1
|
Koudelka A, Buchan GJ, Cechova V, O'Brien JP, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579101. [PMID: 38370667 PMCID: PMC10871244 DOI: 10.1101/2024.02.06.579101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Gregory J Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| |
Collapse
|
2
|
Wang H, Zhao M, Liu J, Liu L, Liu H, Ding N, Wen J, Wang S, Ge N, Zhang X. H 2O 2 enhances the spontaneous phasic contractions of isolated human-bladder strips via activation of TRPA1 channels on sensory nerves and the release of substance P and PGE2. Free Radic Biol Med 2023; 209:1-8. [PMID: 37802373 DOI: 10.1016/j.freeradbiomed.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Several studies have indicated that reactive oxygen species (ROS) can lead to detrusor overactivity (DO), but the underlying mechanisms are not known. Hydrogen dioxide (H2O2) is used commonly to investigate the effects of ROS. In present study, we investigated the effects of H2O2 on phasic spontaneous bladder contractions (SBCs) of isolated human-bladder strips (iHBSs) and the underlying mechanisms. Samples of bladder tissue were obtained from 26 patients undergoing cystectomy owing to bladder cancer. SBCs of iHBSs were recorded in organ-bath experiments. H2O2 (1μM-10mM) concentration-dependently increased the SBCs of iHBSs. These enhancing effects could be mimicked by an agonist of transient receptor potential (TRP)A1 channels (allyl isothiocyanate) and blocked with an antagonist of TRPA1 channels (HC030031; 10 μM). H2O2 induced enhancing effects also could be attenuated by desensitizing sensory afferents with capsaicin (10 μM), blocking nerve firing with TTX (1 μM), blocking neurokinin effects with NK2 receptor antagonist (SR48968, 10 μM), and blocking PGE2 synthesis with indomethacin (10 μM), respectively. Our study: (i) suggests activation of TRPA1 channels on bladder sensory afferents, and then release of substance P or PGE2 from sensory nerve terminals, contribute to the H2O2-induced enhancing effects on SBCs of iHBSs; (ii) provides insights for the mechanisms underlying ROS leading to DO; (iii) indicates that targeting TRPA1 channels might be the promising strategy against overactive bladder in conditions associated with excessive production of ROS.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Mengmeng Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Torimoto K, Ueda T, Gotoh D, Kano K, Miyake M, Nakai Y, Hori S, Morizawa Y, Onishi K, Shimizu T, Tomizawa M, Aoki J, Fujimoto K. Serum anandamide and lipids associated with linoleic acid can distinguish interstitial cystitis/bladder pain syndrome from overactive bladder: An exploratory study. Low Urin Tract Symptoms 2023; 15:238-246. [PMID: 37688290 DOI: 10.1111/luts.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVES Diagnosing interstitial cystitis/bladder pain syndrome presents a major challenge because it relies on subjective symptoms and empirical cystoscopic findings. A practical biomarker should discriminate diseases that cause increased urinary frequency, particularly overactive bladder. Therefore, we aimed to identify blood biomarkers that can discriminate between interstitial cystitis/bladder pain syndrome and overactive bladder. METHODS We enrolled patients with Hunner-type interstitial cystitis (n = 20), bladder pain syndrome (n = 20), and overactive bladder (n = 20) and without lower urinary tract symptoms (controls, n = 15) at Ueda Clinic and Nara Medical University Hospital from February 2020 to August 2021. The degree of interstitial cystitis/bladder pain syndrome symptoms was evaluated using the interstitial cystitis symptom and problem indices. Metabolomics analysis was performed on 323 serum metabolites using liquid chromatography time-of-flight mass spectrometry. RESULTS In the Hunner-type interstitial cystitis or bladder pain syndrome group, we observed smaller relative areas, including anandamide, acylcarnitine (18:2), linoleoyl ethanolamide, and arachidonic acid, compared to those in the overactive bladder or control group. Notably, the differences in the relative areas of anandamide were statistically significant (median: 3.950e-005 and 4.150e-005 vs. 8.300e-005 and 9.800e-005), with an area under the curve of 0.9321, demonstrating its ability to discriminate interstitial cystitis/bladder pain syndrome. CONCLUSIONS Serum anandamide may be a feasible diagnostic biomarker for interstitial cystitis/bladder pain syndrome. Reduced serum anandamide levels may be associated with pain and inflammation initiation, reflecting the pathology of interstitial cystitis/bladder pain syndrome. Furthermore, our findings suggest that abnormal linoleic acid metabolism may be involved in the pathogenesis of interstitial cystitis/bladder pain syndrome.
