1
|
Singh H, Satish N, Babu TR, Singh A, Yadav B, Singh SK, Wahajuddin M, Siddiqui MI, Jagavelu K, Sudhakar G. Functionalized azirine based scaffolds as endothelin inhibitors for the selective anti-angiogenic activity. Eur J Med Chem 2024; 274:116510. [PMID: 38843585 DOI: 10.1016/j.ejmech.2024.116510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/17/2024]
Abstract
Anti-angiogenic therapy has long been used as an adjunct therapy for the resolution of tumor burden. The current findings describe the synthesis of novel marine-based azirine-containing compounds that exhibit anti-angiogenic mediated anti-tumor activity. Azirine-2-carboxylate inhibited HUVEC-mediated tubulogenesis without causing cell death in a dose-dependent manner. Ex-vivo CAM, in-vivo Matrigel implantation, and ear angiogenesis experiments have all shown that azirine-2-carboxylate effectively inhibits angiogenesis. Furthermore, azirine-2-carboxylate inhibits the migration of ECs without disrupting the preformed tubule network. Azirine-2-carboxylate had adequate intramuscular systemic exposure and inhibited tumor growth in a xenograft mouse model. DARTS analysis, competitive binding assay, and gene expression investigations revealed that azirine-2-carboxylate inhibits endothelin-1-mediated angiogenesis. Overall, the discovery of azirine-2-carboxylate demonstrated a potent inhibition of angiogenesis targeting ET1 and a possible application in anti-angiogenic therapy.
Collapse
Affiliation(s)
- Himalaya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagam Satish
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tella Ramesh Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Abhinav Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babita Yadav
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep Kumar Singh
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Wahajuddin
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Siddiqui
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Gangarajula Sudhakar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Jiménez-Altayó F, Cabrera A, Bagán A, Giménez-Llort L, D’Ocon P, Pérez B, Pallàs M, Escolano C. An Imidazoline 2 Receptor Ligand Relaxes Mouse Aorta via Off-Target Mechanisms Resistant to Aging. Front Pharmacol 2022; 13:826837. [PMID: 35645795 PMCID: PMC9133327 DOI: 10.3389/fphar.2022.826837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Imidazoline receptors (IR) are classified into three receptor subtypes (I1R, I2R, and I3R) and previous studies showed that regulation of I2R signaling has neuroprotective potential. In order to know if I2R has a role in modulating vascular tone in health and disease, we evaluated the putative vasoactive effects of two recently synthesized I2R ligands, diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole -1-phosphonate (B06) and diethyl [(1-(3-chloro-4-fluorobenzyl)-5,5-dimethyl-4-phenyl-4,5-dihydro-1H-imidazol-4-yl]phosphonate] (MCR5). Thoracic aortas from Oncins France 1 (3- to 4-months-old) and C57BL/6 (3- to 4- and 16- to 17-months-old mice) were mounted in tissue baths to measure isometric tension. In young mice of both strains, MCR5 induced greater relaxations than either B06 or the high-affinity I2R selective ligand 2-(2-benzofuranyl)-2-imidazoline (2-BFI), which evoked marginal responses. MCR5 relaxations were independent of I2R, as IR ligands did not significantly affect them, involved activation of smooth muscle KATP channels and inhibition of L-type voltage-gated Ca2+ channels, and were only slightly modulated by endothelium-derived nitric oxide (negatively) and prostacyclin (positively). Notably, despite the presence of endothelial dysfunction in old mice, MCR5 relaxations were preserved. In conclusion, the present study provides evidence against a functional contribution of I2R in the modulation of vascular tone in the mouse aorta. Moreover, the I2R ligand MCR5 is an endothelium-independent vasodilator that acts largely via I2R-independent pathways and is resistant to aging. We propose MCR5 as a candidate drug for the management of vascular disease in the elderly.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Francesc Jiménez-Altayó,
| | - Anna Cabrera
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar D’Ocon
- Department of Pharmacology, School of Medicine, Universidad de Valencia, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Pathak P, Shukla P, Kanshana JS, Jagavelu K, Sangwan NS, Dwivedi AK, Dikshit M. Standardized root extract of Withania somnifera and Withanolide A exert moderate vasorelaxant effect in the rat aortic rings by enhancing nitric oxide generation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114296. [PMID: 34090907 DOI: 10.1016/j.jep.2021.114296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, commonly known as Ashwagandha, belongs to the family Solanaceae. In Ayurveda, Ashwagandha has been defined as one of the most important herb and is considered to be the best adaptogen. It is also an excellent rejuvenator, a general health tonic and cure for various disorders such as cerebrovascular, insomnia, asthma, ulcers, etc. Steroidal lactones (Withanolides: Withanolide A, Withaferin A, Withanolide D, Withanone, etc) isolated from this plant, possess promising medicinal properties such as anti-inflammatory, immune-stimulatory etc. Standardized root extract of the plant NMITLI-118R (NM) was prepared at CSIR-CIMAP, and was investigated for various biological activities at CSIR-CDRI. Among the notable medicinal properties, NM exhibited excellent neuroprotective activity in the middle cerebral artery occlusion (MCAO) rat model. AIM OF THE STUDY Endothelial dysfunction is the primary event in the cerebrovascular or cardiovascular disorders, present study was thus undertaken to evaluate vasoprotective potential of NM and its biomarker compound Withanolide A (WA) using rat aortic rings and EA.hy926 endothelial cells. MATERIAL AND METHODS Transverse aortic rings of 10 weeks old Wistar rats were used to evaluate effect of NM and WA on the vasoreactivity. While, mechanism of NM and WA mediated vasorelaxant was investigated in Ea.hy926 cell line by measuring NO generation, nitrite content, Serine 1177 phosphorylation of eNOS, reduced/oxidized biopterin levels and expression of endothelial nitric oxide synthase (eNOS) mRNA and protein. RESULTS Fingerprinting of NM using HPLC identified presence of WA in the extract. NM as well as WA exerted moderate vasorelaxant effect in the endothelium intact rat aortic rings which was lesser than acetylcholine (ACh). NM and WA augmented ACh induced relaxation in the rat aortic rings. NM and WA dependent vasorelaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ), indicating role of NO/cGMP. Further Ea.hy926 cells treated with NM and WA showed accumulation of nitrite content, enhanced NO levels, eNOS expression and eNOS phosphorylation (Serine 1177). CONCLUSION Altogether NM and WA dependent improvement in the NO availability seems to be mediated by the enhanced eNOS phosphorylation. WA, seems to be one of the active constituent of NM, and presence of other vasoactive substances cannot be ruled out. The data obtained imply that the vasorelaxant property of NM is beneficial for its neuroprotective potential.
