNA-ENSMUST00000132181 (EN_181), were selected based on an absolute log2 fold change value of greater than 4, P-value < 0·01 and P-adjusted value < 0·01. Further qRT-PCR analysis showed the levels of lncRNA-NO_902·1, lncRNA-XR_798·1, and lncRNA-EN_181 were decreased by HFD but restored by NAC, consistent with the RNA sequencing. Finally, we constructed a ceRNA network containing lncRNA-EN_181, 3 miRNA, and 13 mRNA, which was associated with the NAC-ameliorated NAFLD. Overall, lncRNA-EN_181 might be a potential target in NAC-ameliorated NAFLD. This finding enhanced our understanding of the biological mechanisms underlying the beneficial role of NAC.
Collapse
Affiliation(s)
- Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Aiwen Pi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| | - Lixin Na
- Public Health College, Shanghai University of Medicine & Health Sciences, Shanghai201318, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou310053, People's Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang310053, People's Republic of China
| |
Collapse
|
10
|
Tráj P, Herrmann EM, Sebők C, Vörösházi J, Mackei M, Gálfi P, Kemény Á, Neogrády Z, Mátis G. Protective effects of chicoric acid on polyinosinic-polycytidylic acid exposed chicken hepatic cell culture mimicking viral damage and inflammation. Vet Immunol Immunopathol 2022; 250:110427. [DOI: 10.1016/j.vetimm.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
11
|
Akram M, Ali SA, Behare P, Kaul G. Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food Funct 2021; 13:737-752. [PMID: 34939079 DOI: 10.1039/d1fo02501e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Probiotics have been suggested as alternatives to pharmacological drugs in the treatment of a variety of medical problems, including obesity management, which is often linked to low sperm production. Also, probiotic fermented products are known to boost host immune response, immunosenescence, infection tolerance, and redox homeostasis, but their direct role in male fertility has been less investigated. This study assessed the effect of two probiotic strains, L. fermentum NCDC 400 and L. rhamnosus NCDC 610, and fructooligosaccharide (FOS) fermented milk supplementation. We identified the significantly reduced oxidative stress markers in the plasma and liver of HF diet-fed animals. We determined the role of key testicular enzymes of steroidogenic pathway genes StAR, P450scc, and 17βHSD in maintaining the testosterone concentration and restoring testicular structures. In conclusion, the present work illustrated the ability of both probiotics L. fermentum NCDC 400 and L. rhamnosus NCDC 610 as regulatory agents with beneficial effects on weight loss and endogenous testosterone with substantially improved sperm motility in male diet-induced obesity (DIO) models. Our findings indicate that fermented milk supplementation may be an alternative treatment for preventing obesity and other related metabolic syndromes.
Collapse
Affiliation(s)
- Mohd Akram
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, National Dairy Research Institute, Haryana, India
| | - Pradip Behare
- National Collection of Dairy Cultures (NCDC) Lab, Dairy Microbiology Division, ICAR, National Dairy Research Institute, Karnal, Haryana, India
| | - Gautam Kaul
- Semen Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Haryana, India
| |
Collapse
|
12
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
13
|
Zheng J, Xiao H, Duan Y, Song B, Zheng C, Guo Q, Li F, Li T. Roles of amino acid derivatives in the regulation of obesity. Food Funct 2021; 12:6214-6225. [PMID: 34105579 DOI: 10.1039/d1fo00780g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an issue of great concern to people all over the world. It is accompanied by serious complications, leading to reduced quality of life and higher morbidity and mortality. Over the past few years, there has been an explosion in knowledge about the roles of potential therapeutic agents in obesity management. Among them, amino acid (AA) derivatives, such as taurine, glutathione (GSH), betaine, α-ketoglutarate (AKG), β-aminoisobutyric acid (BAIBA), and β-hydroxy-β-methylbutyrate (HMB), have recently gained popularity due to their beneficial effects on the promotion of weight loss and improvement in the lipid profile. The mechanisms of action of these derivatives mainly include inhibiting adipogenesis, increasing lipolysis, promoting brown/beige adipose tissue (BAT) development, and improving glucose metabolism. Therefore, this review summarizes these AA derivatives and the possible mechanisms responsible for their anti-obesity effects. Based on the current findings, these AA derivatives could be potential therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abdelhaffez AS, Abd El-Aziz EA, Tohamy MB, Ahmed AM. N-acetyl cysteine can blunt metabolic and cardiovascular effects via down-regulation of cardiotrophin-1 in rat model of fructose-induced metabolic syndrome. Arch Physiol Biochem 2021:1-16. [PMID: 33507837 DOI: 10.1080/13813455.2021.1876735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the ability of N-acetyl cysteine (NAC) to alleviate the metabolic disorders in fructose-induced metabolic syndrome (MS) in male rats and to examine its protective effect on aortic and cardiac tissues via its influence on cardiotrophin-1 (CT-1) expression. NAC (20 mg/kg b.w./day) was administered to fructose induced MS animals for 12 weeks. Chronic fructose consumption (20% w/v) increased body weight gain, relative heart weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), insulin resistance (IR), and associated with metabolic alterations. Histological and immunohistochemical examination revealed aortic stiffness and myocardial degeneration and fibrosis together with increased CT-1 expression. Treatment with NAC improved IR, SBP, DBP, and mitigated dyslipidaemia and oxidative stress. Additionally, NAC down-regulated CT-1 expression in the heart and aorta. These findings demonstrated the protective effect of NAC against aortic and myocardial degeneration and fibrosis through down-regulation of CT-1 in fructose induced MS animal model.