Collapse
Affiliation(s)
| | | | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Nara, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Nara, Japan
| | | | - Kenta Onishi
- Department of Urology, Nara Medical University, Nara, Japan
| | - Takuto Shimizu
- Department of Urology, Nara Medical University, Nara, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
4
|
Christie S, Brookes S, Zagorodnyuk V. Endocannabinoids in Bladder Sensory Mechanisms in Health and Diseases. Front Pharmacol 2021; 12:708989. [PMID: 34290614 PMCID: PMC8287826 DOI: 10.3389/fphar.2021.708989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
The recent surge in research on cannabinoids may have been fueled by changes in legislation in several jurisdictions, and by approval for the use of cannabinoids for treatment of some chronic diseases. Endocannabinoids act largely, but not exclusively on cannabinoid receptors 1 and 2 (CBR1 and CBR2) which are expressed in the bladder mainly by the urothelium and the axons and endings of motor and sensory neurons. A growing body of evidence suggests that endocannabinoid system constitutively downregulates sensory bladder function during urine storage and micturition, under normal physiological conditions. Similarly, exogenous cannabinoid agonists have potent modulatory effects, as do inhibitors of endocannabinoid inactivation. Results suggest a high potential of cannabinoids to therapeutically ameliorate lower urinary tract symptoms in overactive bladder and painful bladder syndromes. At least part of this may be mediated via effects on sensory nerves, although actions on efferent nerves complicate interpretation. The sensory innervation of bladder is complex with at least eight classes identified. There is a large gap in our knowledge of the effects of endocannabinoids and synthetic agonists on different classes of bladder sensory neurons. Future studies are needed to reveal the action of selective cannabinoid receptor 2 agonists and/or peripherally restricted synthetic cannabinoid receptor 1 agonists on bladder sensory neurons in animal models of bladder diseases. There is significant potential for these novel therapeutics which are devoid of central nervous system psychotropic actions, and which may avoid many of the side effects of current treatments for overactive bladder and painful bladder syndromes.
Collapse
Affiliation(s)
| | | | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Toktanis G, Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Potential therapeutic value of transient receptor potential channels in male urogenital system. Pflugers Arch 2018; 470:1583-1596. [PMID: 30194638 DOI: 10.1007/s00424-018-2188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes including light, mechanical or chemical stimuli, temperature, pH, or osmolarity. TRP channel proteins are a diverse family of proteins that are expressed in many tissues. We debated our recent knowledge about the expression, function, and regulation of TRP channels in the different parts of the male urogenital system in health and disease. Emerging evidence suggests that dysfunction of TRP channels significantly contributes to the pathophysiology of urogenital diseases. So far, there are many efforts underway to determine if these channels can be used as drug targets to reverse declines in male urogenital function. Furthermore, developing safe and efficacious TRP channel modulators is warranted for male urogenital disorders in a clinical setting.
Collapse
Affiliation(s)
| | - Ecem Kaya-Sezginer
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmacology, Cukurova University, Adana, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry and Pharmacology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
6
|
TRPV1 alterations in urinary bladder dysfunction in a rat model of STZ-induced diabetes. Life Sci 2018; 193:207-213. [DOI: 10.1016/j.lfs.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
|
7
|
Ückert S, la Croce G, Bettiga A, Albrecht K, Buono R, Benigni F, Kuczyk MA, Hedlund P. Expression and distribution of key proteins of the endocannabinoid system in the human seminal vesicles. Andrologia 2017; 50. [PMID: 28786134 DOI: 10.1111/and.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
The endocannabinoid system (ECS), comprising the cannabinoid receptors (CBR), their ligands, and enzymes controlling the turnover of endocannabinoids, has been suggested to be involved in male reproductive function. As information is scarce on the expression of the ECS in human male reproductive tissues, this study aimed to investigate by means of molecular biology (RT-PCR) and immunohistochemistry/immunofluorescence the expression and distribution of CB1 and CB2, GPR55 (an orphan G protein-coupled receptor that recognises cannabinoid ligands) and FAAH (isoforms 1 and 2) in the human seminal vesicles (SV). The specimens expressed PCR products corresponding to CB1 (66 bp), CB2 (141 bp), GPR55 (112 bp), FAAH1 (260 bp) and FAAH2 (387 bp). Immumohistochemistry revealed dense expression of CB1, CB2 and GPR55 located to the pseudo-stratified columnar epithelium and varicose nerves (also characterised by the expression of vasoactive intestinal polypeptide and calcitonin gene-related peptide). Cytosolic staining for FAAH1 and FAAH2 was seen in cuboidal cells of all layers of the epithelium. No immunoreactivity was detected in the smooth musculature or nerve fibres. CB1, CB2, GPR55, FAAH1 and FAAH2 are highly expressed in the human SV. Considering their localisation, the ECS may be involved in epithelial homeostasis, secretory function or autonomic mechano-afferent signalling.