Collapse
Affiliation(s)
- Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India.
| | - Prachi Shukla
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Jitendra S Kanshana
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Neelam S Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Anil K Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Tanslational Health Science and Technology, Faridabad, 121001, India.
| |
Collapse
|
4
|
Effects of sex and estrous cycle on the brain and plasma arginine metabolic profile in rats. Amino Acids 2021; 53:1441-1454. [PMID: 34245369 DOI: 10.1007/s00726-021-03040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
L-arginine is a versatile amino acid with a number of bioactive metabolites. Increasing evidence implicates altered arginine metabolism in the aging and neurodegenerative processes. The present study, for the first time, determined the effects of sex and estrous cycle on the brain and blood (plasma) arginine metabolic profile in naïve rats. Female rats displayed significantly lower levels of L-arginine in the frontal cortex and three sub-regions of the hippocampus when compared to male rats. Moreover, female rats had significantly higher levels of L-arginine and γ-aminobutyric acid, but lower levels of L-ornithine, agmatine and putrescine, in plasma relative to male rats. The observed sex difference in brain L-arginine appeared to be independent of the enzymes involved in its metabolism, de novo synthesis and blood-to-brain transport (cationic acid transporter 1 protein expression at least), as well as circulating L-arginine. While the estrous cycle did not affect L-arginine and its metabolites in the brain, there were estrous cycle phase-dependent changes in plasma L-arginine. These findings demonstrate the sex difference in brain L-arginine in the estrous cycle-independent manner. Since peripheral blood has been increasingly used to identify biomarkers of brain pathology, the influences of sex and estrous cycle on blood arginine metabolic profile need attention when experimental research involves female rodents.
Collapse
|
5
|
Kotagale NR, Taksande BG, Inamdar NN. Neuroprotective offerings by agmatine. Neurotoxicology 2019; 73:228-245. [DOI: 10.1016/j.neuro.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
6
|
Vasoreactivity of isolated aortic rings from dyslipidemic and insulin resistant inducible nitric oxide synthase knockout mice. Eur J Pharmacol 2019; 855:90-97. [DOI: 10.1016/j.ejphar.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
|
7
|
Selvaraju V, Suresh SC, Thirunavukkarasu M, Mannu J, Foye JLC, Mathur PP, Palesty JA, Sanchez JA, McFadden DW, Maulik N. Regulation of A-Kinase-Anchoring Protein 12 by Heat Shock Protein A12B to Prevent Ventricular Dysfunction Following Acute Myocardial Infarction in Diabetic Rats. J Cardiovasc Transl Res 2017; 10:209-220. [PMID: 28281242 DOI: 10.1007/s12265-017-9734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
We examined the effects of overexpressing HSPA12B on angiogenesis and myocardial function by intramyocardial administration of adenovirus encoding HSPA12B (Ad. HSPA12B) in a streptozotocin-induced diabetic rat subjected to myocardial infarction. Rats were divided randomly into six groups: control sham (CS) + Ad.LacZ, control myocardial infarction (CMI) + Ad.LacZ, control MI + Ad.HSPA12B, diabetic sham (DS) + Ad.LacZ, diabetic MI + Ad.LacZ and diabetic MI + Ad.HSPA12B. Following MI or sham surgery, the respective groups received either Ad.LacZ or Ad.HSPA12B via intramyocardial injections. We observed increased capillary and arteriolar density along with reduced fibrosis and preserved heart functions in DMI-AdHSPA12B compared to DMI-AdLacZ group. Western blot analysis demonstrated enhanced HSPA12B, vascular endothelial growth factor (VEGF), thioredoxin-1 (Trx-1) expression along with decreased expression of thioredoxin interacting protein (TXNIP) and A kinase anchoring protein 12 (AKAP12) in the DMI-AdHSPA12B compared to DMI-AdLacZ group. Our findings reveal that HSPA12B overexpression interacts with AKAP12 and downregulate TXNIP in diabetic rats following acute MI.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Sumanth C Suresh
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Jayakanthan Mannu
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | | | - Premendu P Mathur
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India.,KIIT University, Bhubaneshwar, India
| | | | - Juan A Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - David W McFadden
- Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, USA.
