1
|
Allen Z, Kernodle SP, Shi R, Liu H, Timko MP, Steede T, Dewey RE, Lewis RS. BBL enzymes exhibit enantiospecific preferences in the biosynthesis of pyridine alkaloids in Nicotiana tabacum L. PHYTOCHEMISTRY 2025; 232:114363. [PMID: 39694397 DOI: 10.1016/j.phytochem.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Plant species can accumulate secondary metabolites in optically pure form or, occasionally, as enantiomeric mixtures. Interestingly, enantiomers of the same molecule can confer different biological activities. In tobacco (Nicotiana tabacum L.), the pyridine alkaloids nicotine, nornicotine, anatabine, and anabasine naturally exist as scalemic mixtures of (R)- or (S)-enantiomers, with the (S)-isoforms predominating. The mechanisms by which tobacco alkaloid enantiomers accumulate remain largely unknown. Experiments were carried out involving tobacco genotypes possessing induced deleterious mutations in three genes coding for nicotine demethylase (NND) enzymes and three genes coding for Berberine Bridge Like (BBL) enzymes that act near the end of the nicotine, anatabine, and anabasine biosynthetic pathways. Data indicate that (R)-nicotine is naturally produced at appreciable levels but is observed in only small amounts due to preferential demethylation by NND enzymes. Data further suggest that BBL-a and BBL-b are preferentially involved in the biosynthesis of (S)-alkaloid enantiomers, while BBL-c is preferentially involved in the biosynthesis of (R)-enantiomers. Gene duplication followed by genetic divergence thus played a role in the evolution of scalemic alkaloid accumulation in tobacco. Through a combination of mutation breeding and transgene overexpression, tobacco genotypes were generated in which the predominant alkaloid enantiomers were reversed from the (S)- to the (R)-isoforms. These results shed light on the genetic control of alkaloid accumulation in N. tabacum and on mechanisms of scalemic mixture formation of secondary metabolites in plants.
Collapse
Affiliation(s)
- Zachary Allen
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Sheri P Kernodle
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Rui Shi
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Tyler Steede
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Ralph E Dewey
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Trotsko N, Miroslaw B, Jasiński R, Długosz M, Sadczuk M, Demchuk OM. Efficient Method of ( S)-Nicotine Synthesis. Molecules 2024; 29:5731. [PMID: 39683890 DOI: 10.3390/molecules29235731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Improved methods for the synthesis of nicotine are of great importance due to the wide range of applications of synthetic nicotine, which is free from contamination with nitrosamines. Herein, we present a four-step chemical synthesis of (S)-nicotine, involving the reduction in myosmine, enantiomeric separation of nornicotine, and subsequent methylation of the appropriate enantiomer of nornicotine obtained. The reduction in myosmine was investigated using both electrochemical and chemical approaches, achieving up to 90% yields of pure nornicotine. To achieve the enantioseparation of nornicotine, its diastereomeric salts with chiral acids, specifically, N-lauroyl-(R)-alanine, were obtained in a mixture of methyl tert-butyl ether (MTBE) and chloroform, which led to the isolation of (S)-nornicotine with 92% ee. The structures of the obtained salts were determined by the X-ray diffraction (XRD) technique, which helped to explain the origin of enantiodiscrimination during the crystallization. The described methodology allows efficient regeneration of the reagents and solvents used, leading to cost-effective production of (S)-nicotine suitable for industrial-scale applications.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Medical University of Lublin, Witolda Chodźki 4A, 20-093 Lublin, Poland
| | - Barbara Miroslaw
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Marii Skłodowskiej-Curie, 2, 20-031 Lublin, Poland
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, University of Technology in Cracow, Warszawska 24, 31-155 Kraków, Poland
| | | | - Małgorzata Sadczuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Witolda Chodźki 4A, 20-093 Lublin, Poland
| | - Oleg M Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J/4.03, 20-708 Lublin, Poland
| |
Collapse
|
3
|
Handlovic TT, Wahab MF, Glass BC, Armstrong DW. On the greenness of separation modes containing compressed fluids. Anal Chim Acta 2024; 1330:343288. [PMID: 39489969 DOI: 10.1016/j.aca.2024.343288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND In the past three decades, liquid chromatography (LC) has been recognized as a significant environmental, health, and safety burden due to its heavy reliance on toxic organic solvents. Various chromatographic modes are in vogue today for complex analyses, such as sub/supercritical fluid chromatography (SFC) and enhanced fluidity liquid chromatography (EFLC). These modes are often advertised as "universally green" compared to the traditional allliquid reversed (RPLC) and normal phases (NPLC). Quantitative greenness evaluations must be done to validate or invalidate this assumption and allow separation scientists to make educated choices when deciding on what mode to use. RESULTS In this work, we modify the Analytical Method Greenness Score (AMGS) to include the cycle time of the instrument, and with the help of the first-order optimality condition (by setting the AMGS gradient = 0), we show that SFC and EFLC are not always the greenest option as they are often thought to be. Most of the greenness metrics have ignored the cycle time of instruments, yet this key component changes the entire AMGS response to flow rate. The complex case of separating tobacco alkaloid enantiomers (nicotine, nornicotine, anabasine, and anatabine) was selected as an illustrative example for comparing and contrasting separation modes using the modified greenness metric. These enantiomers have been selected due to their notorious difficulty in separation over the past 30 years. Using this family of molecules, four unique retention patterns were observed covering a wide variety of retention phenomena seen in small molecule enantioseparations. SIGNIFICANCE The modified AMGS metric will assist practicing analytical chemists in assessing the environmental impact of their separation methods from a single run in a given chromatographic mode. The proposed methodology identifies the minimum AMGS score corresponding to the greenest separation for routine chemical analysis.
Collapse
Affiliation(s)
- Troy T Handlovic
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Bailey C Glass
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA.
| |
Collapse
|
4
|
Huang HP, Xie YH, Gan XM, Wen XY, Wang CX, Deng YQ, Zhang ZW. Squaramide-catalyzed enantioselective Michael addition of nitromethane to 2-enoylazaarenes: synthesis of chiral azaarene-containing γ-nitroketones. RSC Adv 2024; 14:20056-20060. [PMID: 38911828 PMCID: PMC11192089 DOI: 10.1039/d4ra03826f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Bifunctional chiral squaramide-catalyzed highly enantioselective Michael addition of nitromethane to diverse 2-enoylazaarenes was successfully performed. This protocol provided a set of chiral azaarene-containing γ-nitroketones with up to 98% yield and 98% ee in a solvent-free catalytic system under mild conditions. Furthermore, gram-scale synthetic utility was also showcased.