Collapse
Affiliation(s)
- S Ückert
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany
| | - G la Croce
- Faculty of Medicine, Urological Research Institute (URI), University Vita Salute San Raffaele, Milano, Italy
| | - A Bettiga
- Faculty of Medicine, Urological Research Institute (URI), University Vita Salute San Raffaele, Milano, Italy
| | - K Albrecht
- Institute for Legal (Forensic) Medicine, Hannover Medical School, Hannover, Germany
| | - R Buono
- Department of Gerontology, University of Southern California (USC), Los Angeles, CA, USA
| | - F Benigni
- Faculty of Medicine, Urological Research Institute (URI), University Vita Salute San Raffaele, Milano, Italy
| | - M A Kuczyk
- Division of Surgery, Department of Urology & Urological Oncology, Hannover Medical School, Hannover, Germany
| | - P Hedlund
- Department of Clinical Pharmacology, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Xiaopeng B, Tanaka Y, Ihara E, Hirano K, Nakano K, Hirano M, Oda Y, Nakamura K. Trypsin induces biphasic muscle contraction and relaxation via transient receptor potential vanilloid 1 and neurokinin receptors 1/2 in porcine esophageal body. Eur J Pharmacol 2017; 797:65-74. [PMID: 28088386 DOI: 10.1016/j.ejphar.2017.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Duodenal reflux of fluids containing trypsin relates to refractory gastroesophageal reflux disease (GERD). Esophageal peristalsis and clearance are important factors in GERD pathogenesis. However, the function of trypsin in esophageal body contractility is not fully understood. In this study, effects of trypsin on circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) of the porcine esophageal body were examined. Trypsin elicited a concentration dependent biphasic response, a major contraction and a subsequent relaxation only in CSM. In CSM, contraction occurred at trypsin concentrations of 100nM and relaxation at 1μM. A proteinase-activated receptor (PAR)2 activating peptide, SLIGKV-NH2 (1mM), induced a monophasic contraction. Those responses were unaffected by tetrodotoxin though abolished by the gap junction uncouplers carbenoxolone and octanol. They were also partially inhibited by a transient receptor potential vanilloid type 1 (TRPV1) antagonist and abolished by combination of neurokinin receptor 1 (NK1) and NK2 antagonists, but not by an NK3 antagonist, suggesting a PAR2-TRPV1-substance P pathway in sensory neurons. Substance P (100nM), an agonist for various NK receptors (NK1, NK2 and NK3) with differing affinities, induced significant contraction in CSM, but not in LSM. The contraction was also blocked by the combination of NK1 and NK2 antagonists, but not by the NK3 antagonist. Moreover, substance P-induced contractions were unaffected by the TRPV1 antagonist, but inhibited by a gap junction uncoupler. In conclusion, trypsin induced a biphasic response only in CSM and this was mediated by PAR2, TRPV1 and NK1/2. Gap junctions were indispensable in this tachykinin-induced response.
Collapse
Affiliation(s)
- Bai Xiaopeng
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture 761-0793, Japan
| | - Kayoko Nakano
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Philyppov IB, Paduraru ON, Gulak KL, Skryma R, Prevarskaya N, Shuba YM. TRPA1-dependent regulation of bladder detrusor smooth muscle contractility in normal and type I diabetic rats. J Smooth Muscle Res 2016; 52:1-17. [PMID: 26935999 PMCID: PMC5137256 DOI: 10.1540/jsmr.52.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TRPA1 is a Ca2+-permeable cation channel that is activated by painful low
temperatures (˂17 °C), irritating chemicals, reactive metabolites and mediators of
inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve
endings, where it mediates sensory transduction. The contractile effect of its activation
on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of
inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell
contraction. Diabetes is a systemic disease, with common complications being diabetic
cystopathies and urinary incontinence. However, data on how diabetes affects bladder
contractility associated with TRPA1 activation are not available. In this study, by using
a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM
strips in response to TRPA1-activating and modulating pharmacological agents and
assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have
shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM
contractility. This is not due to changes in TRPA1 expression, but mainly due to the
general inflammatory reaction caused by diabetes. The latter leads to an increase in
cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with
substance P activity. This results in the enhanced functional coupling between the
tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM
contractility in response to TRPA1 activation.