| |
Collapse
|
8
|
Liu P, Gupta N, Jing Y, Collie ND, Zhang H, Smith PF. Further studies of the effects of aging on arginine metabolites in the rat vestibular nucleus and cerebellum. Neuroscience 2017; 348:273-287. [PMID: 28238850 DOI: 10.1016/j.neuroscience.2017.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Some studies have demonstrated that aging is associated with impaired vestibular reflexes, especially otolithic reflexes, resulting in postural instability. However, the neurochemical basis of these age-related changes is still poorly understood. The l-arginine metabolic system has been implicated in changes in the brain associated with aging. In the current study, we examined the levels of l-arginine and its metabolizing enzymes and downstream metabolites in the vestibular nucleus complex (VNC) and cerebellum (CE) of rats with and without behavioral testing which were young (4months old), middle-aged (12months old) or aged (24months old). We found that aging was associated with lower nitric oxide synthase activity in the CE of animals with testing and increased arginase in the VNC and CE of animals with testing. l-citrulline and l-ornithine were lower in the VNC of aged animals irrespective of testing, while l-arginine and l-citrulline were lower in the CE with and without testing, respectively. In the VNC and CE, aging was associated with lower levels of glutamate in the VNC, irrespective of testing. In the VNC it was associated with higher levels of agmatine and putrescine, irrespective of testing. In the CE, aging was associated with higher levels of putrescine in animals without testing and with higher levels of spermine in animals with testing, and spermidine, irrespective of testing. Multivariate analyses indicated significant predictive relationships between the different variables, and there were correlations between some of the neurochemical variables and behavioral measurements. Cluster analyses revealed that aging altered the relationships between l-arginine and its metabolites. The results of this study demonstrate that there are major changes occurring in l-arginine metabolism in the VNC and CE as a result of age, as well as behavioral activity.
Collapse
Affiliation(s)
- P Liu
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand.
| | - N Gupta
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Y Jing
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - N D Collie
- Dept. of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - H Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P F Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; The Brain Research New Zealand Centre of Research Excellence, New Zealand; The Eisdell Moore Centre, University of Auckland, New Zealand
| |
Collapse
|
9
|
Shelkar GP, Gakare SG, Chakraborty S, Dravid SM, Ugale RR. Interactions of nitric oxide with α2 -adrenoceptors within the locus coeruleus underlie the facilitation of inhibitory avoidance memory by agmatine. Br J Pharmacol 2016; 173:2589-99. [PMID: 27273730 PMCID: PMC4978159 DOI: 10.1111/bph.13531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Agmatine, a putative neurotransmitter, plays a vital role in learning and memory. Although it is considered an endogenous ligand of imidazoline receptors, agmatine exhibits high affinity for α-adrenoceptors, NOS and NMDA receptors. These substrates within the locus coeruleus (LC) are critically involved in learning and memory processes. EXPERIMENTAL APPROACH The hippocampus and LC of male Wistar rat were stereotaxically cannulated for injection. Effects of agmatine, given i.p. or intra-LC, on acquisition, consolidation and retrieval of inhibitory avoidance (IA) memory were measured. The NO donor S-nitrosoglutathione, non-specific (L-NAME) and specific NOS inhibitors (L-NIL, 7-NI, L-NIO), the α2 -adrenoceptor antagonist (yohimbine) or the corresponding agonist (clonidine) were injected intra-LC before agmatine. Intra-hippocampal injections of the NMDA antagonist, MK-801 (dizocilpine), were used to modify the memory enhancing effects of agmatine, SNG and yohimbine. Expression of tyrosine hydroxylase (TH) and eNOS in the LC was assessed immunohistochemically. KEY RESULTS Agmatine (intra-LC or i.p.) facilitated memory retrieval in the IA test. S-nitrosoglutathione potentiated, while L-NAME and L-NIO decreased, these effects of agmatine. L-NIL and 7-NI did not alter the effects of agmatine. Yohimbine potentiated, whereas clonidine attenuated, effects of agmatine within the LC. The effects of agmatine, S-nitrosoglutathione and yohimbine were blocked by intra-hippocampal MK-801. Agmatine increased the population of TH- and eNOS-immunoreactive elements in the LC. CONCLUSIONS AND IMPLICATIONS The facilitation of memory retrieval in the IA test by agmatine is probably mediated by interactions between eNOS, NO and noradrenergic pathways in the LC.
Collapse
Affiliation(s)
- Gajanan P Shelkar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Sukanya G Gakare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Suwarna Chakraborty
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
| | | | - Rajesh R Ugale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, Nagpur, Maharashtra, India
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
10
|
Amiri E, Ghasemi R, Moosavi M. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells. Cell Mol Neurobiol 2016; 36:829-838. [PMID: 26346882 DOI: 10.1007/s10571-015-0266-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/29/2015] [Indexed: 02/08/2023]
Abstract
6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways.
Collapse
Affiliation(s)
- Esmat Amiri
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moosavi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nanotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Liu Y, Wang G, Yang M, Chen H, zhao Y, Yang S, Sun C. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats. Biochem Biophys Res Commun 2015; 468:837-42. [PMID: 26585490 DOI: 10.1016/j.bbrc.2015.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/02/2023]
Abstract
Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation.