Collapse
Affiliation(s)
- Hong-Ping Huang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Yu-Hang Xie
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Xu-Mei Gan
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Xin-Yu Wen
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Cui-Xia Wang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Yan-Qiu Deng
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| | - Zhen-Wei Zhang
- College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine Nanning Guangxi 530200 P. R. of China
| |
Collapse
|
5
|
Kucera C, Ramalingam A, Srivastava S, Bhatnagar A, Carll AP. Nicotine Formulation Influences the Autonomic and Arrhythmogenic Effects of Electronic Cigarettes. Nicotine Tob Res 2024; 26:536-544. [PMID: 38011908 PMCID: PMC11033561 DOI: 10.1093/ntr/ntad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Evidence is mounting that electronic cigarette (e-cig) use induces cardiac sympathetic dominance and electrical dysfunction conducive to arrhythmias and dependent upon nicotine. A variety of nicotine types and concentrations are available in e-cigs, but their relative cardiovascular effects remain unclear. Here we examine how different nicotine forms (racemic, free base, and salt) and concentrations influence e-cig-evoked cardiac dysfunction and arrhythmogenesis and provide a mechanism for nicotine-salt-induced autonomic imbalance. METHODS ECG-telemetered C57BL/6J mice were exposed to filtered air (FA) or e-cig aerosols from propylene glycol and vegetable glycerin solvents either without nicotine (vehicle) or with increasing nicotine concentrations (1%, 2.5%, and 5%) for three 9-minute puff sessions per concentration. Spontaneous ventricular premature beat (VPB) incidence rates, heart rate, and heart rate variability (HRV) were compared between treatments. Subsequently, to test the role of β1-adrenergic activation in e-cig-induced cardiac effects, mice were pretreated with atenolol and exposed to either FA or 2.5% nicotine salt. RESULTS During puffing and washout phases, ≥2.5% racemic nicotine reduced heart rate and increased HRV relative to FA and vehicle controls, indicating parasympathetic dominance. Relative to both controls, 5% nicotine salt elevated heart rate and decreased HRV during washout, suggesting sympathetic dominance, and also increased VPB frequency. Atenolol abolished e-cig-induced elevations in heart rate and declines in HRV during washout, indicating e-cig-evoked sympathetic dominance is mediated by β1-adrenergic stimulation. CONCLUSIONS Our findings suggest that inhalation of e-cig aerosols from nicotine-salt-containing e-liquids could increase the cardiovascular risks of vaping by inducing sympathetic dominance and cardiac arrhythmias. IMPLICATIONS Exposure to e-cig aerosols containing commercially relevant concentrations of nicotine salts may increase nicotine delivery and impair cardiac function by eliciting β1-adrenoceptor-mediated sympathoexcitation and provoking ventricular arrhythmias. If confirmed in humans, our work suggests that regulatory targeting of nicotine salts through minimum pH standards or limits on acid additives in e-liquids may mitigate the public health risks of vaping.
Collapse
Affiliation(s)
- Cory Kucera
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Anand Ramalingam
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Shweta Srivastava
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| | - Alex P Carll
- Department of Physiology, University of Louisville School of Medicine (ULSOM), Louisville, KY, USA
- Christina Lee Brown Envirome Institute, ULSOM, Louisville, KY, USA
- American Heart Association Tobacco Regulation and Addiction Center 2.0 (A-TRAC 2.0), ULSOM, Louisville, KY, USA
- Center for Cardiometabolic Science, ULSOM, Louisville, KY, USA
- Division of Environmental Medicine, ULSOM, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, ULSOM, Louisville, KY, USA
| |
Collapse
|
6
|
Li B, Luo B, Yang H, Tang W. Heck Reaction of
N
‐Heteroaryl Halides for the Concise Synthesis of Chiral α‐Heteroaryl‐substituted Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202209087. [DOI: 10.1002/anie.202209087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bowen Li
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Bangke Luo
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wenjun Tang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175654. [PMID: 36080422 PMCID: PMC9458230 DOI: 10.3390/molecules27175654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.
Collapse
|
8
|
Li B, Luo B, Yang H, Tang W. Heck Reaction of N‐Heteroaryl Halides for the Concise Synthesis of Chiral α‐Heteroaryl‐substituted Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bowen Li
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Bangke Luo
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - He Yang
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Wenjun Tang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bio-Organic and Natural Products Chemistry 345 Ling Ling Road 200032 Shanghai CHINA
| |
Collapse
|
9
|
Ye X, Zhang Y, Song X, Liu Q. Research Progress in the Pharmacological Effects and Synthesis of Nicotine. ChemistrySelect 2022. [DOI: 10.1002/slct.202104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Ye
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Yanxin Zhang
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Glycobiology and Glycotechnology Research center College of Food Science and Technology Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- College of Life Sciences Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Xiaoping Song
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi Key Laboratory of Degradable Biomedical Materials College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering College of Chemical Engineering Northwest University Taibai North Road 229 Xi'an 710069 Shaanxi P.R. China
| |
Collapse
|
10
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
11
|
Panda B, Albano G. Synthetic Methods for the Preparation of Conformationally Restricted Analogues of Nicotine. Molecules 2021; 26:7544. [PMID: 34946630 PMCID: PMC8706964 DOI: 10.3390/molecules26247544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
In the context of naturally occurring nitrogen heterocycles, nicotine is a chiral alkaloid present in tobacco plants, which can target and stimulate nicotinic acetylcholine receptors (nAChRs), a class of ligand-gated ion channels commonly located throughout the human brain. Due to its well-known toxicity for humans, there is considerable interest in the development of synthetic analogues; in particular, conformationally restricted analogues of nicotine have emerged as promising drug molecules for selective nAChR-targeting ligands. In the present mini-review, we will describe the synthesis of the conformationally restricted analogues of nicotine involving one or more catalytic processes. In particular, we will follow a systematic approach as a function of the heteroarene structure, considering: (a) 2,3-annulated tricyclic derivatives; (b) 3,4-annulated tricyclic derivatives; (c) tetracyclic derivatives; and (d) other polycyclic derivatives. For each of them we will also consider, when carried out, biological studies on their activity for specific nAChR subunits.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Chemistry, City College, 102/1 Raja Rammohan Sarani, Kolkata 700009, India
| | - Gianluigi Albano
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via Edoardo Orabona 4, 70126 Bari, Italy
| |
Collapse
|
12
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
13
|
Duell AK, Kerber PJ, Luo W, Peyton DH. Determination of ( R)-(+)- and ( S)-(-)-Nicotine Chirality in Puff Bar E-Liquids by 1H NMR Spectroscopy, Polarimetry, and Gas Chromatography-Mass Spectrometry. Chem Res Toxicol 2021; 34:1718-1720. [PMID: 34196534 PMCID: PMC10861124 DOI: 10.1021/acs.chemrestox.1c00192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tobacco products generally contain tobacco-derived nicotine (TDN; having ∼99+% (S)-(-)-nicotine). Recent United States regulation has led some producers to transition to synthetic ("tobacco-free") nicotine. For example, Puff Bar is now marketed with tobacco-free nicotine (TFN; presumed to be racemic). To evaluate the claim that these new products contain TFN, we evaluated the presence of the two nicotine optical isomers by 1H NMR spectroscopy, polarimetry, and gas chromatography-mass spectrometry. Older Puff Bars were found to contain (S)-(-)-nicotine, and newer "TFN" Puff Bars were found to contain both (R)-(+) and (S)-(-) isomers-indicating TFN, albeit with slightly more of the (S)-(-)-nicotine form.