Collapse
Affiliation(s)
- Azza S Abdelhaffez
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Ebtihal A Abd El-Aziz
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Maha B Tohamy
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Faculty of Medicine, Department of Pathology, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Chunchai T, Keawtep P, Arinno A, Saiyasit N, Prus D, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. A combination of an antioxidant with a prebiotic exerts greater efficacy than either as a monotherapy on cognitive improvement in castrated-obese male rats. Metab Brain Dis 2020; 35:1263-1278. [PMID: 32676884 DOI: 10.1007/s11011-020-00603-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
Previous studies by ourselves and others have demonstrated that both obesity and testosterone deprivation have been related to cognitive decline. We have also shown that a prebiotic and n-acetyl cysteine (NAC) improved cognitive dysfunction in obese rats and castrated-male rats. However, the effects of NAC, a prebiotic (inulin), and a combination of the two on cognition in castrated-obese rats has never been investigated. The hypothesis was that NAC and inulin attenuated cognitive decline in castrated-obese rats by improving gut dysbiosis, and decreasing oxidative stress, glial activation and apoptosis. Male Wistar rats (n = 36) were fed with either a normal diet (ND: n = 6) or a high-fat diet (HFD: n = 30) for twenty-eight weeks. The resultant obese rats had a bilateral orchiectomy (ORX) and were randomly divided into five subgroups (n = 6/ subgroup). Each subgroup was treated with one of five therapies: a vehicle; testosterone replacement (2 mg/kg/day); NAC (100 mg/kg); inulin (10%, w/w), or a combination of the NAC and inulin for four weeks. The results demonstrated that castrated-obese rats developed gut dysbiosis, metabolic disturbance, brain pathologies, and cognitive decline. All of the pathological conditions in the brain were ameliorated to an equal extent by testosterone replacement, NAC, and inulin supplementation. Interestingly, a combination of NAC and inulin had the greatest beneficial effect on cognitive function by synergistically reducing hippocampal inflammation and ameliorating glial dysmorphology. These findings suggest that a combination of NAC and inulin may confer the greatest benefits in improving cognitive function in castrated-obese male rats.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puntarik Keawtep
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Napatsorn Saiyasit
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dillon Prus
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
16
|
NAC Supplementation of Hyperglycemic Rats Prevents the Development of Insulin Resistance and Improves Antioxidant Status but Only Alleviates General and Salivary Gland Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8831855. [PMID: 33274008 PMCID: PMC7683161 DOI: 10.1155/2020/8831855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Previous studies based on animal models demonstrated that N-acetylcysteine (NAC) prevents oxidative stress and improves salivary gland function when the NAC supplementation starts simultaneously with insulin resistance (IR) induction. This study is the first to evaluate the effect of a 4-week NAC supply on the antioxidant barrier and oxidative stress in Wistar rats after six weeks of high-fat diet (HFD) intake. Redox biomarkers were evaluated in the parotid (PG) and submandibular (SMG) salivary glands and stimulated whole saliva (SWS), as well as in the plasma and serum. We demonstrated that the activity of salivary peroxidase and superoxide dismutase and total antioxidant capacity were significantly higher in PG, SMG, and SWS of IR rats treated with NAC. It appears that in PG and SMG of rats fed an HFD, N-acetylcysteine supplementation abolishes oxidative modifications to proteins (evidenced by decreased content of advanced oxidation protein products (AOPP) and advanced glycation end products (AGE)). Simultaneously, it does not reverse oxidative modifications of lipids (as seen in increased concentration of 8-isoprostanes and 4-hydroxynonenal vs. the control), although it reduces the peroxidation of salivary lipids in relation to the group fed a high-fat diet alone. NAC administration increased protein levels in PG and SMG but did not affect saliva secretion, which was significantly lower compared to the controls. To sum up, the inclusion of NAC supplementation after six weeks of HFD feeding was effective in improving the general and salivary gland antioxidant status. Nevertheless, NAC did not eliminate salivary oxidative stress and only partially prevented salivary gland dysfunction.
Collapse
|
17
|
Tun S, Spainhower CJ, Cottrill CL, Lakhani HV, Pillai SS, Dilip A, Chaudhry H, Shapiro JI, Sodhi K. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities. Front Pharmacol 2020; 11:1234. [PMID: 32903449 PMCID: PMC7438597 DOI: 10.3389/fphar.2020.01234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been a worldwide epidemic for decades. Despite the abundant increase in knowledge regarding the etiology and pathogenesis of obesity, the prevalence continues to rise with estimates predicting considerably higher numbers by the year 2030. Obesity is characterized by an abnormal lipid accumulation, however, the physiological consequences of obesity are far more concerning. The development of the obesity phenotype constitutes dramatic alterations in adipocytes, along with several other cellular mechanisms which causes substantial increase in systemic oxidative stress mediated by reactive oxygen species (ROS). These alterations promote a chronic state of inflammation in the body caused by the redox imbalance. Together, the systemic oxidative stress and chronic inflammation plays a vital role in maintaining the obese state and exacerbating onset of cardiovascular complications, Type II diabetes mellitus, dyslipidemia, non-alcoholic steatohepatitis, and other conditions where obesity has been linked as a significant risk factor. Because of the apparent role of oxidative stress in the pathogenesis of obesity, there has been a growing interest in attenuating the pro-oxidant state in obesity. Hence, this review aims to highlight the therapeutic role of antioxidants, agents that negate pro-oxidant state of cells, in ameliorating obesity and associated comorbidities. More specifically, this review will explore how various antioxidants target unique and diverse pathways to exhibit an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Steven Tun
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Caleb James Spainhower
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Cameron Lee Cottrill
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Sneha S Pillai
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Anum Dilip
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Hibba Chaudhry
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Joseph I Shapiro
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| | - Komal Sodhi
- Departments of Medicine, Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, United States
| |
Collapse
|
18
|
Zhang H, Xu Z, Zhao H, Wang X, Pang J, Li Q, Yang Y, Ling W. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia. Redox Biol 2020; 32:101474. [PMID: 32179241 PMCID: PMC7078384 DOI: 10.1016/j.redox.2020.101474] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Anthocyanins, one of the major plant bioactive substances, possess anti-oxidative and anti-inflammatory capacity. However, their dose-response relationship has remained unclear. The present study investigated the dose-response relationship of anthocyanins with oxidative stress and inflammation in subjects with dyslipidemia. DESIGN and Participants: A total of 169 participants with dyslipidemia were randomly assigned to placebo (n = 43), anthocyanins 40 mg/day (n = 44), 80 mg/day (n = 40), or 320 mg/day (n = 42) groups. Urine 8-iso-prostaglandin F2α (8-iso-PGF2α), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and serum malonaldehyde (MDA), total superoxide dismutase (T-SOD), UA (uric acid), interleukin (IL)-6, IL-10, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at baseline, at 6 weeks, and at 12 weeks. RESULTS Anthocyanin supplementation (320 mg/day) for 6 weeks significantly improved T-SOD versus baseline (P < 0.05). A slight reduction in serum IL-6, TNF-α, and urine 8-iso-PGF2α from the baseline was observed at 12 weeks in the group receiving 40 mg/day anthocyanins. Anthocyanins (80 mg/day) significantly reduced serum IL-6 (-20%), TNF-α (-11%) and urine 8-iso-PGF2α (-27%) versus baseline (P < 0.05). Moreover, 320 mg/day anthocyanin supplementation reduced serum IL-6 (-40%), TNF-α (-21%), MDA (-20%) and urine 8-iso-PGF2α (-37%) and 8-OHdG (-36%) than 80 mg/day and 40 mg/day anthocyanins, P value < 0.05. Anthocyanin supplementation has dose-response relationships with decreased inflammatory cytokines IL-6, TNF-α and oxidative stress biomarkers 8-iso-PGF2α, 8-OHdG and MDA (P for trend, <0.05). Furthermore, a strong positive correlation was observed between the changes in the urine 8-iso-PGF2α , 8-OHdG levels and serum IL-6 levels in subjects from anthocyanin groups after 12 weeks of treatment. CONCLUSIONS Supplementation of anthocyanins for 12 weeks positively improved the anti-oxidative and anti-inflammatory capacity in a dose-response manner in individuals with dyslipidemia.