Collapse
Affiliation(s)
- Ying Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China.
| | - Guoyuan Wang
- First Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Mingguang Yang
- Third Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Haining Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Yan zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | - Shucai Yang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, PR China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| |
Collapse
|
12
|
Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RLM, Abraham WC, Zhang H. Altered arginine metabolism in Alzheimer's disease brains. Neurobiol Aging 2014; 35:1992-2003. [PMID: 24746363 DOI: 10.1016/j.neurobiolaging.2014.03.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
Abstract
L-arginine is a semi-essential amino acid with a number of bioactive metabolites. Accumulating evidence suggests the implication of altered arginine metabolism in the pathogenesis of Alzheimer's disease (AD). The present study systematically compared the metabolic profile of L-arginine in the superior frontal gyrus, hippocampus, and cerebellum from AD (mean age 80 years) and normal (mean age 80 or 60 years) cases. The activity and protein expression of nitric oxide synthase and arginase were altered with AD and age in a region-specific manner. There were also AD- and age-related changes in the tissue concentrations of L-arginine and its downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, γ-aminobutyric acid, and glutamine) in a metabolite- or region-specific manner. These findings demonstrate that arginine metabolism is dramatically altered in diverse regions of AD brains, thus meriting further investigation to understand its role in the pathogenesis and/or progression of the disease.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Michael S Fleete
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Nicola D Collie
- Department of Anatomy, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Radiology, University of Auckland, New Zealand
| | - Wickliffe C Abraham
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand; School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Regional variations and age-related changes in arginine metabolism in the rat brain stem and spinal cord. Neuroscience 2013; 252:98-108. [DOI: 10.1016/j.neuroscience.2013.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
|
14
|
TSAI TC, LIN CH, CHUNG HH, CHENG JT, CHEN IH, TONG YC. Urinary Bladder Relaxation through Activation of Imidazoline Receptors Induced by Agmatine is Increased in Diabetic Rats. Low Urin Tract Symptoms 2013; 6:117-23. [DOI: 10.1111/luts.12031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tsung-Chin TSAI
- Department of Surgery; Chi-Mei Medical Center Liouying; Tainan Taiwan
| | - Chia-Ho LIN
- Department of Urology; Chi-Mei Medical Center Liouying; Tainan Taiwan
| | - Hsien-Hui CHUNG
- Department of Pharmacology, Institute of Basic Medical Sciences; College of Medicine, National Cheng Kung University; Tainan Taiwan
| | - Juei-Tang CHENG
- Department of Pharmacology, Institute of Basic Medical Sciences; College of Medicine, National Cheng Kung University; Tainan Taiwan
- Department of Medical Research; Chi-Mei Medical Center; Tainan Taiwan,
| | - I-Hung CHEN
- Department of Urology; College of Medicine and Hospital, National Cheng Kung University; Tainan Taiwan
| | - Yat-Ching TONG
- Department of Urology; College of Medicine and Hospital, National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
15
|
Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 2013; 35:65-71. [PMID: 23994446 DOI: 10.1016/j.niox.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022]
Abstract
l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tushar V Gadkari
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | | | | | | | | |
Collapse
|
16
|
Seo SK, Yang W, Park YM, Lee WT, Park KA, Lee JE. Overexpression of human arginine decarboxylase rescues human mesenchymal stem cells against H₂O₂ toxicity through cell survival protein activation. J Korean Med Sci 2013; 28:366-73. [PMID: 23487582 PMCID: PMC3594598 DOI: 10.3346/jkms.2013.28.3.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/18/2013] [Indexed: 11/20/2022] Open
Abstract
In this study, we explored the potentiality of human arginine decarboxylase (ADC) to enhance the survival of mesenchymal stem cells (MSCs) against unfavorable milieu of host tissues as the low survival of MSCs is the issue in cell transplantation therapy. To address this, human MSCs overexpressing human ADC were treated with H2O2 and the resultant intracellular events were examined. First, we examined whether human ADC is overexpressed in human MSCs. Then, we investigated cell survival or death related events. We found that the overexpression of human ADC increases formazan production and reduces caspase 3 activation and the numbers of FITC, hoechst, or propidium iodide positive cells in human MSCs exposed to H2O2. To elucidate the factors underlying these phenomena, AKT, CREB, and BDNF were examined. We found that the overexpression of human ADC phosphorylates AKT and CREB and increases BDNF level in human MSCs exposed to H2O2. The changes of these proteins are possibly relevant to the elevation of agmatine. Collectively, our data demonstrate that the overexpression of human ADC stimulates pro-survival factors to protect human MSCs against H2O2 toxicity. In conclusion, the present findings support that ADC can enhance the survival of MSCs against hostile environment of host tissues.
Collapse
Affiliation(s)
- Su Kyoung Seo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats. Neuroscience 2013; 234:116-24. [PMID: 23318245 DOI: 10.1016/j.neuroscience.2013.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/29/2012] [Accepted: 01/05/2013] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that altered arginine metabolism contributes to cognitive decline during ageing. Agmatine, decarboxylated arginine, has a variety of pharmacological effects, including the modulation of behavioural function. A recent study demonstrated the beneficial effects of short-term agmatine treatment in aged rats. The present study investigated how intraperitoneal administration of agmatine (40mg/kg, once daily) over 4-6weeks affected behavioural function and neurochemistry in aged Sprague-Dawley rats. Aged rats treated with saline displayed significantly reduced exploratory activity in the open field, impaired spatial learning and memory in the water maze and object recognition memory relative to young rats. Prolonged agmatine treatment improved animals' performance in the reversal test of the water maze and object recognition memory test, and significantly suppressed age-related elevation in nitric oxide synthase activity in the dentate gyrus of the hippocampus and prefrontal cortex. However, this prolonged supplementation was unable to improve exploratory activity and spatial reference learning and memory in aged rats. These findings further demonstrate that exogenous agmatine selectively improves behavioural function in aged rats.