Collapse
|
14
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, Promnesic, Anti-Acetylcholinesterase and Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish ( Danio rerio) Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:212. [PMID: 33535660 PMCID: PMC7912787 DOI: 10.3390/antiox10020212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN) are two nicotinic derivatives that possess cognitive-improving abilities and antioxidant properties in different rodent models of Alzheimer's disease (AD), eluding the side-effects of nicotine (NIC), the parent molecule. In the current study, we evaluated the impact of COT and 6HLN on memory deterioration, anxiety, and oxidative stress in the scopolamine (SCOP)-induced zebrafish model of AD. For this, COT and 6HLN were acutely administered by immersion to zebrafish that were treated with SCOP before testing. The memory performances were assessed in Y-maze and object discrimination (NOR) tasks, while the anxiety-like behavior was evaluated in the novel tank diving test (NTT). The acetylcholinesterase (AChE) activity and oxidative stress were measured from brain samples. The RT-qPCR analysis was used to evaluate the npy, egr1, bdnf, and nrf2a gene expression. Our data indicated that both COT and 6HLN attenuated the SCOP-induced anxiety-like behavior and memory impairment and reduced the oxidative stress and AChE activity in the brain of zebrafish. Finally, RT-qPCR analysis indicated that COT and 6HLN increased the npy, egr1, bdnf, and nrf2a gene expression. Therefore, COT and 6HLN could be used as tools for improving AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| | | | | | | | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
15
|
Mamun MSA, Tanaka Y, Waizumi H, Takaoka T, Wang Z, Alam MI, Ando A, Fukuyama M, Hibara A, Komeda T. Microfluidic tank assisted nicotine sensing property of field effect transistor composed of an atomically thin MoS 2 channel. Phys Chem Chem Phys 2020; 22:27724-27731. [PMID: 33242319 DOI: 10.1039/d0cp05710j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the sensor behavior of a field effect transistor, the channel of which is made of atomically thin MoS2 layers, focusing on the interaction of the MoS2 channel with the solution containing target molecules. For this purpose, we made a newly designed device in which the mask covered the electrodes of the source and the drain in order to make the solution contact only with the channel. In addition, a micro-fluid tank was fabricated above the channel as a solution reservoir. We examined the FET properties of this device for the sensing of the nicotine molecule for the development of a detection system for this molecule in the human body under in vivo conditions. We detected the sensor behavior both for the drop-cast process and for the condition where the channel contacts with the solution. The drain-current vs. gate-voltage variation of the MoS2-FET with the attachment of the nicotine molecule was clearly observed for both cases. For the latter case, the threshold voltage shifted in the negative gate-voltage direction with the increase of the concentration of the nicotine in the solution. This can be explained by the electron transfer from the molecule to the MoS2 channel, which was further confirmed by analyzing the X-ray photoemission spectroscopy and Raman spectroscopy together with the DFT calculation. The sensor can detect the variation of the nicotine concentration in the IPA solution by detecting the Vth change of the MoS2-FET.
Collapse
Affiliation(s)
- Muhammad Shamim Al Mamun
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki-Aza-Aoba, Aoba-Ku, Sendai 9808578, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cleal M, Gibbon A, Fontana BD, Parker MO. The importance of pH: How aquarium water is affecting behavioural responses to drug exposure in larval zebrafish. Pharmacol Biochem Behav 2020; 199:173066. [DOI: 10.1016/j.pbb.2020.173066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023]
|
17
|
Becerra GP, Rojas-Rodríguez F, Ramírez D, Loaiza AE, Tobar-Tosse F, Mejía SM, González J. Structural and functional computational analysis of nicotine analogs as potential neuroprotective compounds in Parkinson disease. Comput Biol Chem 2020; 86:107266. [PMID: 32388154 DOI: 10.1016/j.compbiolchem.2020.107266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
As the mechanism of interaction between nicotinic receptors with nicotine analogs is not yet fully understood, information at molecular level obtained from computational calculations is needed. In this sense, this work is a computational study of eight nicotine analogs, all with pyrrolidine ring modifications over a nicotine-based backbone optimized with B3LYP-D3/aug-cc-pVDZ. A molecular characterization was performed focusing on geometrical parameters such as pseudo-rotation angles, atomic charges, HOMO and LUMO orbitals, reactivity indexes and intermolecular interactions. Three analogs, A2 (3-(1,3-dimethyl-4,5-dihydro-1h-pirazole-5-yl) pyridine), A3 (3-(3-methyl-4,5-dihydro-1H-pyrazol-5-yl)-pyridine) and A8 (5-methyl-3-(pyridine-3-yl)-4,5-dihydroisoxazole), were filtered suggesting putative neuroprotective activity taking into account different reactivity values, such as their lowest hardness: 2.37 eV (A8), 2.43 eV (A2) and 2.56 eV (A3), compared to the highest hardness value found: 2.71 eV for A5 (3-((2S,4R)-4-(fluoromethyl)-1-methylpyrrolidine-2-il) pyridine), similar to the value of nicotine (2.70 eV). Additionally, molecular docking of all 8 nicotine analogs with the α 7 nicotinic acetylcholine receptor (α 7 nAChR) was performed. High values of interaction between the receptor and the three nicotine analogs were obtained: A3 (-7.1 kcal/mol), A2 (-6.9 kcal/mol) and A8 (-6.8 kcal/mol); whereas the affinity energy of nicotine was -6.4 kcal/mol. Leu116 and Trp145 are key residues in the binding site of α 7 nAChR interacting with nicotine analogs. Therefore, based upon these results, possible application of these nicotine analogs as neuroprotective compounds and potential implication at the design of novel Parkinson's treatments is evidenced.