Collapse
Affiliation(s)
- Hanyue Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Zhongliang Xu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Huiwen Zhao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Xu Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China.
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, PR China; Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, PR China.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China; Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
19
|
Zalewska A, Szarmach I, Żendzian-Piotrowska M, Maciejczyk M. The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats. Nutrients 2020; 12:nu12020458. [PMID: 32059375 PMCID: PMC7071150 DOI: 10.3390/nu12020458] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
This is the first study to assess the effect of N-acetylcysteine (NAC) on the mitochondrial respiratory system, as well as free radical production, glutathione metabolism, nitrosative stress, and apoptosis in the salivary gland mitochondria of rats with high-fat diet (HFD)-induced insulin resistance (IR). The study was conducted on male Wistar rats divided into four groups of 10 animals each: C (control, rats fed a standard diet containing 10.3% fat), C + NAC (rats fed a standard diet, receiving NAC intragastrically), HFD (rats fed a high-fat diet containing 59.8% fat), and HFD + NAC (rats fed HFD diet, receiving NAC intragastrically). We confirmed that 8 weeks of HFD induces systemic IR as well as disturbances in mitochondrial complexes of the parotid and submandibular glands of rats. NAC supplementation leads to a significant increase in the activity of complex I, II + III and cytochrome c oxidase (COX), and also reduces the ADP/ATP ratio compared to HFD rats. Furthermore, NAC reduces the hydrogen peroxide production/activity of pro-oxidant enzymes, increases the pool of mitochondrial glutathione, and prevents cytokine formation, apoptosis, and nitrosative damage to the mitochondria in both aforementioned salivary glands of HFD rats. To sum up, NAC supplementation enhances energy metabolism in the salivary glands of IR rats, and prevents inflammation, apoptosis, and nitrosative stress.
Collapse
Affiliation(s)
- Anna Zalewska
- Experimental Dentistry Laboratory, Medical University, 15-222 Bialystok, Poland
- Correspondence: (A.Z.); (M.M.)
| | - Izabela Szarmach
- Department of Orthodontics, Medical University, 15-222 Bialystok, Poland;
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University, 15-222 Bialystok, Poland;
- Correspondence: (A.Z.); (M.M.)
| |
Collapse
|
20
|
Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, Liu S, Yang X, Shi J. Nonalcoholic Fatty Liver Disease: Pathogenesis and Treatment in Traditional Chinese Medicine and Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8749564. [PMID: 31998400 PMCID: PMC6969649 DOI: 10.1155/2020/8749564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide and probably destined to become the leading cause of end-stage liver disease in the coming decades, affecting both adults and children. Faced with the severe challenges for the prevention and control of NAFLD, this article discusses the understanding and mechanism of NAFLD from Chinese and Western medicine. Moreover, the progress regarding its treatment in both Chinese and Western medicine is also summarized. Both Chinese medicine and Western medicine have their own characteristics and clinical efficacy advantages in treating diseases. The purpose of this article is to hope that Chinese and Western medicine have complementary advantages, complementing each other to improve clinical NAFLD therapy prevention and treatment methods to receive more and more attention throughout the global medical community.
Collapse
Affiliation(s)
- Tingting Shi
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Li Wu
- Center of Clinical Evaluation, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, Zhejiang, China
| | - Wenjun Ma
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Liping Ju
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Minghui Bai
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xiaowei Chen
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Shourong Liu
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, Zhejiang, China
| | - Xingxin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Kunming 650500, Yunnan, China
| | - Junping Shi
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Li L, Cai M. Drug Target Prediction by Multi-View Low Rank Embedding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1712-1721. [PMID: 28541222 DOI: 10.1109/tcbb.2017.2706267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Drug repositioning has been a key problem in drug development, and heterogeneous data sources are used to predict drug-target interactions by different approaches. However, most of studies focus on a single representation of drugs or proteins. It has been shown that integrating multi-view representations of drugs and proteins can strengthen the prediction ability. For example, a drug can be represented by its chemical structure, or by its chemical response in different cells. A protein can be represented by its sequence, or by its gene expression values in different cells. The docking of drugs and proteins based on their structure can be considered as one view (structural view), and the chemical performance of them based on gene expression and drug response can be considered as another view (chemical view). In this work, we first propose a single-view approach of SLRE based on low rank embedding for an arbitrary view, and then extend it to a multi-view approach of MLRE, which could integrate both views. Our experiments show that our methods perform significantly better than baseline methods including single-view methods and multi-view methods. We finally report predicted drug-target interactions for 30 FDA-approved drugs.
Collapse
|
22
|
Meneses MJ, Silvestre R, Sousa-Lima I, Macedo MP. Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20164049. [PMID: 31430977 PMCID: PMC6720961 DOI: 10.3390/ijms20164049] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are characterized by an overall state of inflammation and oxidative stress, which highlight the importance of a functional antioxidant system and normal activity of some endogenous enzymes, namely paraoxonase-1 (PON1). PON1 is an antioxidant and anti-inflammatory glycoprotein from the paraoxonases family. It is mainly expressed in the liver and secreted to the bloodstream, where it binds to HDL. Although it was first discovered due to its ability to hydrolyze paraoxon, it is now known to have an antiatherogenic role. Recent studies have shown that PON1 plays a protective role in other diseases that are associated with inflammation and oxidative stress, such as Type 1 and Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. The aim of this review is to elucidate the physiological role of PON1, as well as the impact of altered PON1 levels in metabolic disorders.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Regina Silvestre
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Sousa-Lima
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal
| | - Maria Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal.
- APDP Diabetes Portugal-Education and Research Center (APDP-ERC), 1250-203 Lisbon, Portugal.