Collapse
|
18
|
Gupta N, Jing Y, Collie ND, Zhang H, Liu P. Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neuroscience 2012; 226:178-96. [PMID: 22989918 DOI: 10.1016/j.neuroscience.2012.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/18/2012] [Accepted: 09/07/2012] [Indexed: 01/29/2023]
Abstract
A growing body of evidence suggests the involvement of L-arginine and its metabolites in the ageing and neurodegenerative processes. The present study assessed behavioural performance in 4- (young), 12- (middle-aged) and 24- (aged) month-old male Sprague-Dawley rats, and investigated age-related changes in the activity of two key arginine metabolic enzymes, nitric oxide synthase (NOS) and arginase, and the levels of L-arginine and its downstream metabolites in a number of memory-related brain structures. Aged rats were less anxious and performed poorly in the water maze task relative to the young and middle-aged rats, and both middle-aged and aged rats displayed reduced exploratory activity relative to the young ones. There were significant age-related changes in NOS and arginase activities, and the levels of L-arginine, L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine and glutamate, but not γ-aminobutyric acid, in the CA1, CA2/3 and dentate gyrus sub-regions of the hippocampus and the prefrontal, entorhinal, perirhinal, postrhinal and temporal (an auditory cortex) cortices in a region-specific manner. Cluster analyses revealed that the nine related neurochemical variables formed distinct groups, which changed as a function of ageing. Multiple regression analyses revealed a number of significant correlations between the neurochemical and behavioural variables. The present study further supports the involvement of arginine metabolism in the ageing process, and provides further evidence of the effects of animals' behavioural experience on arginine metabolism.
Collapse
Affiliation(s)
- N Gupta
- Department of Anatomy, Brain Health Research Centre, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
19
|
Chen Y, Zhao J, Du J, Xu G, Tang C, Geng B. Hydrogen sulfide regulates cardiac sarcoplasmic reticulum Ca(2+) uptake via K(ATP) channel and PI3K/Akt pathway. Life Sci 2012; 91:271-8. [PMID: 22884808 DOI: 10.1016/j.lfs.2012.07.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the effects of hydrogen sulfide (H(2)S) on calcium uptake activity of the rat cardiac sarcoplasmic reticulum (SR) and possible signaling. MAIN METHODS Crude SR was isolated after treatment with H(2)S, then SR Ca(2+) uptake and SR Ca(2+)-ATPase (SERCA) activity was measured by the isotopic tracer method. The possible roles of the K(ATP) channel and PI3K/Akt and SR-membrane protein phospholamban (PLB) pathway were analyzed by specific blockers, and target protein activation was assayed by measuring protein phosphorylation. KEY FINDINGS Exogenous H(2)S lowered Ca(2+) uptake into the SR time or concentration dependently, which was associated with decreased SERCA activity. Inhibiting endogenous H(2)S production by DL-propargylglycine increased SR Ca(2+) uptake and SERCA activity. H(2)S inhibition of PLB phosphorylation was through SERCA activity and was reversed by two PI3K inhibitors, wortmannin and LY294002. Glibenclamide (a K(ATP) channel blocker) blocked the inhibitory effects of H(2)S on PLB and Akt phosphorylation. Pinacidil (a K(ATP) channel opener) reduced the phosphorylation of PLB and reversed the effects of DL-propargylglycine. H(2)S preconditioning increased PLB phosphorylation but did not affect SERCA activity. SIGNIFICANCE Endogenous H(2)S transiently and reversibly inhibits SR Ca(2+) uptake in rat heart SR because of downregulated SERCA activity associated with PLB phosphorylation by the PI3K/Akt or K(ATP) channel. The transient negative regulation of SR Ca(2+) uptake and the L-type Ca(2+) channel contributes to Ca(2+) cycle homeostasis, which might be an important molecular mechanism in ischemic diseases.
Collapse
Affiliation(s)
- Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Rushaidhi M, Collie N, Zhang H, Liu P. Agmatine selectively improves behavioural function in aged male Sprague–Dawley rats. Neuroscience 2012; 218:206-15. [DOI: 10.1016/j.neuroscience.2012.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/11/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
21
|
Utkan T, Gocmez SS, Regunathan S, Aricioglu F. Agmatine, a metabolite of L-arginine, reverses scopolamine-induced learning and memory impairment in rats. Pharmacol Biochem Behav 2012; 102:578-84. [PMID: 22796489 DOI: 10.1016/j.pbb.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 01/28/2023]
Abstract
Agmatine (l-amino-4-guanidino-butane), a metabolite of L-arginine through the action of arginine decarboxylase, is a novel neurotransmitter. In the present study, effects of agmatine on cognitive functions have been evaluated by using one trial step-down passive avoidance and three panel runway task. Agmatine (20, 40, 80 mg/kg i.p.) was administered either in the presence or absence of a cholinergic antagonist, scopolamine (1 mg/kg i.p.). Scopolamine significantly impaired learning and memory in both passive avoidance and three panel runway test. Agmatine did not affect emotional learning, working and reference memory but significantly improved scopolamine-induced impairment of learning and memory in a dose dependent manner. Our results indicate that agmatine, as an endogenous substance, may have an important role in modulation of learning and memory functions.