Collapse
Affiliation(s)
- Gina Paola Becerra
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, El Llano Subercaseaux 2801-Piso 5, 8900000, Santiago, Chile
| | - Alix E Loaiza
- Laboratorio de Síntesis Orgánica, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabian Tobar-Tosse
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Sol M Mejía
- Laboratorio de Química Computacional, Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Janneth González
- Laboratorio de Bioquímica Computacional Estructural y Bioinformática, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
18
|
Rojas-Rodríguez F, Morantes C, Pinzón A, Barreto GE, Cabezas R, Mariño-Ramírez L, González J. Machine Learning Neuroprotective Strategy Reveals a Unique Set of Parkinson Therapeutic Nicotine Analogs. THE OPEN BIOINFORMATICS JOURNAL 2020; 13:1-14. [PMID: 33927788 PMCID: PMC8081347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS Present a novel machine learning computational strategy to predict the neuroprotection potential of nicotine analogs acting over the behavior of unpaired signaling pathways in Parkinson's disease. BACKGROUND Dopaminergic replacement has been used for Parkinson's Disease (PD) treatment with positive effects on motor symptomatology but low progression and prevention effects. Epidemiological studies have shown that nicotine consumption decreases PD prevalence through neuroprotective mechanisms activation associated with the overstimulation of signaling pathways (SP) such as PI3K/AKT through nicotinic acetylcholine receptors (e.g α7 nAChRs) and over-expression of anti-apoptotic genes such as Bcl-2. Nicotine analogs with similar neuroprotective activity but decreased secondary effects remain as a promissory field. OBJECTIVE The objective of this study is to develop an interdisciplinary computational strategy predicting the neuroprotective activity of a series of 8 novel nicotine analogs over Parkinson's disease. METHODS We present a computational strategy integrating structural bioinformatics, SP manual reconstruction, and deep learning to predict the potential neuroprotective activity of 8 novel nicotine analogs over the behavior of PI3K/AKT. We performed a protein-ligand analysis between nicotine analogs and α7 nAChRs receptor using geometrical conformers, physicochemical characterization of the analogs and developed manually curated neuroprotective datasets to analyze their potential activity. Additionally, we developed a predictive machine-learning model for neuroprotection in PD through the integration of Markov Chain Monte-Carlo transition matrix for the 2 SP with synthetic training datasets of the physicochemical properties and structural dataset. RESULTS Our model was able to predict the potential neuroprotective activity of seven new nicotine analogs based on the binomial Bcl-2 response regulated by the activation of PI3K/AKT. CONCLUSION Hereby, we present a robust novel strategy to assess the neuroprotective potential of biomolecules based on SP architecture. Our theoretical strategy can be further applied to the study of new treatments related to SP deregulation and may ultimately offer new opportunities for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| | - Carlos Morantes
- Departamento de Biología, Universidad Nacional de Colombia. Bogotá, Republic of Colombia
| | - Andrés Pinzón
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Republic of Colombia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana. Bogotá D.C, Republic of Colombia
| |
Collapse
|
19
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
20
|
Liu Z, Luan N, Shen L, Li J, Zou D, Wu Y, Wu Y. Palladium-Catalyzed Hiyama Cross-Couplings of Arylsilanes with 3-Iodoazetidine: Synthesis of 3-Arylazetidines. J Org Chem 2019; 84:12358-12365. [PMID: 31532668 DOI: 10.1021/acs.joc.9b01715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The first palladium-catalyzed Hiyama cross-coupling reactions of arylsilanes with 3-iodoazetidine were described. The protocol provides a convenient access to a variety of useful 3-arylazetidines which are of great interest in pharmaceutical laboratories in moderate to good yields (30%-88%). In addition, this strategy has the advantage of easy operation and mild reaction conditions.
Collapse
Affiliation(s)
- Zhenwei Liu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Nannan Luan
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Linhua Shen
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC. and Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou , 450052 , People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China.,Tetranov Biopharm, LLC. and Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou , 450052 , People's Republic of China.,Tetranov International, Inc. 100 Jersey Avenue, Suite A340 , New Brunswick , New Jersey 08901 , United States
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry , Zhengzhou University , Zhengzhou 450052 , People's Republic of China
| |
Collapse
|
21
|
Ji H, Wu Y, Fannin F, Bush L. Determination of tobacco alkaloid enantiomers using reversed phase UPLC/MS/MS. Heliyon 2019; 5:e01719. [PMID: 31193304 PMCID: PMC6525314 DOI: 10.1016/j.heliyon.2019.e01719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 11/12/2022] Open
Abstract
Nʹ-Nitrosonornicotine (NNN), a carcinogenic tobacco-specific Nʹ-nitrosamine (TSNA), is on the FDA list of harmful and potentially harmful constituents (HPHCs). Nornicotine, a product of the demethylation of nicotine, is the immediate alkaloid precursor for NNN formation. Nicotine, nornicotine and NNN are optically active. The accumulation of the isomers of nicotine, nornicotine, and NNN impacts their biological activity. In this paper, we report the determination of tobacco alkaloid enantiomers (including nicotine, nornicotine, anabasine, and anatabine) in samples of different tobacco lines using a reversed phase ultra-performance liquid chromatography-tandem mass spectrometer (UPLC/MS/MS) method. Current method demonstates excellent detection capability for all alkaloid enantiomers, with correlation coefficients (r2) > 0.996 within their linear dynamic ranges. The limit of detection (LOD) and limit of quantitation (LOQ) of all analytes are less than 10 ng/mL and 30 ng/mL, respectively. In addition, their recovery and coefficient of variation (CV%) are within 100–115% and 0.2–3.7%, respectively. The method validated in this paper is simple, fast, and sensitive for the quantification of alkaloid enantiomers in tobacco leaf and has been applied to investigations of tobacco alkaloid enantiomer ratios in different tobacco lines and tobacco products.