- Medical Sciences Department and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Kanikarla-Marie P, Micinski D, Jain SK. Hyperglycemia (high-glucose) decreases L-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Mol Cell Biochem 2019; 459:151-156. [PMID: 31172369 DOI: 10.1007/s11010-019-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
L-Cysteine (LC) is an essential precursor of GSH biosynthesis. GSH is a major physiological antioxidant, and its depletion increases oxidative stress. Diabetes is associated with lower blood levels of LC and GSH. The mechanisms leading to a decrease in LC in diabetes are not entirely known. This study reports a significant decrease in LC in human monocytes exposed to high glucose (HG) concentrations as well as in the blood of type 2 diabetic rats. Thus, a significant decrease in the level of LC in response to exposure to HG supports the assertion that uncontrolled hyperglycemia contributes to a reduction of blood levels of LC and GSH seen in diabetic patients. Increased requirement of LC to replace GSH needed to scavenge excess ROS generated by hyperglycemia can result in lower levels of LC and GSH. Animal and human studies report that LC supplementation improves GSH biosynthesis and is beneficial in lowering oxidative stress and insulin resistance. This suggests that hyperglycemia has a direct role in the impairment of LC and GSH homeostasis in diabetes.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - David Micinski
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
24
|
Kalvandi O, Sadeghi A, Karimi A. Methionine supplementation improves reproductive performance, antioxidant status, immunity and maternal antibody transmission in breeder Japanese quail under heat stress conditions. Arch Anim Breed 2019; 62:275-286. [PMID: 31807638 PMCID: PMC6852882 DOI: 10.5194/aab-62-275-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023] Open
Abstract
This study was conducted to determine the effects of methionine (Met) supplementation on productive and reproductive performance, immune response and antioxidant status in breeder quails reared under heat stress (HS). A total of 125 breeder quails were divided into five groups. One group was kept in an environmentally controlled room at 22 ∘ C and considered as thermoneutral, and four groups were kept at 34 ∘ C and fed a basal diet (heat stressed) or a basal diet with Met concentrations 1.15, 1.30 and 1.45 times the quail requirements per NRC (1994) recommendations. HS decreased egg production in birds fed the basal diet ( P < 0.05 ). Higher feed intake ( P < 0.05 ), egg production ( P < 0.05 ), improved feed efficiency ( P < 0.05 ) and Haugh unit and hatchability variables ( P < 0.05 ) occurred in Met supplemented groups. Birds receiving Met under HS had higher maternal serum IgG, egg yolk IgY and offspring serum IgG (mg mL- 1 ). Quails receiving the Met supplementation diets exhibited higher ( P < 0.05 ) plasma levels and liver activity of superoxide dismutase, catalase and glutathione peroxidase as well as lower ( P < 0.05 ) plasma and liver levels of malondialdehyde compared to the HS group fed the basal diet. All breeder quails receiving the Met supplement had lower ( P < 0.05 ) heterophil and H / L ratios as well as higher ( P < 0.05 ) lymphocytes than quails fed the basal diet under the same stress conditions. Our results suggest that dietary supplementation with Met could improve the performance, immunity and antioxidant status of quails by reducing the negative effects of HS.
Collapse
Affiliation(s)
- Omid Kalvandi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Amirali Sadeghi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ahmad Karimi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
25
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
Ikonne US, Vann PH, Wong JM, Forster MJ, Sumien N. Supplementation with N-Acetyl Cysteine Affects Motor and Cognitive Function in Young but Not Old Mice. J Nutr 2019; 149:463-470. [PMID: 30770531 PMCID: PMC6398433 DOI: 10.1093/jn/nxy287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND N-acetyl cysteine (NAC) is a thiolic antioxidant that is thought to increase cellular glutathione (GSH) by augmenting the concentration of available cysteine, an essential precursor to GSH production. Manipulating redox status can affect brain function, and NAC intake has been associated with improving brain function in models of neurodegenerative diseases. OBJECTIVES The objective of the study was to determine if short-term dietary supplementation with NAC could ameliorate functional impairment associated with aging. METHODS C57BL/6J male mice aged 6, 12, or 24 mo were fed a control diet or the control diet supplemented with 0.3% NAC for a total of 12 wk. After 4 wk of dietary supplementation, mice began a series of behavioral tests to measure spontaneous activity (locomotor activity test), psychomotor performance (bridge-walking and coordinated running), and cognitive capacity (Morris water maze and discriminated active avoidance). The performance of the mice on these tests was analyzed through the use of analyses of variance with Age and Diet as factors. RESULTS Supplementation of NAC improved peak motor performance in a coordinated running task by 14% (P < 0.05), and increased the time spent around the platform by 24% in a Morris water maze at age 6 mo. However, the supplementation had no to minimal effect on the motor and cognitive functions of 12- and 24-mo-old mice. CONCLUSIONS The findings of this preclinical study support the claim that NAC has nootropic properties in 6-mo-old mice, but suggest that it may not be useful for improving motor and cognitive impairments in older mice.
Collapse
Affiliation(s)
- Uzoma S Ikonne
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
- Basic Medical Science, School of Osteopathic Medicine Arizona, A.T. Still University, Mesa, AZ
| | - Philip H Vann
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Jessica M Wong
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Michael J Forster
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| |
Collapse
|
27
|
Van Hecke T, De Vrieze J, Boon N, De Vos WH, Vossen E, De Smet S. Combined Consumption of Beef-Based Cooked Mince and Sucrose Stimulates Oxidative Stress, Cardiac Hypertrophy, and Colonic Outgrowth of Desulfovibrionaceae in Rats. Mol Nutr Food Res 2018; 63:e1800962. [PMID: 30379400 DOI: 10.1002/mnfr.201800962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/12/2018] [Indexed: 12/13/2022]
Abstract
SCOPE High red meat and sucrose consumption increases the epidemiological risk for chronic diseases. Mechanistic hypotheses include alterations in oxidative status, gut microbiome, fat deposition, and low-grade inflammation. METHODS AND RESULTS For 2 weeks, 40 rats consumed a diet high in white or red meat (chicken-based or beef-based cooked mince, respectively), and containing corn starch or sucrose in a 2 × 2 factorial design. Lard was mixed with lean chicken or beef to obtain comparable dietary fatty acid profiles. Beef (vs chicken)-fed rats had higher lipid oxidation products (malondialdehyde, 4-hydroxy-2-nonenal, and hexanal) in stomach content and blood, and lower blood glutathione. Sucrose (vs corn starch)-fed rats showed increased blood lipid oxidation products and glutathione peroxidase activity, higher liver weight and malondialdehyde concentrations, and mesenterial and retroperitoneal fat accumulation. Beef-sucrose-fed rats had increased cardiac weight, suggesting pathophysiological effects on the cardiovascular system. The colonic microbiome of beef-sucrose-fed rats showed an outgrowth of the sulfate-reducing family of the Desulfovibrionaceae, and lower abundance of the Lactobacillus genus, indicating intestinal dysbiosis. Blood C-reactive protein, a marker for inflammation, was not different among groups. CONCLUSIONS Consumption of a cooked beef-based meat product with sucrose increased oxidative stress parameters and promoted cardiac hypertrophy and intestinal dysbiosis.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality , Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
28
|
Omid K, Amirali S, Ahmad K. N-Acetyl cysteine improves performance, reproduction, antioxidant status, immunity and maternal antibody transmission in breeder Japanese quail under heat stress condition. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Maciejczyk M, Matczuk J, Żendzian-Piotrowska M, Niklińska W, Fejfer K, Szarmach I, Ładny JR, Zieniewska I, Zalewska A. Eight-Week Consumption of High-Sucrose Diet Has a Pro-Oxidant Effect and Alters the Function of the Salivary Glands of Rats. Nutrients 2018; 10:E1530. [PMID: 30336621 PMCID: PMC6212933 DOI: 10.3390/nu10101530] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
A high-sucrose diet (HSD) is widely known for its cariogenic effects and promotion of obesity, insulin resistance, type 2 diabetes, and cancer. However, the impact of the HSD diet on the salivary gland function as well as the level of salivary oxidative stress is still unknown and requires evaluation. Our study is the first to determine both redox balance and oxidative injury in the parotid and submandibular glands of rats fed the HSD diet compared to the control group. We have demonstrated that uric acid concentration and the activity of superoxide dismutase and peroxidase varied significantly in both the submandibular and parotid glands of HSD rats vs. the control group. However, enhanced oxidative damage to proteins, lipids, and DNA (increase in advanced glycation end products, advanced oxidation protein products, 4-hydroxynonenal, and 8-hydroxy-2'-deoxyguanosine) was observed only in the parotid glands of HSD rats. Moreover, the HSD diet also reduced the total protein content and amylase activity in both types of salivary glands and decreased the stimulated salivary flow rate. To sum up, an HSD diet reduces salivary gland function and disturbs the redox balance of the parotid as well as submandibular salivary glands. However, the parotid glands are more vulnerable to both antioxidant disturbances and oxidative damage.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, 2c Mickiewicza Street, 15-233 Bialystok, Poland.