Collapse
Affiliation(s)
- Igor B Philyppov
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
10
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
11
|
Abstract
OBJECTIVES To characterise separately the pharmacological profiles of spontaneous contractions from the mucosa and detrusor layers of the bladder wall and to describe the relationship in mucosa between adenosine triphosphate (ATP) release and spontaneous contractions. MATERIALS AND METHODS Spontaneous contractions were measured (36 °C) from isolated mucosa or detrusor preparations, and intact (mucosa + detrusor) preparations from guinea-pig bladders. Potential modulators were added to the superfusate. The percentage of smooth muscle was measured in haematoxylin and eosin stained sections. ATP release was measured in superfusate samples from a fixed point above the preparation using a luciferin-luciferase assay. RESULTS The magnitude of spontaneous contractions was in the order intact >mucosa >detrusor. The percentage of smooth muscle was least in mucosa and greatest in detrusor preparations. The pharmacological profiles of spontaneous contractions were different in mucosa and detrusor in response to P2X or P2Y receptor agonists, adenosine and capsaicin. The intact preparations showed responses intermediate to those from mucosa and detrusor preparations. Low extracellular pH generated large changes in detrusor, but not mucosa preparations. The mucosa preparations released ATP in a cyclical manner, followed by variations in spontaneous contractions. ATP release was greater in mucosa compared with detrusor, augmented by carbachol and reversed by the M2 -selective antagonist, methoctramine. CONCLUSIONS The different pharmacological profiles of bladder mucosa and detrusor, implies different pathways for contractile activation. Also, the intermediate responses from intact preparations implies functional interaction. The temporal relationship between cyclical variation of ATP release and amplitude of spontaneous contractions is consistent with ATP release controlling spontaneous activity. Carbachol-mediated ATP release was independent of active contractile force.
Collapse
Affiliation(s)
- Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Christopher H Fry
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Deruyver Y, Voets T, De Ridder D, Everaerts W. Transient receptor potential channel modulators as pharmacological treatments for lower urinary tract symptoms (LUTS): myth or reality? BJU Int 2015; 115:686-97. [DOI: 10.1111/bju.12876] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yves Deruyver
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Thomas Voets
- Laboratory for Ion Channel Research; Department of Molecular Cell Biology; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- University Hospitals Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven; Leuven Belgium
- TRP Research Platform Leuven (TRPLe); Leuven Belgium
- Royal Melbourne Hospital; Melbourne Australia
| |
Collapse
|
13
|
Hedlund P. Cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. Neurourol Urodyn 2014; 33:46-53. [PMID: 24285567 DOI: 10.1002/nau.22442] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022]
Abstract
AIMS To review knowledge on cannabinoids and the endocannabinoid system in lower urinary tract function and dysfunction. METHODS Review of MEDLINE using defined search terms, and manual analysis. Articles published in English were included. RESULTS AND DISCUSSION Components of the endocannabinoid system—cannabinoid (CB)receptor types 1 and 2, anandamide, and fatty acid amide hydrolase (FAAH), which degrades anandamide and related fatty-acid amides—have been located to lower urinary tract tissues of mice, rats, monkeys, and humans. Studies have located CB receptors in urothelium and sensory nerves and FAAH in the urothelium. CB receptor- and FAAH-related activities have also been reported in the lumbosacral spinal cord. Data on supraspinal CB functions in relation to micturition are lacking. Cannabinoids are reported to reduce sensory activity of isolated tissues, cause antihyperalgesia in animal studies of bladder inflammation, affect urodynamics parameters reflecting sensory functions in animals models, and appear to have effects on storage symptoms in humans. FAAH inhibitors have affected sensory bladder functions and reduced bladder overactivity in rat models. Cannabinoids may modify nerve-mediated functions of isolated lower urinary tract tissues. CONCLUSIONS Evidence suggests components of the endocannabinoid system are involved in regulation of bladder function, possibly at several levels of the micturition pathway. It is unclear if either CB receptor has a dominant role in modification of sensory signals or if differences exist at peripheral and central nervous sites. Amplification of endocannabinoid activity by FAAH inhibitors may be an attractive drug target in specific pathways involved in LUTS.
