1
|
Gandini MA, Zamponi GW. Navigating the Controversies: Role of TRPM Channels in Pain States. Int J Mol Sci 2024; 25:10284. [PMID: 39408620 PMCID: PMC11476983 DOI: 10.3390/ijms251910284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic pain is a debilitating condition that affects up to 1.5 billion people worldwide and bears a tremendous socioeconomic burden. The success of pain medicine relies on our understanding of the type of pain experienced by patients and the mechanisms that give rise to it. Ion channels are among the key targets for pharmacological intervention in chronic pain conditions. Therefore, it is important to understand how changes in channel properties, trafficking, and molecular interactions contribute to pain sensation. In this review, we discuss studies that have demonstrated the involvement of transient receptor potential M2, M3, and M8 channels in pain generation and transduction, as well as the controversies surrounding these findings.
Collapse
Affiliation(s)
- Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Keller M, Mergler S, Li A, Zahn I, Paulsen F, Garreis F. Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells. Int J Mol Sci 2024; 25:4043. [PMID: 38612853 PMCID: PMC11012639 DOI: 10.3390/ijms25074043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8's functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation.
Collapse
Affiliation(s)
- Melina Keller
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Aruna Li
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (S.M.); (A.L.)
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 19, 91054 Erlangen, Germany (F.P.)
| |
Collapse
|
3
|
Ludwiczak S, Reinhard J, Reinach PS, Li A, Oronowicz J, Yousf A, Kakkassery V, Mergler S. Joint CB1 and NGF Receptor Activation Suppresses TRPM8 Activation in Etoposide-Resistant Retinoblastoma Cells. Int J Mol Sci 2024; 25:1733. [PMID: 38339011 PMCID: PMC10855132 DOI: 10.3390/ijms25031733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.
Collapse
Affiliation(s)
- Szymon Ludwiczak
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.L.); (A.L.)
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (J.R.); (A.Y.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Aruna Li
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.L.); (A.L.)
| | - Jakub Oronowicz
- Malteser Waldkrankenhaus Clinic for Orthopedics and Trauma Surgery, 91054 Erlangen, Germany;
| | - Aisha Yousf
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (J.R.); (A.Y.)
| | - Vinodh Kakkassery
- Department of Ophthalmology, Clinic Chemnitz, 09116 Chemnitz, Germany
- Department of Ophthalmology, University of Luebeck, 23538 Luebeck, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.L.); (A.L.)
| |
Collapse
|
4
|
Kuvaeva EE, Mertsalov IB, Simonova OB. Transient Receptor Potential (TRP) Family of Channel Proteins. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Reho G, Lelièvre V, Cadiou H. Planarian nociception: Lessons from a scrunching flatworm. Front Mol Neurosci 2022; 15:935918. [PMID: 35959107 PMCID: PMC9362985 DOI: 10.3389/fnmol.2022.935918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
In addition to being studied for their exceptional regeneration abilities, planarians (i.e., flatworms) have also been extensively used in the context of pharmacological experiments during the past century. Many researchers used planarians as a model system for the study of drug abuse because they display high similarities with the nervous system of vertebrates at cellular and molecular levels (e.g., neuronal morphology, neurotransmitter ligands, and receptor function). This research field recently led to the discovery of causal relationships between the expression of Transient Receptor Potential ion channels in planarians and their behavioral responses to noxious stimuli such as heat, cold or pharmacological analogs such as TRP agonists, among others. It has also been shown that some antinociceptive drugs modulate these behaviors. However, among the few authors that tried to implement a full behavior analysis, none reached a consensual use of the terms used to describe planarian gaits yet, nor did they establish a comprehensive description of a potential planarian nociceptive system. The aim of this review is therefore to aggregate the ancient and the most recent evidence for a true nociceptive behavior in planarians. It also highlights the convenience and relevance of this invertebrate model for nociceptive tests and suggests further lines of research. In regards to past pharmacological studies, this review finally discusses the opportunities given by the model to extensively screen for novel antinociceptive drugs.
Collapse
|
6
|
Poulson SJ, Aldarraji A, Arain II, Dziekonski N, Motlana K, Riley R, Holmes MM, Martin LJ. Naked mole-rats lack cold sensitivity before and after nerve injury. Mol Pain 2020; 16:1744806920955103. [PMID: 32880221 PMCID: PMC7475789 DOI: 10.1177/1744806920955103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropathic pain is a chronic disease state resulting from injury to the nervous system. This type of pain often responds poorly to standard treatments and occasionally may get worse instead of better over time. Patients who experience neuropathic pain report sensitivity to cold and mechanical stimuli. Since the nociceptive system of African naked mole-rats contains unique adaptations that result in insensitivity to some pain types, we investigated whether naked mole-rats may be resilient to sensitivity following nerve injury. Using the spared nerve injury model of neuropathic pain, we showed that sensitivity to mechanical stimuli developed similarly in mice and naked mole-rats. However, naked mole-rats lacked sensitivity to mild cold stimulation after nerve injury, while mice developed robust cold sensitivity. We pursued this response deficit by testing behavior to activators of transient receptor potential (TRP) receptors involved in detecting cold in naïve animals. Following mustard oil, a TRPA1 activator, naked mole-rats responded similarly to mice. Conversely, icilin, a TRPM8 agonist, did not evoke pain behavior in naked mole-rats when compared with mice. Finally, we used RNAscope to probe for TRPA1 and TRPM8 messenger RNA expression in dorsal root ganglia of both species. We found increased TRPA1 messenger RNA, but decreased TRPM8 punctae in naked mole-rats when compared with mice. Our findings likely reflect species differences due to evolutionary environmental responses that are not easily explained by differences in receptor expression between the species.