Collapse
Affiliation(s)
- Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ying Wu
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Franklin Fannin
- Plant and Soil Science Department, University of Kentucky, Lexington, KY 40546, USA
| | - Lowell Bush
- Plant and Soil Science Department, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
22
|
Sun J, Li Y, Gui Y, Xu Y, Zha Z, Wang Z. Copper(II)-catalyzed enantioselective conjugate addition of nitro esters to 2-enoyl-pyridine N-oxides. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zhang H, Pang Y, Luo Y, Li X, Chen H, Han S, Jiang X, Zhu F, Hou H, Hu Q. Enantiomeric composition of nicotine in tobacco leaf, cigarette, smokeless tobacco, and e-liquid by normal phase high-performance liquid chromatography. Chirality 2018; 30:923-931. [PMID: 29722457 DOI: 10.1002/chir.22866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/26/2018] [Accepted: 03/26/2018] [Indexed: 11/10/2022]
Abstract
Evaluating the source of nicotine in e-liquid is a problem. Tobacco-derived nicotine contains predominantly (S)-(-)-nicotine, whereas tobacco-free nicotine products may not. Thus, we developed a new normal phase high-performance liquid chromatography method to determinate the enantiomeric composition of nicotine in 10 kinds of flue-cured tobacco, 3 kinds of burley, 1 kind of cigar tobacco, 2 kinds of oriental tobacco, 5 kinds of Virginia cigarette, 5 kinds of blend cigarette, 10 kinds of e-liquid, and 4 kinds of smokeless tobacco. The amount of (R)-(+)-nicotine ranged from ~0.02% to ~0.76% of total nicotine. An e-liquid sample had the highest level of (R)-(+)-nicotine. The extraction and purification processes used to obtain commercial (S)-(-)-nicotine from the tobacco do not decrease the amount of (R)-(+)-nicotine in tobacco. So the amount of (R)-(+)-nicotine in samples in our work were the same as tobacco samples.
Collapse
Affiliation(s)
- Hongfei Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Yongqiang Pang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Yanbo Luo
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Xingyi Jiang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Fengpeng Zhu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
| |
Collapse
|
24
|
Jurado-Coronel JC, Loaiza AE, Díaz JE, Cabezas R, Ashraf GM, Sahebkar A, Echeverria V, González J, Barreto GE. (E)-Nicotinaldehyde O-Cinnamyloxime, a Nicotine Analog, Attenuates Neuronal Cells Death Against Rotenone-Induced Neurotoxicity. Mol Neurobiol 2018; 56:1221-1232. [DOI: 10.1007/s12035-018-1163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
|
25
|
Hellinghausen G, Roy D, Wang Y, Lee JT, Lopez DA, Weatherly CA, Armstrong DW. A comprehensive methodology for the chiral separation of 40 tobacco alkaloids and their carcinogenic E/Z-(R,S)-tobacco-specific nitrosamine metabolites. Talanta 2018; 181:132-141. [PMID: 29426492 DOI: 10.1016/j.talanta.2017.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
Abstract
The predominant enantiomer of nicotine found in nature is (S)-nicotine and its pharmacology has been widely established. However, pharmacologic information concerning individual enantiomers of nicotine-related compounds is limited. Recently, a modified macrocyclic glycopeptide chiral selector was found to be highly stereoselective for most tobacco alkaloids and metabolites. This study examines the semi-synthetic and native known macrocyclic glycopeptides for chiral recognition, separation, and characterization of the largest group of nicotine-related compounds ever reported (tobacco alkaloids, nicotine metabolites and derivatives, and tobacco-specific nitrosamines). The enantioseparation of nicotine is accomplished in less than 20s for example. All liquid chromatography separations are mass spectrometry compatible for the tobacco alkaloids, as well as their metabolites. Ring-closed, cyclized structures were identified and separated from their ring-open, straight chain equilibrium structures. Also, E/Z-tobacco-specific nitrosamines and their enantiomers were directly separated. E/Z isomers also are known to have different physical and chemical properties and biological activities. This study provides optimal separation conditions for the analysis of nicotine-related isomers, which in the past have been reported to be ineffectively separated which can result in inaccurate results. The methodology of this study could be applied to cancer studies, and lead to more information about the role of these isomers in other diseases and as treatment for diseases.
Collapse
Affiliation(s)
- Garrett Hellinghausen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Daipayan Roy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yadi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jauh T Lee
- AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Diego A Lopez
- AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Choyce A Weatherly
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA; AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA.