Collapse
|
14
|
Klausner AP, King AB, Byrne MD, Habibi JR, Li K, Sabarwal V, Speich JE, Ratz PH. A new and automated method for objective analysis of detrusor rhythm during the filling phase. World J Urol 2013; 32:85-90. [PMID: 23633125 DOI: 10.1007/s00345-013-1084-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/18/2013] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION There is growing acceptance that the detrusor muscle is not silent during the filling phase of the micturition cycle but displays low-amplitude phasic contractions that have been associated with urinary urgency. Unfortunately, there is currently no standardized methodology to quantify detrusor rhythm during the filling phase. Therefore, the purpose of this study was to develop an automated computer algorithm to analyze rat detrusor rhythm in a quick, accurate, and reproducible manner. MATERIALS AND METHODS Strips of detrusor smooth muscle from rats (n = 17) were placed on force transducers and subjected to escalating doses of PGE2 to generate contractile rhythm tracings. An automated computer algorithm was developed to analyze contractile frequency, amplitude, and tone on the generated rhythm tracings. Results of the automated computerized analysis were compared to human (n = 3) interpretations. Human interpreters manually counted contractions and then recounted the same data two weeks later. Intra-observer, inter-observer, and human-to-computer comparisons were performed. RESULTS The computer algorithm quantified concentration-dependent changes in contractile frequency, amplitude, and tone after administration of PGE2 (10(-9)-10(-6)M). Concentration-response curves were similar for all contractile components with increases in frequency identified mainly at physiologic concentrations of PGE2 and increases in amplitude at supra-physiologic concentrations. The computer algorithm consistently over-counted the human interpreters, but with less variability. Differences in inter-observer consistency were statistically significant. CONCLUSIONS Our computerized algorithm accurately and consistently identified changes in detrusor muscle contractile frequency, amplitude, and tone with varying doses of PGE2. Frequency counts were consistently higher than those obtained by human interpreters but without variability or bias. Refinements of this method may allow for more standardized approach in the study of pharmacologic agents on filling phase rhythmic activity.
Collapse
Affiliation(s)
- Adam P Klausner
- Department of Surgery/Division of Urology, Virginia Commonwealth University School of Medicine, PO BOX 980118, Richmond, VA, 23298-0118, USA,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kitagawa Y, Wada M, Kanehisa T, Miyai A, Usui K, Maekawa M, Sakata M, Matsuo A, Hayashi M, Matsushita M. JTS-653 Blocks Afferent Nerve Firing and Attenuates Bladder Overactivity Without Affecting Normal Voiding Function. J Urol 2013; 189:1137-46. [DOI: 10.1016/j.juro.2012.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Yoshihiro Kitagawa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Masashi Wada
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Tomokazu Kanehisa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Atsuko Miyai
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Kenji Usui
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Mariko Maekawa
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Masahiro Sakata
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Akira Matsuo
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | - Mikio Hayashi
- Central Pharmaceutical Research Institute, Japan Tobacco, Inc., Osaka, Japan
| | | |
Collapse
|
16
|
Takahashi R, Yunoki T, Naito S, Yoshimura N. Differential effects of botulinum neurotoxin A on bladder contractile responses to activation of efferent nerves, smooth muscles and afferent nerves in rats. J Urol 2012; 188:1993-9. [PMID: 22999538 DOI: 10.1016/j.juro.2012.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the mechanisms of botulinum neurotoxin A (Metabiologics, Madison, Wisconsin) induced inhibition of bladder activity we examined the effect of botulinum neurotoxin A on detrusor contractile responses to the activation of L-type voltage-gated Ca(2+) channels, and efferent and afferent nerve terminals in the rat bladder. MATERIALS AND METHODS Rat bladder strips were incubated for 3 hours with different concentrations of botulinum neurotoxin A (0.3 to 100 nM). We examined the effect of botulinum neurotoxin A on detrusor contractility in response to activation of L-type voltage-gated Ca(2+) channels, and efferent and afferent nerve terminals induced by 70 mM KCl, electrical field stimulation and 1 μM capsaicin, respectively. RESULTS Botulinum neurotoxin A inhibited electrical field stimulation induced contractions at a concentration of 10 nM or higher. The maximal inhibition at 100 nM was 70% compared to that of control strips. KCl induced contractions, which were sensitive to nifedipine, were significantly inhibited by incubation with botulinum neurotoxin A at a concentration of 3 nM or higher. Maximal inhibition at 100 nM was 30% compared to that of control strips. Capsaicin induced contractions were not inhibited by 3-hour incubation but they were significantly inhibited by overnight incubation with 100 nM botulinum neurotoxin A (30% compared to control strips). Carbachol induced contractions were not altered by incubation with botulinum neurotoxin A. CONCLUSIONS The order of inhibitory potency of botulinum neurotoxin A was efferent nerve terminals >L-type voltage-gated Ca(2+) channels >afferent nerve terminals. Since the inhibitory effects on L-type voltage-gated Ca(2+) channels and efferent nerve terminals were observed at similar botulinum neurotoxin A concentrations, the inhibitory effect of botulinum neurotoxin A on L-type voltage-gated Ca(2+) channels may have an important role in regulating and stabilizing bladder activity.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