Collapse
Affiliation(s)
- Tijen Utkan
- Kocaeli University Medical Faculty, Pharmacology Department and Experimental Medical Research and Application Unit, 41380 Kocaeli, Turkey.
| | | | | | | |
Collapse
|
22
|
Lee LM, Tsai TC, Chung HH, Tong YC, Cheng JT. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats. BJU Int 2012; 110:E253-8. [PMID: 22587433 DOI: 10.1111/j.1464-410x.2012.11196.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Neurotransmitters are known to control prostate contractility. Agmatine is one of them and induces relaxation through imidazoline receptors. The paper shows that the action of agmatine is reduced in hypertensive rats, and that this change is related to the decrease of ATP-sensitive potassium channels in the prostate. The findings can increase our understanding of the possible underlying mechanism for the development of clinical benign prostatic hyperplasia. OBJECTIVES To compare agmatine-induced prostatic relaxation in hypertensive and control rats. To investigate the responsible mechanism(s) and the role of the ATP-sensitive potassium channel. METHODS Prostate strips were isolated from male spontaneously hypertensive (SH) rats and normal Wistar-Kyoto (WKY) rats for measurement of isometric tension. The strips were precontracted with 1 µmol/L phenylephrine or 50 mmol/L KCl. Dose-dependent relaxation of the prostatic strips was studied by cumulative administration of agmatine, 1 to 100 µmol/L, into the organ bath. Effects of specific antagonists on agmatine-induced relaxation were studied. Western blotting analysis was used to measure the gene expression of the ATP-sensitive potassium channel in the rat prostate. RESULTS Prostatic relaxation induced by agmatine was markedly reduced in SH rats compared with WKY rats. The relaxation caused by agmatine was abolished by BU224, a selective imidazoline I(2)-receptor antagonist, but was not modified by efaroxan at a dose sufficient to block imidazoline I(1)-receptors. The relaxation induced by diazoxide at a concentration sufficient to activate ATP-sensitive potassium channels was markedly reduced in the SH rat prostate. Expressions of ATP-sensitive potassium channel sulphonylurea receptor and inwardly rectifying potassium channel (Kir) 6.2 subunits were both decreased in the prostate of SH rats. CONCLUSION The decrease of agmatine-induced prostatic relaxation in SH rats is related to the change in ATP-sensitive potassium channels.
Collapse
Affiliation(s)
- Liang-Ming Lee
- Department of Urology, College of Medicine, Taipei Medical University-Wan-Fang Hospital, Wang-Fang, Taipei City, Taiwan
| | | | | | | | | |
Collapse
|
23
|
LEE LM, LIN CH, CHUNG HH, CHENG JT, CHEN IH, TONG YC. Agmatine Induces Rat Prostate Relaxation through Activation of Peripheral Imidazoline I2-Receptors. Low Urin Tract Symptoms 2012; 5:39-43. [DOI: 10.1111/j.1757-5672.2012.00158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential. Pharmacol Ther 2012; 133:351-65. [DOI: 10.1016/j.pharmthera.2011.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
25
|
Jain M, Barthwal MK, Haq W, Katti SB, Dikshit M. Synthesis and Pharmacological Evaluation of Novel Arginine Analogs as Potential Inhibitors of Acetylcholine-Induced Relaxation in Rat Thoracic Aortic Rings. Chem Biol Drug Des 2012; 79:459-69. [DOI: 10.1111/j.1747-0285.2011.01286.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Moosavi M, Khales GY, Abbasi L, Zarifkar A, Rastegar K. Agmatine protects against scopolamine-induced water maze performance impairment and hippocampal ERK and Akt inactivation. Neuropharmacology 2012; 62:2018-23. [PMID: 22248637 DOI: 10.1016/j.neuropharm.2011.12.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 02/08/2023]
Abstract
Cholinergic brain activity plays a significant role in memory. Scopolamine a muscarinic cholinergic antagonist is known to induce impairment in Morris water maze performance, the task which is mainly dependent on the hippocampus. It is suggested that hippocampal ERK and Akt activation play roles in synaptic plasticity and some types of learning and memory. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study was aimed to investigate if agmatine could reverse scopolamine-induced memory impairment and possible hippocampal ERK and Akt activity alteration. Adult male Sprague-Dawley rats weighing 200-250 g were randomly assigned into 5 groups. The animals were trained for 3 days in Morris water maze and in day 4 their memory retention was assessed in probe trial which was consisted of a 60 s trial with no platform. Scopolamine (1 mg/kg/ip) or saline were injected 30 min and agmatine (20 or 40 mg/kg/ip) was administered 60 min before each session. The hippocampi were isolated after behavioral studies and western blotting studies on hippocampal lysates were done to determine the levels of activated ERK and Akt. Scopolamine treatment not only impaired water maze learning and memory, but also decreased the amount of phosphorylated (activated) ERK and Akt. Agmatine pre-treatment prevented both the learning impairment and hippocampal ERK and Akt inactivation induced by scopolamine. It seems that agmatine may act as a candidate substance against amnesia.