| |
Collapse
|
26
|
Yu X, Guo Z, Song H, Liu Y, Wang Q. Hydration and Intramolecular Cyclization of Homopropargyl Sulfonamide Derivatives Catalyzed by Silver Hexafluoroantimonate(V): Synthesis of Structurally Diverse 2,3-Dihydro-1H
-Pyrroles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiuling Yu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - Zhonglin Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin; 300071 People's Republic of China
| |
Collapse
|
27
|
Hellinghausen G, Lee JT, Weatherly CA, Lopez DA, Armstrong DW. Evaluation of nicotine in tobacco-free-nicotine commercial products. Drug Test Anal 2017; 9:944-948. [PMID: 27943582 DOI: 10.1002/dta.2145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/06/2022]
Abstract
Recently, a variety of new tobacco-free-nicotine, TFN, products have been commercialized as e-liquids. Tobacco-derived nicotine contains predominantly (S)-(-)-nicotine, whereas TFN products may not. The TFN products are said to be cleaner, purer substances, devoid of toxic components that come from the tobacco extraction process. A variety of commercial tobacco and TFN products were analyzed to identify the presence and composition of each nicotine enantiomer. A rapid and effective enantiomeric separation of nicotine has been developed using a modified macrocyclic glycopeptide bonded to superficially porous particles. The enantiomeric assay can be completed in <2 min with high resolution and accuracy using high performance liquid chromatography with electrospray ionization mass spectrometry. The results of this study suggest the need for pharmacological studies of (R)-(+)-nicotine, which is present in much greater quantities in commercial TFN products compared to commercial tobacco-derived products. Such studies are required by the FDA for new enantiomeric pharmacological products. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Garrett Hellinghausen
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, 700 Planetarium Place, Arlington, TX, 76019, USA
| | - Jauh T Lee
- AZYP, LLC. 611 Loch Chalet Ct, Arlington, TX, 76012, USA
| | - Choyce A Weatherly
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, 700 Planetarium Place, Arlington, TX, 76019, USA
| | - Diego A Lopez
- AZYP, LLC. 611 Loch Chalet Ct, Arlington, TX, 76012, USA
| | - Daniel W Armstrong
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, 700 Planetarium Place, Arlington, TX, 76019, USA
- AZYP, LLC. 611 Loch Chalet Ct, Arlington, TX, 76012, USA
| |
Collapse
|
28
|
Zhang Y, Geng Z, Li J, Zou D, Wu Y, Wu Y. Ligand-Controlled Palladium-Catalyzed Pyridylation of 1-tert-Butoxycarbonyl-3-iodoazetidine: Regioselective Synthesis of 2- and 3-Heteroarylazetidines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yudan Zhang
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
| | - Zhiyue Geng
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
| | - Jingya Li
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation; Henan Province People's Republic of China
- Tetranov International, Inc.; 100 Jersey Avenue, Suite A340 New Brunswick NJ 08901 USA
| |
Collapse
|
29
|
Sobkowiak R, Zielezinski A, Karlowski WM, Lesicki A. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells. Drug Chem Toxicol 2017; 40:470-483. [PMID: 28049353 DOI: 10.1080/01480545.2016.1264411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
Collapse
Affiliation(s)
- Robert Sobkowiak
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| | - Andrzej Zielezinski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Wojciech M Karlowski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Andrzej Lesicki
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| |
Collapse
|
30
|
Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus. Biomed Pharmacother 2016; 86:102-108. [PMID: 27951416 DOI: 10.1016/j.biopha.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/21/2022] Open
Abstract
6-Hydroxy-l-nicotine (6HLN), a nicotine derivative from nicotine degradation by Arthrobacter nicotinovorans pAO1 strain was found to improve behavioral deficits and to reverse oxidative stress in the rat hippocampus. Rats were given CHL (10mg/kg, i.p.) were used as an Alzheimer's disease-like model. The nicotine (0.3mg/kg) and 6HLN (0.3mg/kg) were administered alone or in combination in the CHL-treated rats. Memory-related behaviors were evaluated using Y-maze and radial arm-maze tests. The antioxidant enzymes activity and the levels of the biomarkers of oxidative stress were measured in the hippocampus. Statistical analyses were performed using two-way ANOVA and Tukey's post hoc test. F values for which p<0.05 were regarded as statistically significant. CHL-caused memory deficits and oxidative stress enhancing were observed. Both nicotine and 6HLN administration attenuated the cognitive deficits and recovered the antioxidant capacity in the rat hippocampus of the CHL rat model. Our results suggest that 6HLN versus nicotine confers anti-amnesic properties in the CHL-induced a rat model of memory impairment via reversing cholinergic function and decreasing brain oxidative stress, suggesting the use of this compound as an alternative agent in AD treatment.
Collapse
|
31
|
Novel Approaches in Astrocyte Protection: from Experimental Methods to Computational Approaches. J Mol Neurosci 2016; 58:483-92. [DOI: 10.1007/s12031-016-0719-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
|
32
|
Malczewska-Jaskóła K, Jasiewicz B, Mrówczyńska L. Nicotine alkaloids as antioxidant and potential protective agents against in vitro oxidative haemolysis. Chem Biol Interact 2015; 243:62-71. [PMID: 26658032 DOI: 10.1016/j.cbi.2015.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 01/01/2023]
Abstract
The capacity of eleven nicotine alkaloids to reduce oxidative stress was investigated. In order to provide a structure-activity relationships analysis, new nicotine derivatives with a substituent introduced into the pyrrolidine ring were synthesized and investigated together with nicotine and its known analogs. All newly synthesized compounds were characterized by (1)H, (13)C NMR and EI-MS technique. The antioxidant properties of nicotine, its known analogs and newly produced derivatives, were evaluated by various antioxidant assays such 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH(•)) scavenging, ferrous ions (Fe(2+)) chelating activity and total reducing ability determination by Fe(3+) → Fe(2+) transformation assay. The protective effects of all compounds tested against 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) and tert-butyl hydroperoxide (t-BuOOH)-induced oxidative haemolysis and morphological injury of human erythrocytes, were estimated in vitro. The results showed that nicotine alkaloids exhibited various antiradical efficacy and antioxidant activity in a structure- and a dose-dependent manner. In addition, the capacity of nicotine alkaloids to protect erythrocytes from AAPH- and t-BuOOH-induced oxidative haemolysis, was dependent on its incubation time with cells. Our findings showed that chemical and biological investigations conducted simultaneously can provide comprehensive knowledge concerning the antioxidant potential of nicotine alkaloids. This knowledge can be helpful in better understanding the properties of nicotine alkaloids under oxidative stress conditions.
Collapse
Affiliation(s)
| | - Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland.
| | - Lucyna Mrówczyńska
- Department Cell Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
33
|
Li L, Zhang S, Hu Y, Li Y, Li C, Zha Z, Wang Z. Highly Diastereo- and Enantioselective Michael Addition of Nitroalkanes to 2-Enoyl-PyridineN-Oxides Catalyzed by Scandium(III)/Copper(II) Complexes. Chemistry 2015. [DOI: 10.1002/chem.201502129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Guo C, Sun DW, Yang S, Mao SJ, Xu XH, Zhu SF, Zhou QL. Iridium-Catalyzed Asymmetric Hydrogenation of 2-Pyridyl Cyclic Imines: A Highly Enantioselective Approach to Nicotine Derivatives. J Am Chem Soc 2015; 137:90-3. [DOI: 10.1021/ja511422q] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Cui Guo
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dong-Wei Sun
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shuang Yang
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shen-Jie Mao
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xiao-Hua Xu
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State
Key Laboratory and
Institute of Elemento-Organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Polindara-García LA, Vazquez A. Combinatorial synthesis of nicotine analogs using an Ugi 4-CR/cyclization-reduction strategy. Org Biomol Chem 2014; 12:7068-82. [PMID: 25087489 DOI: 10.1039/c4ob00767k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical one-pot synthesis of nicotine analogs from Ugi 4-CR/propargyl adducts is reported. This methodology allows the rapid construction of the pyrrolidine moiety present in nicotine through an intramolecular base-promoted 5-endo cycloisomerization process, followed by a reduction of the resulting mixture of 2- and 3-pyrrolines to afford nicotine analogs in good overall yields.