17
|
Benko R, Illényi L, Kelemen D, Papp R, Papp A, Bartho L. Use and limitations of three TRPV-1 receptor antagonists on smooth muscles of animals and man: A vote for BCTC. Eur J Pharmacol 2012; 674:44-50. [DOI: 10.1016/j.ejphar.2011.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
18
|
Nitro-oleic acid targets transient receptor potential (TRP) channels in capsaicin sensitive afferent nerves of rat urinary bladder. Exp Neurol 2011; 232:90-9. [PMID: 21867704 DOI: 10.1016/j.expneurol.2011.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 11/24/2022]
Abstract
Nitro-oleic acid (9- and 10-nitro-octadeca-9-enoic acid, OA-NO(2)) is an electrophilic fatty acid nitroalkene derivative that modulates gene transcription and protein function via post-translational protein modification. Nitro-fatty acids are generated from unsaturated fatty acids by oxidative inflammatory reactions and acidic conditions in the presence of nitric oxide or nitrite. Nitroalkenes react with nucleophiles such as cysteine and histidine in a variety of susceptible proteins including transient receptor potential (TRP) channels in sensory neurons of the dorsal root and nodose ganglia. The present study revealed that OA-NO(2) activates TRP channels on afferent nerve terminals in the urinary bladder and thereby increases bladder activity. The TRPV1 agonist capsaicin (CAPS, 1 μM) and the TRPA1 agonist allyl isothiocyanate (AITC, 30 μM), elicited excitatory effects in bladder strips, increasing basal tone and amplitude of phasic bladder contractions (PBC). OA-NO(2) mimicked these effects in a concentration-dependent manner (1 μM-33 μM). The TRPA1 antagonist HC3-030031 (HC3, 30 μM) and the TRPV1 antagonist diaryl piperazine analog (DPA, 1 μM), reduced the effect of OA-NO(2) on phasic contraction amplitude and baseline tone. However, the non-selective TRP channel blocker, ruthenium red (30 μM) was a more effective inhibitor, reducing the effects of OA-NO(2) on basal tone by 75% and the effects on phasic amplitude by 85%. In bladder strips from CAPS-treated rats, the effect of OA-NO(2) on phasic contraction amplitude was reduced by 65% and the effect on basal tone was reduced by 60%. Pretreatment of bladder strips with a combination of neurokinin receptor antagonists (NK1 selective antagonist, CP 96345; NK2 selective antagonist, MEN 10,376; NK3 selective antagonist, SB 234,375, 1 μM each) reduced the effect of OA-NO(2) on basal tone, but not phasic contraction amplitude. These results indicate that nitroalkene fatty acid derivatives can activate TRP channels on CAPS-sensitive afferent nerve terminals, leading to increased bladder contractile activity. Nitrated fatty acids produced endogenously by the combination of fatty acids and oxides of nitrogen released from the urothelium and/or afferent nerves may play a role in modulating bladder activity.
Collapse
|
19
|
Capasso R, Aviello G, Borrelli F, Romano B, Ferro M, Castaldo L, Montanaro V, Altieri V, Izzo AA. Inhibitory Effect of Standardized Cannabis sativa Extract and Its Ingredient Cannabidiol on Rat and Human Bladder Contractility. Urology 2011; 77:1006.e9-1006.e15. [DOI: 10.1016/j.urology.2010.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/05/2010] [Accepted: 12/05/2010] [Indexed: 12/27/2022]
|
20
|
Abstract
Cannabinoids are the active chemical components of Cannabis sativa (marijuana). The medical use of cannabis goes back over 5,000 years. Cannabinoids produce a very wide array of central and peripheral effects, some of which may have beneficial clinical applications. The discovery of cannabinoid receptors has spawned great interest within the pharmaceutical industry with the hopes of capitalizing on the beneficial effects of cannabis without the unwanted psychotropic effects on the central and peripheral nervous system. This chapter presents an overview of the pharmacology of cannabinoids and their derivatives. It reviews the current literature on central and peripheral cannabinoid receptors as related to effects on the lower urinary tract and the role of these receptors in normal and abnormal urinary tract function. An objective evaluation of the published results of clinical trials of cannabis extracts for the treatment of bladder dysfunction resulting from multiple sclerosis is also presented. It is clear that cannabinoid receptors are present in the lower urinary tract as well as spinal and higher centers involved in lower urinary tract control. Systemic cannabinoids have effects on the lower urinary tract that may be able to become clinically useful; however, a much greater understanding of the mechanisms of cannabinoid receptors in control of the human lower urinary tract is necessary to facilitate development of novel cannabinoid drugs for treatment of pelvic disorders.