Collapse
Affiliation(s)
- Maryam Moosavi
- Shiraz Neuroscience Research Center and department of Physiology, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
27
|
Pontes LB, Antunes F, Sudo RT, Raimundo JM, Lima LM, Barreiro EJ, Zapata-Sudo G. Vasodilatory activity and antihypertensive profile mediated by inhibition of phosphodiesterase type 1 induced by a novel sulfonamide compound. Fundam Clin Pharmacol 2011; 26:690-700. [PMID: 22066694 DOI: 10.1111/j.1472-8206.2011.00999.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LASSBio-985 is a sulfonamide compound designed as a simplified structure of a nonselective phosphodiesterase type 4 (PDE-4) inhibitor that promotes vasodilatory activity in vitro. PDE are enzymes responsible for the hydrolysis of cyclic adenosine 3',5'- monophosphate and cyclic guanosine 3',5'-monophosphate. Five different isozymes of PDE are found in vascular smooth muscle (PDE1-PDE5). Aortic rings, with or without endothelium, from male normotensive and spontaneously hypertensive rats (SHR) were prepared for isometric tension recording. Blood pressure was measured in Wistar Kyoto (WKY) rats and SHR during intravenous infusion of LASSBio-985 (10 mg/kg/min) during 15 min. LASSBio-985 induced a concentration-dependent vasodilation in aortic rings from normotensive and SHR, which was almost completely inhibited in endothelium-denuded vessels. Vasodilatory activity was also reduced in endothelium-intact aortic rings that had been pretreated with N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME), a nitric oxide synthase inhibitor and 1H-[1,2,4]oxadiazolod[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. LASSBio-985-induced vasodilation was also inhibited by sildenafil (100 μm) and SQ 22536, a PDE5 inhibitor and adenylate cyclase inhibitor, respectively. To evaluate the involvement of some endothelial receptors, atropine, diphenhydramine, HOE 140, naloxone, propranolol, indomethacin, and wortmannin were tested, but none inhibited the effects of LASSBio-985. The residual effect observed on endothelium-denuded aortic rings was abolished by nicardipine, a voltage-sensitive-Ca(2+)-channel blocker. Intravenous infusion of LASSBio-985 (10 mg/kg/min) significantly reduced systolic and diastolic pressures in both WKY and SHR. LASSBio-985 is a compound with vasodilatory activity, which could be consequent to PDE1 inhibition and voltage-sensitive-Ca(2+)-channel blockade.
Collapse
Affiliation(s)
- Luana Braga Pontes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco J, Sala 14, 21941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
A time course study on prothrombotic parameters and their modulation by anti-platelet drugs in hyperlipidemic hamsters. J Physiol Biochem 2011; 67:205-16. [PMID: 21286889 DOI: 10.1007/s13105-010-0065-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 12/09/2010] [Indexed: 12/20/2022]
Abstract
The present study was undertaken to assess the chronology of major pathological events associated with high cholesterol (HC) diet and their modulation by anti-platelet drugs. Male Golden Syrian hamsters were fed HC diet up to 90 days. Plasma lipid, glucose and coagulation parameters (commercial kits), platelet activation (whole blood aggregation and static adhesion), endothelial dysfunction (aortic ring vasoreactivity), splenocyte TNF-α, IFN-γ and iNOS mRNA transcripts (RT-PCR), and ferric chloride (time to occlusion) induced thrombosis were monitored at 15, 30, 60, and 90 days after HC feeding and compared with normolipidemic hamsters. A significant increase in plasma lipid levels was observed at 15 days of HC feeding, but other parameters remain unaltered. Enhanced ADP, collagen, and thrombin-induced platelet aggregation, splenocyte TNF-α expression along with endothelial dysfunction were observed from 30 to 90 days of HC feeding. Platelet adhesion on collagen-/fibrinogen-coated surface and IFN-γ expression were augmented only after 60 days, while enhanced iNOS expression, reduction in thrombin time, and potentiation of ferric chloride-induced thrombosis was observed only at 90 days of HC feeding. Thus, pathological changes induced by HC diet depend on the duration and extent of hyperlipidemia. Moreover, hamsters treated with anti-platelet drugs aspirin (5 mg/kg) or clopidogrel (10 mg/kg) along with HC feeding exhibited reduction in platelet activation as well as subsequent changes observed in the abovementioned parameters following HC feeding. Since reduction in TNF-α was associated with reversion in endothelial dysfunction and prothrombotic state, the role of platelets is implicated in the pathological changes associated with HC feeding.
Collapse
|
29
|
Mun CH, Lee WT, Park KA, Lee JE. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 2010. [PMID: 21212863 DOI: 10.5115/acb.2010-43.3.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Collapse
Affiliation(s)
- Chin Hee Mun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
30
|
Mun CH, Lee WT, Park KA, Lee JE. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 2010; 43:230-40. [PMID: 21212863 PMCID: PMC3015041 DOI: 10.5115/acb.2010.43.3.230] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Collapse
Affiliation(s)
- Chin Hee Mun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
31
|
Bergin D, Liu P. Agmatine protects against β-amyloid25-35-induced memory impairments in the rat. Neuroscience 2010; 169:794-811. [DOI: 10.1016/j.neuroscience.2010.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/13/2010] [Accepted: 05/02/2010] [Indexed: 11/30/2022]
|
32
|