Collapse
Affiliation(s)
- Luis A Polindara-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D.F., Mexico.
| | | |
Collapse
|
36
|
Kosno K, Janik I, Celuch M, Mirkowski J, Kisała J, Pogocki D. The Role of pH in the Mechanism of.OH Radical Induced Oxidation of Nicotine. Isr J Chem 2014. [DOI: 10.1002/ijch.201300112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Nicotine-Cadmium Interaction Alters Exploratory Motor Function and Increased Anxiety in Adult Male Mice. JOURNAL OF NEURODEGENERATIVE DISEASES 2014; 2014:359436. [PMID: 26317007 PMCID: PMC4437340 DOI: 10.1155/2014/359436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/27/2014] [Indexed: 12/05/2022]
Abstract
In this study we evaluated the time dependence in cadmium-nicotine interaction and its effect on motor function, anxiety linked behavioural changes, serum electrolytes, and weight after acute and chronic treatment in adult male mice. Animals were separated randomly into four groups of n = 6 animals each. Treatment was done with nicotine, cadmium, or nicotine-cadmium for 21 days. A fourth group received normal saline for the same duration (control). Average weight was determined at 7-day interval for the acute (D1-D7) and chronic (D7-D21) treatment phases. Similarly, the behavioural tests for exploratory motor function (open field test) and anxiety were evaluated. Serum electrolytes were measured after the chronic phase. Nicotine, cadmium, and nicotine-cadmium treatments caused no significant change in body weight after the acute phase while cadmium-nicotine and cadmium caused a decline in weight after the chronic phase. This suggests the role of cadmium in the weight loss observed in tobacco smoke users. Both nicotine and cadmium raised serum Ca2+ concentration and had no significant effect on K+ ion when compared with the control. In addition, nicotine-cadmium treatment increased bioaccumulation of Cd2+ in the serum which corresponded to a decrease in body weight, motor function, and an increase in anxiety.
Collapse
|
38
|
Sobkowiak R, Musidlak J, Lesicki A. In vitrogenoprotective and genotoxic effect of nicotine on human leukocytes evaluated by the comet assay. Drug Chem Toxicol 2013; 37:322-8. [DOI: 10.3109/01480545.2013.851693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Cai B, Jack AM, Lewis RS, Dewey RE, Bush LP. (R)-nicotine biosynthesis, metabolism and translocation in tobacco as determined by nicotine demethylase mutants. PHYTOCHEMISTRY 2013; 95:188-96. [PMID: 23849545 DOI: 10.1016/j.phytochem.2013.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/13/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Nicotine is a chiral compound and consequently exists as two enantiomers. Since (R)-nicotine consists of less than 0.5% of total nicotine pool in tobacco, few investigations relating to (R)-nicotine have been reported. However, previous studies of nicotine demethylases suggested there was substantial amount of (R)-nicotine at synthesis in the tobacco plant. In this study, the accumulation and translocation of (R)-nicotine in tobacco was analyzed. The accumulation of nicotine and its demethylation product the nornicotine enantiomers, were investigated in different tobacco plant parts and at different growth and post-harvest stages. Scion/rootstock grafts were used to separate the contributions of roots (source) from leaves (sink) to the final accumulation of nicotine and nornicotine in leaf tissue. The results indicate that 4% of nicotine is in the (R) form at synthesis in the root. After the majority of (R)-nicotine is selectively demethylated by CYP82E4, CYP82E5v2 and CYP82E10 in the root, nicotine and nornicotine are translocated to leaf, where more nicotine becomes demethylated. Depending on the CYP82E4 activity in senescing leaf, constant low (R)-nicotine remains in the tobacco leaf and variable nornicotine composition is produced. These results confirmed the enantioselectivity of three nicotine demethylases in planta, could be used to predict the changes of nicotine and nornicotine composition, and may facilitate demethylase discovery in the future.
Collapse
Affiliation(s)
- Bin Cai
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, United States
| | | | | | | | | |
Collapse
|
40
|
Rouden J, Lasne MC, Blanchet J, Baudoux J. (−)-Cytisine and Derivatives: Synthesis, Reactivity, and Applications. Chem Rev 2013; 114:712-78. [DOI: 10.1021/cr400307e] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jacques Rouden
- Laboratoire de Chimie Moléculaire
et Thioorganique, ENSICAEN-Université de Caen, CNRS, Institut Normand de Chimie Moléculaire, Médicinale et Macromoléculaire (INC3M), 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Marie-Claire Lasne
- Laboratoire de Chimie Moléculaire
et Thioorganique, ENSICAEN-Université de Caen, CNRS, Institut Normand de Chimie Moléculaire, Médicinale et Macromoléculaire (INC3M), 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Jérôme Blanchet
- Laboratoire de Chimie Moléculaire
et Thioorganique, ENSICAEN-Université de Caen, CNRS, Institut Normand de Chimie Moléculaire, Médicinale et Macromoléculaire (INC3M), 6 Boulevard du Maréchal Juin, 14050 Caen, France
| | - Jérôme Baudoux
- Laboratoire de Chimie Moléculaire
et Thioorganique, ENSICAEN-Université de Caen, CNRS, Institut Normand de Chimie Moléculaire, Médicinale et Macromoléculaire (INC3M), 6 Boulevard du Maréchal Juin, 14050 Caen, France
| |
Collapse
|
41
|
Cai B, Siminszky B, Chappell J, Dewey RE, Bush LP. Enantioselective demethylation of nicotine as a mechanism for variable nornicotine composition in tobacco leaf. J Biol Chem 2012; 287:42804-11. [PMID: 23100254 PMCID: PMC3522278 DOI: 10.1074/jbc.m112.413807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/24/2012] [Indexed: 11/06/2022] Open
Abstract
Nicotine and its N-demethylation product nornicotine are two important alkaloids in Nicotiana tabacum L. (tobacco). Both nicotine and nornicotine have two stereoisomers that differ from each other at 2'-C position on the pyrrolidine ring. (S)-Nicotine is the predominant form in the tobacco leaf, whereas the (R)-enantiomer only accounts for ∼0.2% of the total nicotine pool. Despite considerable past efforts, a comprehensive understanding of the factors responsible for generating an elevated and variable enantiomer fraction of nornicotine (EF(nnic) of 0.04 to 0.75) from the consistently low EF observed for nicotine has been lacking. The objective of this study was to determine potential roles of enantioselective demethylation in the formation of the nornicotine EF. Recombinant CYP82E4, CYP82E5v2, and CYP82E10, three known tobacco nicotine demethylases, were expressed in yeast and assayed for their enantioselectivities in vitro. Recombinant CYP82E4, CYP82E5v2, and CYP82E10 demethylated (R)-nicotine 3-, 10-, and 10-fold faster than (S)-nicotine, respectively. The combined enantioselective properties of the three nicotine demethylases can reasonably account for the nornicotine composition observed in tobacco leaves, which was confirmed in planta. Collectively, our studies suggest that an enantioselective mechanism facilitates the maintenance of a reduced (R)-nicotine pool and, depending on the relative abundances of the three nicotine demethylase enzymes, can confer a high (R)-enantiomer percentage within the nornicotine fraction of the leaf.