Collapse
|
21
|
Weinhold P, Gratzke C, Streng T, Stief C, Andersson KE, Hedlund P. TRPA1 Receptor Induced Relaxation of the Human Urethra Involves TRPV1 and Cannabinoid Receptor Mediated Signals, and Cyclooxygenase Activation. J Urol 2010; 183:2070-6. [DOI: 10.1016/j.juro.2009.12.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Weinhold
- Department of Urology, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Christian Gratzke
- Department of Urology, Ludwig-Maximilians University Hospital, Munich, Germany
- Department of Clinical Chemistry and Pharmacology, Lund University Hospital, Lund, Sweden
| | - Tomi Streng
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Christian Stief
- Department of Clinical Chemistry and Pharmacology, Lund University Hospital, Lund, Sweden
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Petter Hedlund
- Department of Clinical Chemistry and Pharmacology, Lund University Hospital, Lund, Sweden
- Urological Research Institute, San Raffaele University, Milan, Italy
- Department of Clinical Pharmacology, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
22
|
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
23
|
Cefalu JS, Guillon MA, Burbach LR, Zhu QM, Hu DQ, Ho MJ, Ford AP, Nunn PA, Cockayne DA. Selective Pharmacological Blockade of the TRPV1 Receptor Suppresses Sensory Reflexes of the Rodent Bladder. J Urol 2009; 182:776-85. [DOI: 10.1016/j.juro.2009.03.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Indexed: 11/27/2022]
|
24
|
Cheng L, de la Monte S, Ma J, Hong J, Tong M, Cao W, Behar J, Biancani P, Harnett KM. HCl-activated neural and epithelial vanilloid receptors (TRPV1) in cat esophageal mucosa. Am J Physiol Gastrointest Liver Physiol 2009; 297:G135-43. [PMID: 19389802 PMCID: PMC2711757 DOI: 10.1152/ajpgi.90386.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test whether transient receptor potential channel vanilloid subfamily member-1 (TRPV1) mediates acid-induced inflammation in the esophagus, a tubular segment of esophageal mucosa was tied at both ends, forming a sac. The sac was filled with 0.01 N HCl (or Krebs buffer for control) and kept in oxygenated Krebs buffer at 37 degrees C. The medium around the sac (supernatant) was collected after 3 h. Supernatant of the HCl-filled sac abolished contraction of esophageal circular muscle strips in response to electric field stimulation. Contraction was similarly abolished by supernatant of mucosal sac filled with the TRPV1 agonist capsaicin (10(-6) M). These effects were reversed by the selective TRPV1 antagonist 5'-iodoresiniferatoxin (IRTX) and by the platelet-activating factor (PAF) receptor antagonist CV9388. Substance P and CGRP levels in mucosa and in supernatant increased in response to HCl, and these increases were abolished by IRTX and by tetrodotoxin (TTX) but not affected by CV9388, indicating that substance P and CGRP are neurally released and PAF independent. In contrast, the increase in PAF was blocked by IRTX but not by TTX. Presence of TRPV1 receptor was confirmed by RT-PCR and by Western blot analysis in whole mucosa and in esophageal epithelial cells enzymatically isolated and sorted by flow cytometry or immunoprecipitated with cytokeratin antibodies. In epithelial cells PAF increased in response to HCl, and the increase was abolished by IRTX. We conclude that HCl-induced activation of TRPV1 receptors in esophageal mucosa causes release of substance P and CGRP from neurons and release of PAF from epithelial cells.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Suzanne de la Monte
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Ma
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jie Hong
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jose Behar
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Piero Biancani
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Karen M. Harnett
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island; and School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Potenzieri C, Brink TS, Simone DA. Excitation of cutaneous C nociceptors by intraplantar administration of anandamide. Brain Res 2009; 1268:38-47. [PMID: 19285051 DOI: 10.1016/j.brainres.2009.02.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
Abstract