| | - Jan Matczuk
- County Veterinary Inspection, Zwycięstwa 26b Street, 15-959 Bialystok, Poland.
| | | | - Wiesława Niklińska
- Department of Histology and Embryology, Medical University of Bialystok, Waszyngtona 13 Street, 15-233 Bialystok, Poland.
| | - Katarzyna Fejfer
- Department of Conservative Dentistry, Medical University of Bialystok, Sklodowska 24a Street, 15-274 Bialystok, Poland.
| | - Izabela Szarmach
- Department of Orthodontics, Medical University of Bialystok, Waszyngtona 15a Street, 15-274 Bialystok, Poland.
| | - Jerzy Robert Ładny
- Department of Emergency Medicine and Disasters, Medical University of Bialystok, Szpitalna 37 Street, 15-767 Bialystok, Poland.
| | - Izabela Zieniewska
- Department of Conservative Dentistry, Medical University of Bialystok, Sklodowska 24a Street, 15-274 Bialystok, Poland.
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Sklodowska 24a Street, 15-274 Bialystok, Poland.
| |
Collapse
|
30
|
Tsai IJ, Chen CW, Tsai SY, Wang PY, Owaga E, Hsieh RH. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet. Appl Physiol Nutr Metab 2018; 43:669-676. [DOI: 10.1139/apnm-2017-0670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vascular endothelial dysfunction is a potential risk factor for cardiovascular disease. This study evaluated the effect of curcumin on factors associated with vascular dysfunction using rats fed a high-sucrose, high-fat (HSF) diet. The experiment included 2 animal feeding phases. In the first feeding phase, male Sprague–Dawley rats were randomly divided into 2 groups: the control group (n = 8) was fed a standard diet (AIN-93G) and the HSF group (n = 24) was fed an HSF diet for 8 weeks to induce obesity. In the second feeding phase, lasting 4 weeks, the HSF group was randomly divided into 3 subgroups: the O group (n = 8) continued feeding on the HSF diet, the OA group (n = 8) had the HSF diet replaced with AIN-93G, and the OC group (n = 8) was fed the HSF diet supplemented with curcumin (300 mg/kg body weight daily). After 8 weeks, the HSF diet significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), insulin, homeostatic model assessment insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), C-reactive protein (CRP), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) but significantly reduced levels of nitric oxide (NO) and high-density lipoprotein cholesterol (HDL-C). After dietary intervention, the OA and OC groups exhibited significantly lower levels of AST, ALT, HOMA-IR, cholesterol, LDL-C, Hcy, CRP, VCAM-1, and ICAM-1 and higher levels of NO and catalase (CAT) activity compared with the O group. Superoxide dismutase, CAT, and glutathione peroxidase activities were increased in the OA group, while CAT levels were enhanced in the OC group. In conclusion, this study showed that curcumin supplementation and diet modification can inhibit HSF diet-induced vascular dysfunction potentially by enhancing NO production and antioxidant enzyme activities, thereby suppressing inflammation and oxidative damage in the vascular endothelium.
Collapse
Affiliation(s)
- I-Jung Tsai
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Chia-Wen Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Shin-Yu Tsai
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Pei-Yuan Wang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Eddy Owaga
- Institute of Food Bioresources Technology, Dedan Kimathi University of Technology, P.O. Box 657-10100, Nyeri, Kenya
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| |
Collapse
|
31
|
L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. Amino Acids 2018; 50:909-921. [PMID: 29626298 DOI: 10.1007/s00726-018-2559-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.
Collapse
|
32
|
Rosa LRDO, Kaga AK, Barbanera PO, Queiroz PM, do Carmo NOL, Fernandes AAH. Beneficial effects of N-acetylcysteine on hepatic oxidative stress in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:412-418. [DOI: 10.1139/cjpp-2017-0559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is one of the leading diseases worldwide and, thus, finding new therapeutic alternatives is essential. The development of non-alcoholic fatty liver disease is a notable diabetic complication. Therefore, antioxidant therapy became a leading topic in the world of diabetes research. The objective of this present study was to evaluate the effects of antioxidant N-acetylcysteine (NAC) administration on serum biochemical parameters and oxidative stress parameters in hepatic tissue of the diabetic rats. Thirty-two animals were divided in 4 groups (n = 8): G1, normal rats; G2, normal rats + NAC; G3, diabetic rats; and G4, diabetic rats + NAC. Diabetes was induced in diabetic groups through streptozotocin. NAC administration was effective in improving hyperglycemia and hypoinsulinemia, as well as reducing serum alanine-aminotransferase and urea, hepatic triglycerides accumulation, and oxidative stress biomarkers in the diabetic liver, as well as improving the activity of hepatic antioxidant enzymes. This effect was likely due to NAC’s ability of restoring intracellular glutathione, an important compound for the antioxidant defense, as well as due to NAC’s direct antioxidant properties. Thus, NAC administration was useful for reducing hepatic oxidative stress and decreased the deposit of triacylglycerols, minimizing diabetic hepatic damage, making it a promising therapeutic adjuvant in the future.