Collapse
Affiliation(s)
- Bin Cai
- From the Department of Plant and Soil Sciences,University of Kentucky, Lexington, Kentucky 40546-0312 and
| | - Balazs Siminszky
- From the Department of Plant and Soil Sciences,University of Kentucky, Lexington, Kentucky 40546-0312 and
| | - Joseph Chappell
- From the Department of Plant and Soil Sciences,University of Kentucky, Lexington, Kentucky 40546-0312 and
| | - Ralph E. Dewey
- the Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695-8009
| | - Lowell P. Bush
- From the Department of Plant and Soil Sciences,University of Kentucky, Lexington, Kentucky 40546-0312 and
| |
Collapse
|
42
|
Cai B, Bush LP. Variable nornicotine enantiomeric composition caused by nicotine demethylase CYP82E4 in tobacco leaf. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11586-91. [PMID: 23116221 DOI: 10.1021/jf303681u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nornicotine is the demethylation product of nicotine and the precursor of tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) in tobacco (Nicotiana tabacum L.). There is an inconsistent enantiomer fraction (EF) of nornicotine reported in the literature. The objective of this study was to explore possible mechanisms to account for the variable EF(nnic) in tobacco. A survey of tobacco with different demethylating capabilities confirmed that there was variable EF(nnic). Experiments of induction and inhibition of the major nicotine demethylase CYP82E4 activity in tobacco demonstrated that CYP82E4 selectively demethylated (S)-nicotine and resulted in different EF(nnic) in tobacco leaves. Results from plants with silenced demethylases by RNAi suggested that other demethylases selectively used (R)-nicotine and resulted in high EF(nnic). In summary, enantioselective demethylation likely plays an important role in contributing to a large and variable EF(nnic) observed in tobacco.
Collapse
Affiliation(s)
- Bin Cai
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | |
Collapse
|
43
|
Hritcu L, Stefan M, Brandsch R, Mihasan M. 6-hydroxy-l-nicotine from Arthrobacter nicotinovorans sustain spatial memory formation by decreasing brain oxidative stress in rats. J Physiol Biochem 2012; 69:25-34. [DOI: 10.1007/s13105-012-0184-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 06/05/2012] [Indexed: 12/31/2022]
|
44
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomeric natural products: occurrence and biogenesis. Angew Chem Int Ed Engl 2012; 51:4802-36. [PMID: 22555867 PMCID: PMC3498912 DOI: 10.1002/anie.201107204] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Indexed: 01/07/2023]
Abstract
In nature, chiral natural products are usually produced in optically pure form-however, occasionally both enantiomers are formed. These enantiomeric natural products can arise from a single species or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers; however, many fascinating puzzles and stereochemical anomalies still remain.
Collapse
|
45
|
Finefield JM, Sherman DH, Kreitman M, Williams RM. Enantiomere Naturstoffe: Vorkommen und Biogenese. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Dahab AA, Smith NW. Determination of trace amount of enantiomeric impurity in therapeutic nicotine derivative using capillary electrophoresis with new imaging technology detection. J Sep Sci 2011; 35:66-72. [DOI: 10.1002/jssc.201100513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/08/2022]
|
47
|
Kraziński BE, Radecki J, Radecka H. Surface plasmon resonance based biosensors for exploring the influence of alkaloids on aggregation of amyloid-β peptide. SENSORS 2011; 11:4030-42. [PMID: 22163834 PMCID: PMC3231330 DOI: 10.3390/s110404030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
Abstract
The main objective of the presented study was the development of a simple analytical tool for exploring the influence of naturally occurring compounds on the aggregation of amyloid-β peptide (Aβ40) in order to find potential anti-neurodegenerative drugs. The gold discs used for surface plasmon resonance (SPR) measurements were modified with thioaliphatic acid. The surface functionalized with carboxylic groups was used for covalent attaching of Aβ40 probe by creation of amide bonds in the presence of EDC/NHS. The modified SPR gold discs were used for exploring the Aβ40 aggregation process in the presence of selected alkaloids: arecoline hydrobromide, pseudopelletierine hydrochloride, trigonelline hydrochloride and α-lobeline hydrochloride. The obtained results were discussed with other parameters which govern the phenomenon studied such as lipophilicity/hydrophilicy and Aβ40-alkaloid association constants.
Collapse
|
48
|
Shevchenko NE, Vlasov K, Nenajdenko VG, Röschenthaler GV. The reaction of cyclic imines with the Ruppert–Prakash reagent. Facile approach to α-trifluoromethylated nornicotine, anabazine, and homoanabazine. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Feula A, Male L, Fossey JS. Diastereoselective Preparation of Azetidines and Pyrrolidines. Org Lett 2010; 12:5044-7. [PMID: 20879778 DOI: 10.1021/ol102215e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Feula
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - John S. Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| |
Collapse
|
50
|
Zhu ZY, Shi QM, Han BF, Wang XF, Qiang S, Yang CL. Synthesis, Characterization and Biological Activities of Novel (E)-3-(1-(Alkyloxyamino)ethylidene)-1-alkylpyrrolidine-2,4-dione Derivatives. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.9.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|