Anandamide has been characterized as both an endocannabinoid and endovanilloid. Consistent with its actions as an endovanilloid, previous studies have demonstrated that anandamide can excite primary sensory neurons in vitro via transient receptor potential vanilloid type one (TRPV1) receptors. In the present study, we sought to determine if anandamide excited cutaneous C nociceptors in vivo and if this excitation correlated with nocifensive behaviors. Using teased-fiber electrophysiological methods in the rat, C nociceptors isolated from the tibial nerve with receptive fields (RFs) on the plantar surface of the hindpaw were studied. Injection of anandamide into the RF dose-dependently excited nociceptors at doses of 10 and 100 microg. The TRPV1 receptor antagonists, capsazepine or SB 366791, were applied to the RF to determine if excitation by anandamide was mediated through TRPV1 receptors. Intraplantar injection of either capsazepine (10 microg) or SB 366791 (3 microg) attenuated the excitation produced by 100 microg anandamide. We also determined whether excitation of C nociceptors by anandamide was associated with nocifensive behaviors. Intraplantar injection of 100 microg anandamide produced nocifensive behaviors that were attenuated by pre-treatment with either capsazepine or SB 366791. Furthermore, we determined if intraplantar injection of anandamide altered withdrawal responses to radiant heat. Neither intraplantar injection of anandamide nor vehicle produced antinociception or hyperalgesia to radiant heat. Our results indicate that anandamide excited cutaneous C nociceptors and produced nocifensive behaviors via activation of TRPV1 receptors.
Collapse
Affiliation(s)
- Carl Potenzieri
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Thaddeus S Brink
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Gratzke C, Streng T, Park A, Christ G, Stief CG, Hedlund P, Andersson KE. Distribution and function of cannabinoid receptors 1 and 2 in the rat, monkey and human bladder. J Urol 2009; 181:1939-48. [PMID: 19237169 DOI: 10.1016/j.juro.2008.11.079] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE We investigated the distribution of cannabinoid receptor subtypes 1 and 2 in the detrusor of different species and studied the effects of cannabinoid receptor 1 and 2 agonists on bladder function. MATERIALS AND METHODS Cannabinoid receptor 1 and 2 expression was studied with Western blot and immunohistochemistry in rat, monkey and human detrusors. Co-staining was done for markers of sensory nerves using calcitonin gene-related peptide (Euro-Diagnostica, Malmö, Sweden) and transient receptor potential vanilloid 1, and for cholinergic nerves using VAChT (Santa Cruz Biotechnology, Santa Cruz, California). Actions of the endogenous cannabinoid receptor-1 and 2 agonist anandamide (Sigma(R)), and the cannabinoid receptor 1 and 2 agonist CP55,940 (Sigma) on isolated detrusor and during cystometry in conscious rats were recorded. RESULTS Higher expression of cannabinoid receptor 2 but not cannabinoid receptor 1 was noted in the mucosa than in the detrusor. Compared to the detrusor larger amounts of cannabinoid receptor 2 containing nerves that also expressed transient receptor potential vanilloid 1 or calcitonin gene-related peptide were observed in the suburothelium. Nerve fibers containing cannabinoid receptor 2 and VAChT were located in the detrusor. Neither anandamide nor CP55,940 affected isolated detrusor carbachol (Sigma) contractions. Nerve contractions were enhanced by 10 muM anandamide and decreased by 10 muM CP55,940 (p<0.05). In vivo CP55,940 increased the micturition interval by 46% and threshold pressure by 124% (p <0.05). Anandamide increased threshold pressure by 26% and decreased the micturition interval by 19% (p <0.05 and <0.01, respectively). CONCLUSIONS The distribution of cannabinoid receptor 2 on sensory nerves and in the urothelium, and effects by CP55940 on the micturition interval and threshold pressure suggest a role for cannabinoid receptor 2 in bladder afferent signals. Co-expression of VAChT and cannabinoid receptor 2, and effects by CP55940 on nerve contractions suggest a cannabinoid receptor 2 mediated modulatory effect on cholinergic nerve activity. Anandamide may not be a good tool for cannabinoid receptor studies due to its activity at other receptors.
Collapse
Affiliation(s)
- Christian Gratzke
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Alternative therapies for overactive bladder: Cannabis and urge incontinence. CURRENT BLADDER DYSFUNCTION REPORTS 2008. [DOI: 10.1007/s11884-008-0033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
[Esthetic-preventive conservation of first molars in mixed dentition]. Handb Exp Pharmacol 1990; 231:423-47. [PMID: 2640817 DOI: 10.1007/978-3-319-20825-1_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|