Collapse
Affiliation(s)
- Lucas Rodolfo de Oliveira Rosa
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Anderson Kiyoshi Kaga
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Pedro Octavio Barbanera
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Priscila Manfio Queiroz
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Nágilla Orleanne Lima do Carmo
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
- Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil 18618-970
| |
Collapse
|
33
|
Chung APYS, Gurtu S, Chakravarthi S, Moorthy M, Palanisamy UD. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats. Front Nutr 2018; 5:17. [PMID: 29616223 PMCID: PMC5864930 DOI: 10.3389/fnut.2018.00017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 12/02/2022] Open
Abstract
Geraniin, a hydrolysable polyphenol derived from Nephelium lappaceum L. fruit rind, has been shown to possess significant antioxidant activity in vitro and recently been recognized for its therapeutic potential in metabolic syndrome. This study investigated its antioxidative strength and protective effects on organs in high-fat diet (HFD)-induced rodents. Rats were fed HFD for 6 weeks to induce obesity, followed by 10 and 50 mg/kg of geraniin supplementation for 4 weeks to assess its protective potential. The control groups were maintained on standard rat chows and HFD for the same period. At the 10th week, oxidative status was assessed and the pancreas, liver, heart and aorta, kidney, and brain of the Sprague Dawley rats were harvested and subjected to pathological studies. HFD rats demonstrated changes in redox balance; increased protein carbonyl content, decreased levels of superoxide dismutase, glutathione peroxidase, and glutathione reductase with a reduction in the non-enzymatic antioxidant mechanisms and total antioxidant capacity, indicating a higher oxidative stress (OS) index. In addition, HFD rats demonstrated significant diet-induced changes particularly in the pancreas. Four-week oral geraniin supplementation, restored the OS observed in the HFD rats. It was able to restore OS biomarkers, serum antioxidants, and the glutathione redox balance (reduced glutathione/oxidized glutathione ratio) to levels comparable with that of the control group, particularly at dosage of 50 mg geraniin. Geraniin was not toxic to the HFD rats but exhibited protection against glucotoxicity and lipotoxicity particularly in the pancreas of the obese rodents. It is suggested that geraniin has the pharmaceutical potential to be developed as a supplement to primary drugs in the treatment of obesity and its pathophysiological sequels.
Collapse
Affiliation(s)
- Alexis Panny Y S Chung
- School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| | - Sunil Gurtu
- School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| | | | - Mohanambal Moorthy
- School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| | - Uma D Palanisamy
- School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Malaysia
| |
Collapse
|
34
|
Effect of N-Acetylcysteine on Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in a Rat Model of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6581970. [PMID: 29636851 PMCID: PMC5831706 DOI: 10.1155/2018/6581970] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress plays a crucial role in the salivary gland dysfunction in insulin resistance (IR). It is not surprising that new substances are constantly being sought that will protect against the harmful effects of IR in the oral cavity environment. The purpose of this study was to evaluate the effect of N-acetylcysteine (NAC) on oxidative stress and secretory function of salivary glands in a rat model of insulin resistance. Rats were divided into 4 groups: C-normal diet, C + NAC-normal diet + NAC, HFD-high-fat diet, and HFD + NAC. We have demonstrated that NAC elevated enzymatic (superoxide dismutase, catalase, and peroxidase) and nonenzymatic antioxidants (reduced glutathione (GSH) and total antioxidant capacity (TAS)) in the parotid glands of HFD + NAC rats, while in the submandibular glands increased only GSH and TAS levels. NAC protects against oxidative damage only in the parotid glands and increased stimulated salivary secretion; however, it does not increase the protein secretion in the both salivary glands. Summarizing, NAC supplementation prevents the decrease of stimulated saliva secretion, seen in the HFD rats affected. NAC improves the antioxidative capacity of the both glands and protects against oxidative damage to the parotid glands of IR rats.
Collapse
|
35
|
Effect of N-Acetylcysteine on Dyslipidemia and Carbohydrate Metabolism in STZ-Induced Diabetic Rats. Int J Vasc Med 2018; 2018:6428630. [PMID: 29796316 PMCID: PMC5896413 DOI: 10.1155/2018/6428630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/27/2017] [Indexed: 11/24/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is characterized by insulin-deficient production leading to hyperglycemia, which is associated with diabetic complications such as cardiovascular diseases. Antioxidants have been proving a good alternative to diabetic complications, with N-acetylcysteine (NAC) having antioxidant characteristics. The aim of this study was to assess the effect of NAC on the lipid profile and the atherogenic index (AI) in streptozotocin- (STZ-) induced diabetic rats. Method 32 male Wistar rats (60 days of age) weighting ±250 g were randomly distributed into four groups (n = 8): CTRL: control rats; CTRL+NAC: control rats treated with NAC; DM: diabetic rats; DM+NAC: diabetic rats treated with NAC. T1DM was induced using STZ (60 mg/kg, ip; single dose), and NAC (25 mg/kg/day) was administrated by gavage, for 37 days. The animals received chow and water ad libitum. After the experimental period, blood and cardiac tissue samples were collected to analyze energetic metabolism, lipid profile, and AI. Results NAC decreased (p < 0.01) glycemia, energy intake, carbohydrate, and protein consumption in diabetic rats (DM+NAC), when compared with DM, while the alimentary efficiency was improved (p < 0.01) in treated diabetic rats (DM+NAC). Diabetic rats treated with NAC decreased (p < 0.01) lipid profile and AI in diabetic rats (DM+NAC) when compared to DM. Conclusion NAC improves lipid profile and decreases AI in STZ-induced diabetic rats.
Collapse
|
36
|
Zhao M, Wang P, Li D, Shang J, Hu X, Chen F. Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals. Food Chem Toxicol 2017; 108:392-406. [DOI: 10.1016/j.fct.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
37
|
Fiorino P, Américo A, Muller C, Evangelista F, Santos F, Leite A, Farah V. Exposure to high-fat diet since post-weaning induces cardiometabolic damage in adult rats. Life Sci 2016; 160:12-17. [DOI: 10.1016/j.lfs.2016.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/23/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022]
|
38
|
Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res 2016; 33:2033-42. [PMID: 27161488 DOI: 10.1007/s11095-016-1941-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/02/2016] [Indexed: 01/13/2023]
Abstract
PURPOSE To study the effects of N-acetylcysteine (NAC, C5H9NO3S) on diet-induced obesity and obesity-related metabolic disorders. METHODS Six-week-old male C57BL/6 mice fed a chow or high-fat diet (HFD) were treated with NAC (2 g/L) in drinking water for 11 weeks. Its influences on body weight and food intake were manually measured, and influence on body composition were analyzed by magnetic residence imaging. Glucose meter and ELISA were used to determine serum glucose and insulin levels, as well as lipid content in the liver. The effects of NAC treatment on mRNA levels of genes involved in inflammation, thermogenesis, and lipid metabolism in various tissues were determined by real time PCR. RESULTS NAC supplementation inhibited the increase of fat mass and the development of obesity when mice were fed an HFD. NAC treatment significantly lowered HFD-induced macrophage infiltration, and enhanced adiponectin gene expression, resulting in reduced hyperglycemia and hyperinsulinemia, and improvement of insulin resistance. NAC oral administration suppressed hepatic lipid accumulation, as evidenced by lower levels of triglyceride and cholesterol in the liver. The beneficial effects are associated with a decrease of hepatic Pparγ and its target gene expression, and an increase in the expression of genes responsible for lipid oxidation and activation of farnesoid X receptor. Furthermore, NAC treatment also stimulates expression of thermogenic genes. CONCLUSION These results provide direct proof of the protective potential of NAC against HFD-induced obesity and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, Georgia, USA.