Fofana B, Yao XH, Rampitsch C, Cloutier S, Wilkins JA, Nyomba BLG. Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver. Proteomics 2009; 10:417-34. [DOI: 10.1002/pmic.200800969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Wang Y, Zhang M, Liu Y, Li J, Song E, Niu L, Cheng N. Neither K + Channels Nor PI3K/Akt Mediates the Vasodilative Effect of Nebivolol on Different Types of Rat Arteries. J Cardiovasc Pharmacol Ther 2009; 14:332-8. [DOI: 10.1177/1074248409350138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Nebivolol is a highly selective β1-adrenoceptor blocker with additional vasodilating properties. It has been shown that the nebivolol-induced vasorelaxation is nitric oxide (NO) dependent. The serine/ threonine protein kinase Akt phosphorylates endothelial cell NO synthase (eNOS) and enhances the ability of eNOS to generate NO. Previous studies have shown that the release of NO from the endothelium may be ascribed to the modulation of different types of K + channels. The current study was designed to determine whether K + channels or phosphatidylinositol-3-kinase (PI3K)/Akt may affect vasorelaxation induced by nebivolol in different rat arteries. Methods: Rings of the rat aorta, carotid artery, femoral artery, and renal artery were suspended for isometric force recording. During contraction by KCl (60 mmol/L) or phenylephrine (PE; 10—6 mol/L; femoral artery and renal artery were precontracted by 10—5 mol/L), the effect of nebivolol (10—7-10— 5 mol/L) was obtained in the presence of different potassium channel, PI3K/Akt, or NOS inhibitors. Results: Nebivolol (10— 7-10—5 mol/L) relaxed precontractions induced by KCl and PE in different rat arteries, which was inhibited by the presence of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 μmol/ L). The effect of nebivolol was concentration dependent. The exposure of the vessel rings to a selective inhibitor of PI3K wortmannin (5 × 10—7 mol/L) or a selective inhibitor of Akt (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-Omethyl-3-O-octadecylcarbonate, 10—5 mol/L) did not influence nebivolol-induced vasorelaxation. Similarly, K+ channels blockers, iberiotoxin (100 nmol/L), glibenclamide (0.1 mmol/L), 4-aminopyridine (1 mmol/L), or BaCl 2 (1 mmol/L) had no influence on the relaxation of nebivolol in arteries precontracted by PE. Conclusion: Nebivolol produced a concentration-dependent vasodilation in different rat arteries precontracted by PE or KCl. In the isolated rat aorta, carotid artery, femoral artery, and renal artery, neither K+ channels nor PI3K/Akt pathway was involved in the relaxation induced by nebivolol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - MingSheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Jie Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - ErFei Song
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - LongGang Niu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - NiuLiang Cheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China,
| |
Collapse
|
34
|
Liu P, Collie ND. Behavioral effects of agmatine in naive rats are task- and delay-dependent. Neuroscience 2009; 163:82-96. [PMID: 19482065 DOI: 10.1016/j.neuroscience.2009.05.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/29/2022]
Abstract
The present study systematically investigated the effects of agmatine administered i.p. in several commonly used behavioral tasks. In Experiment 1, pre-test treatment of agmatine (1 and 40 mg/kg) appeared to improve animals' performance in the water maze probe test conducted 24 h, but not 120 s, after training, when the effect was evaluated within subjects. In Experiment 2, pre-test agmatine treatment (40 mg/kg) did not affect animals' performance in the open field, and the place navigation, probe tests (1-4 and 6), reversal test and cued navigation in the water maze, but significantly facilitated performance in probe 5 which was conducted 96 h after training. In Experiment 3, rats with pre-test agmatine treatment (40 mg/kg) were less anxious relative to the controls, with no performance changes in the open field. In the water maze task, post-training agmatine treatment (40 mg/kg) did not affect place and cued navigation, but significantly improved animals' performance in the probe test conducted 24 h after training and the reversal test. In the working memory version of the task, agmatine treated rats took significantly less time and generated markedly shorter path length to reach the platform at the 180 s, but not 30 s, delay relative to the controls. In the object recognition task, rats with pre-test agmatine treatment (40 mg/kg) spent significantly more time exploring displaced objects, but not novel object, as compared to the controls. In Experiment 4, pre-test agmatine treatment (40 mg/kg) had no effect on the task acquisition in the delayed non-match to position task in the T-maze, but significantly facilitated performance at the 600 s delay. These results suggest that the behavioral effects of agmatine are task- and delay-dependent, and agmatine facilitates memory particularly when the task difficulty is increased due to memory trace decay and/or greater interference.
Collapse
Affiliation(s)
- P Liu
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
35
|
Differential effects of i.c.v. microinfusion of agmatine on spatial working and reference memory in the rat. Neuroscience 2009; 159:951-61. [DOI: 10.1016/j.neuroscience.2009.01.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/15/2009] [Accepted: 01/18/2009] [Indexed: 11/24/2022]
|
36
|
Liu P, Chary S, Devaraj R, Jing Y, Darlington CL, Smith PF, Tucker IG, Zhang H. Effects of aging on agmatine levels in memory-associated brain structures. Hippocampus 2009; 18:853-6. [PMID: 18481282 DOI: 10.1002/hipo.20448] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agmatine is a metabolite of L-arginine by arginine decarboxylase. Recent evidence suggests that it exists in mammalian brain and is a novel neurotransmitter. The present study measured agmatine levels in several memory-associated brain structures in aged (24-month-old), middle-aged (12-month-old), and young (4-month-old) male Sprague Dawley rats using liquid chromatography/mass spectrometry. Agmatine levels were significantly decreased in the CA1, but increased in the CA2/3 and dentate gyrus, subregions of the hippocampus in aged and middle-aged rats relative to the young adults. In the prefrontal cortex, a dramatic decrease in agmatine level was found in aged rats as compared with middle-aged and young rats. There were significantly increased levels of agmatine in the entorhinal and perirhinal cortices in aged relative to middle-aged and young rats. In the postrhinal and temporal cortices, agmatine levels were significantly increased in aged and middle-aged rats as compared with young adults. The present findings, for the first time, demonstrate age-related changes in agmatine levels in memory-associated brain structures and raise a novel issue of the potential involvement of agmatine in the aging process.
Collapse
Affiliation(s)
- Ping Liu
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Touyz RM. Targeting the ailing endothelium – current concepts and future prospects. Can J Cardiol 2008. [DOI: 10.1016/s0828-282x(08)71037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|