| |
Collapse
|
39
|
Elbini Dhouib I, Jallouli M, Annabi A, Gharbi N, Elfazaa S, Lasram MM. A minireview on N-acetylcysteine: An old drug with new approaches. Life Sci 2016; 151:359-363. [PMID: 26946308 DOI: 10.1016/j.lfs.2016.03.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023]
Abstract
N-acetylcysteine (NAC), a cysteine pro-drug and glutathione precursor has been used in therapeutic practices for several decades, as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication. There is a growing interest concerning the beneficial effects of NAC against the early stages of toxicity-induced by pesticides. Nevertheless, the mechanisms underlying the therapeutic and clinical applications of NAC are not fully understood. In this review we aimed to focus on the protective effects of NAC against oxidative stress caused by pesticide in many organs. The possible mechanisms of action may be associated to its antioxidant properties. The anti-oxidative activity of NAC has been attributed to the fast reaction with free radicals as well as the restitution of reduced glutathione (GSH).
Collapse
Affiliation(s)
- Ines Elbini Dhouib
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia; Ecole Supérieure Privée des Ingénieurs et des Etudes Technologiques, Université Arabe des Sciences, Tunis, Tunisia.
| | - Manel Jallouli
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Alya Annabi
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Najoua Gharbi
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Saloua Elfazaa
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| | - Mohamed Montassar Lasram
- Unité de physiologie des agressions: études métaboliques et endocriniens, Laboratoire de Microorganismes et Biomolécules Actives Département de biologie, Faculté des sciences de Tunis, Université El-Manar, Tunis, Tunisia
| |
Collapse
|
40
|
Achari AE, Jain SK. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose. Mol Cell Biochem 2016; 414:105-13. [PMID: 26897632 DOI: 10.1007/s11010-016-2664-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/11/2016] [Indexed: 12/27/2022]
Abstract
Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p < 0.05) upregulated the DsbA-L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p < 0.05) promoted the secretion of total and HMW adiponectin secretion in HG-treated adipocytes. In addition, LC significantly (p < 0.05) decreased ROS production and MCP-1 secretion in HG-treated cells. We further investigated whether MCP-1 has any role of LC on DsbA-L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.
Collapse
Affiliation(s)
- Arunkumar Elumalai Achari
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Departments of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
41
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
42
|
Azu OO, Jegede AI, Ugochukwu O, Onanuga IO, Kharwa S, Naidu EC. Hepatic histomorphological and biochemical changes following highly active antiretroviral therapy in an experimental animal model: Does Hypoxis hemerocallidea exacerbate hepatic injury? Toxicol Rep 2016; 3:114-122. [PMID: 28959529 PMCID: PMC5615786 DOI: 10.1016/j.toxrep.2015.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 11/24/2022] Open
Abstract
As the roll-out of antiretroviral therapy continues to drive downwards morbidity and mortality in people living with HIV/AIDS (PLWHAs), organ toxicities (especially the liver) are frequently becoming a major concern for researchers, scientists and healthcare planners. This study was conducted to investigate the possible protective effect of Hypoxis hemerocallidea (AP) against highly active antiretroviral therapy (HAART)-induced hepatotoxicity. A total of 63 pathogen-free adult male Sprague-Dawley rats were divided into 9 groups and treated according to protocols. While no mortality was reported, animals treated with adjuvant HAART and AP recorded least% body weight gain. Significant derangements in serum lipid profiles were exacerbated by treatment of with AP as LDL (increased p < 0.03), triglycerides (increased p < 0.03) with no change in total cholesterol levels. Adjuvant AP with HAART caused reduction in LDL (p < 0.05 and 0.03), increased HDL (p < 0.05) and TG (p < 0.05 and 0.001 for AP100 and AP200 doses respectively). Markers of liver injury assayed showed significant increase (p < 0.003, 0.001) in AST in AP alone as well as HAART+ vitamins C and E groups respectively. Adjuvant HAART and AP and vitamins C and E also caused significant declines in ALT and ALP levels. Serum GGT was not markedly altered. Disturbances in histopathology ranged from severe hepatocellular distortions, necrosis and massive fibrosis following co-treatment of HAART with vitamins C and E as well as HAART alone. These results warrant caution on the adjuvant use of AP with HAART by PLWHAs as implications for hepatocellular injuries are suspect with untoward cardiometabolic changes.
Collapse
Affiliation(s)
- Onyemaechi Okpara Azu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Ayoola Isaac Jegede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa.,Anatomy Department, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Osun, Nigeria
| | - Offor Ugochukwu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Ismail Olasile Onanuga
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa.,Department of Anatomy, Faculty of Basic Medical Sciences, Kampala International University, Kansaga, Ggaba Road, Uganda
| | - Salem Kharwa
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences. Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
43
|
Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int J Mol Sci 2015; 16:30269-308. [PMID: 26694382 PMCID: PMC4691167 DOI: 10.3390/ijms161226225] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 12/12/2022] Open
Abstract
Liver disease is highly prevalent in the world. Oxidative stress (OS) and inflammation are the most important pathogenetic events in liver diseases, regardless the different etiology and natural course. N-acetyl-l-cysteine (the active form) (NAC) is being studied in diseases characterized by increased OS or decreased glutathione (GSH) level. NAC acts mainly on the supply of cysteine for GSH synthesis. The objective of this review is to examine experimental and clinical studies that evaluate the antioxidant and anti-inflammatory roles of NAC in attenuating markers of inflammation and OS in hepatic damage. The results related to the supplementation of NAC in any form of administration and type of study are satisfactory in 85.5% (n = 59) of the cases evaluated (n = 69, 100%). Within this percentage, the dosage of NAC utilized in studies in vivo varied from 0.204 up to 2 g/kg/day. A standard experimental design of protection and treatment as well as the choice of the route of administration, with a broader evaluation of OS and inflammation markers in the serum or other biological matrixes, in animal models, are necessary. Clinical studies are urgently required, to have a clear view, so that, the professionals can be sure about the effectiveness and safety of NAC prescription.
Collapse
|
44
|
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48:1200-8. [DOI: 10.1016/j.clinbiochem.2015.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
|
45
|
Lasram MM, El-Golli N, Lamine AJ, Douib IB, Bouzid K, Annabi A, El Fazaa S, Abdelmoula J, Gharbi N. Changes in glucose metabolism and reversion of genes expression in the liver of insulin-resistant rats exposed to malathion. The protective effects of N-acetylcysteine. Gen Comp Endocrinol 2015; 215:88-97. [PMID: 25449180 DOI: 10.1016/j.ygcen.2014.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022]
Abstract
Organophosphorus pesticides are known to disturb glucose homeostasis and increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on insulin signaling pathways and the protective effects of N-acetylcysteine (NAC). Malathion (200 mg/kg) and NAC (2 g/l) were administered orally to rats, during 28 consecutive days. Malathion increases plasma glucose, plasma insulin and glycated hemoglobin levels. Further, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The GP, GSK3β and PEPCK mRNA expressions were amplified by malathion while, the expression of glucokinase gene is down-regulated. On the basis of biochemical and molecular findings, it is concluded that malathion impairs glucose homeostasis through insulin resistance and insulin signaling pathways disruptions in a way to result in a reduced function of insulin into hepatocytes. Otherwise, when malathion-treated rats were compared to NAC supplemented rats, fasting glucose and insulin levels, as well as insulin resistance indices were reduced. Furthermore, NAC restored liver GP and PEPCK expression. N-acetylcysteine showed therapeutic effects against malathion-induced insulin signaling pathways disruption in liver. These data support the concept that antioxidant therapies attenuate insulin resistance and ameliorate insulin sensitivity.
Collapse
Affiliation(s)
- Mohamed Montassar Lasram
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Narjes El-Golli
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Aicha Jrad Lamine
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Ines Bini Douib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Kahena Bouzid
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Alya Annabi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Jaouida Abdelmoula
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Najoua Gharbi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| |
Collapse
|
46
|
Babatunde IR, Abdulbasit A, Oladayo MI, Olasile OI, Olamide FR, Gbolahan BW. Hepatoprotective and Pancreatoprotective Properties of the Ethanolic Extract of Nigerian Propolis. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:102-8. [PMID: 26401394 PMCID: PMC4566782 DOI: 10.5455/jice.20150202023615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/02/2015] [Indexed: 11/06/2022]
Abstract
Objective: Increased oxidative stress is associated with the progression of diabetic mellitus. In the present study, we investigated the effects of the ethanolic extract of Nigerian propolis (N. propolis) on markers of oxidative stress, histology of the liver and pancreas and glycaemia in alloxan-induced diabetic rats. Materials and Methods: Alloxan-induced hyperglycemic Wistar rats were treated with either metformin (150 mg/kg/d) or N. propolis (200 mg/kg/d and 300 mg/kg/d) for 28 days. At the end of the treatment period, the rats were sacrificed; blood was collected for biochemical analysis while their pancreases and liver were excised and processed for histological studies. Results: Serum oxidative stress markers and blood glucose concentration were compared between the treated and control rats. In contrast to the non-treated diabetic rats, blood glucose concentration were not significantly different between treated rats and control (P < 0.05) at 28 days of treatment with N. propolis and metformin. Serum malondialdehyde levels was reduced while superoxide dismutase levels were elevated in the N. propolis group; these levels were converse in the diabetic group, these differences are statistically significant (P<0.05) when compared with the control. Histologically, there was improvement in the treated group compared to the untreated group. Conclusion: These findings suggest that the N. propolis confers protection against hyperglycemia-induced oxidative stress in both liver and pancreas of adult Wistar rats.
Collapse
Affiliation(s)
| | - Amin Abdulbasit
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | | | | | | | | |
Collapse
|
47
|
Machado JT, Iborra RT, Fusco FB, Castilho G, Pinto RS, Machado-Lima A, Nakandakare ER, Seguro AC, Shimizu MH, Catanozi S, Passarelli M. N-acetylcysteine prevents endoplasmic reticulum stress elicited in macrophages by serum albumin drawn from chronic kidney disease rats and selectively affects lipid transporters, ABCA-1 and ABCG-1. Atherosclerosis 2014; 237:343-52. [DOI: 10.1016/j.atherosclerosis.2014.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023]
|
48
|
Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice. Sci Rep 2014; 4:6806. [PMID: 25348324 PMCID: PMC4210865 DOI: 10.1038/srep06806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022] Open
Abstract
Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis.
Collapse
|
49
|
Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur J Clin Nutr 2014; 68:1148-53. [PMID: 24961547 PMCID: PMC4192028 DOI: 10.1038/ejcn.2014.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022]
Abstract
Background/Objectives: Vitamin D, L-cysteine (LC) and glutathione (GSH) levels are lower in the blood of diabetic patients. This study examined the hypothesis that the levels of vitamin D and LC correlate with those of GSH in the blood of type 2 diabetic patients (T2D), and that vitamin D and LC upregulate glutamate–cysteine ligase (GCLC), which catalyzes GSH biosynthesis, in cultured monocytes. Subjects/Methods: Fasting blood was obtained after written informed consent from T2D (n=79) and healthy controls (n=22). U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (0–25 nM) or LC (0–500 μM) for 24 h and then exposed to control or high glucose (25 mM) for 4 h. Results: Plasma levels of vitamin D, LC, GSH and GCLC protein were significantly lower in T2D versus those in age-matched healthy controls. Multiple linear regression analyses and adjustment for body weight showed a significant positive correlation between plasma levels of vitamin D (r=0.26, P=0.05) and LC (r=0.81, P=0.001) and that of GSH, and between LC and vitamin D (r=0.27, P=0.045) levels. Plasma levels of GSH (r=−0.34, P=0.01) and LC (r=−0.33, r=0.01) showed a negative correlation with triglyceride levels. Vitamin D correlated inversely with HbA1C (−0.30, P=0.01) and homeostatic model assessment insulin resistance (r=−0.31, P=0.03), which showed a significant positive correlation with triglycerides (r=0.44, P=0.001) in T2D. Cell culture studies demonstrate that supplementation with vitamin D and LC significantly increased GCLC expression and GSH formation in control and high-glucose-treated monocytes. Conclusions: This study suggests a positive relationship between the concentrations of the micronutrients vitamin D and LC and that of GSH. Some of the beneficial effects of vitamin D and LC supplementation may be mediated by an increase in the levels of GSH and a decrease in triglyceride levels in T2D patients.
Collapse
|
50
|
Higa T, Spinola A, Fonseca-Alaniz M, Evangelista F. Remodeling of white adipose tissue metabolism by physical training prevents insulin resistance. Life Sci 2014; 103:41-8. [DOI: 10.1016/j.lfs.2014.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/08/2014] [Accepted: 02/28/2014] [Indexed: 01/25/2023]
|