Collapse
Affiliation(s)
- Sandra J Poulson
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ahmed Aldarraji
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Iqra I Arain
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Natalia Dziekonski
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Keza Motlana
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Rachel Riley
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020; 287:20201309. [PMID: 32842926 DOI: 10.1098/rspb.2020.1309] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential superfamily of ion channels (TRP channels) is widely recognized for the roles its members play in sensory nervous systems. However, the incredible diversity within the TRP superfamily, and the wide range of sensory capacities found therein, has also allowed TRP channels to function beyond sensing an organism's external environment, and TRP channels have thus become broadly critical to (at least) animal life. TRP channels were originally discovered in Drosophila and have since been broadly studied in animals; however, thanks to a boom in genomic and transcriptomic data, we now know that TRP channels are present in the genomes of a variety of creatures, including green algae, fungi, choanoflagellates and a number of other eukaryotes. As a result, the organization of the TRP superfamily has changed radically from its original description. Moreover, modern comprehensive phylogenetic analyses have brought to light the vertebrate-centricity of much of the TRP literature; much of the nomenclature has been grounded in vertebrate TRP subfamilies, resulting in a glossing over of TRP channels in other taxa. Here, we provide a comprehensive review of the function, structure and evolutionary history of TRP channels, and put forth a more complete set of non-vertebrate-centric TRP family, subfamily and other subgroup nomenclature.
Collapse
Affiliation(s)
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
8
|
Bais S, Greenberg RM. Schistosome TRP channels: An appraisal. Int J Parasitol Drugs Drug Resist 2020; 13:1-7. [PMID: 32250774 PMCID: PMC7138929 DOI: 10.1016/j.ijpddr.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Ion channels underlie electrical excitability in cells and are essential for a variety of functions, most notably neuromuscular and sensory activity. They are also validated targets for a preponderance of approved anthelmintic compounds. Transient receptor potential (TRP) channels constitute an ion channel superfamily whose members play important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other key cellular and organismal activities. Unlike most other ion channels, TRP channels are often polymodal, gated by a variety of mechanisms. Furthermore, TRP channels fall into several classes or subtypes based on sequence and structure. Until recently, there had been very little investigation of the properties and functions of TRP channels from parasitic helminths, including schistosomes, but that situation has changed in the past few years. Indeed, it is now clear that at least some schistosome TRP channels exhibit unusual pharmacological properties, and, intriguingly, both a mammalian and a schistosome TRP channel are activated by praziquantel, the current antischistosomal drug of choice. With the latest release of the Schistosoma mansoni genome database, several changes in predicted TRP channel sequences appeared, some of which were significant. This review updates and reassesses the TRP channel repertoire in S. mansoni, examines recent findings regarding these potential therapeutic targets, and provides guideposts for some of the physiological functions that may be mediated by these channels in schistosomes.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Walcher L, Budde C, Böhm A, Reinach PS, Dhandapani P, Ljubojevic N, Schweiger MW, von der Waydbrink H, Reimers I, Köhrle J, Mergler S. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018. [DOI: 10.3389/fphar.2018.01234 ecollection 2018.pmid: 30483120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2022] Open
|
10
|
Walcher L, Budde C, Böhm A, Reinach PS, Dhandapani P, Ljubojevic N, Schweiger MW, von der Waydbrink H, Reimers I, Köhrle J, Mergler S. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018; 9:1234. [PMID: 30483120 PMCID: PMC6243059 DOI: 10.3389/fphar.2018.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
In human uveal melanoma (UM), tumor enlargement is associated with increases in aqueous humor vascular endothelial growth factor-A (VEGF-A) content that induce neovascularization. 3-Iodothyronamine (3-T1AM), an endogenous thyroid hormone metabolite, activates TRP melastatin 8 (TRPM8), which blunts TRP vanilloid 1 (TRPV1) activation by capsaicin (CAP) in human corneal, conjunctival epithelial cells, and stromal cells. We compare here the effects of TRPM8 activation on VEGF-induced transactivation of TRPV1 in an UM cell line (92.1) with those in normal primary porcine melanocytes (PM) since TRPM8 is upregulated in melanoma. Fluorescence Ca2+-imaging and planar patch-clamping characterized functional channel activities. CAP (20 μM) induced Ca2+ transients and increased whole-cell currents in both the UM cell line and PM whereas TRPM8 agonists, 100 μM menthol and 20 μM icilin, blunted such responses in the UM cells. VEGF (10 ng/ml) elicited Ca2+ transients and augmented whole-cell currents, which were blocked by capsazepine (CPZ; 20 μM) but not by a highly selective TRPM8 blocker, AMTB (20 μM). The VEGF-induced current increases were not augmented by CAP. Both 3-T1AM (1 μM) and menthol (100 μM) increased the whole-cell currents, whereas 20 μM AMTB blocked them. 3-T1AM exposure suppressed both VEGF-induced Ca2+ transients and increases in underlying whole-cell currents. Taken together, functional TRPM8 upregulation in UM 92.1 cells suggests that TRPM8 is a potential drug target for suppressing VEGF induced increases in neovascularization and UM tumor growth since TRPM8 activation blocked VEGF transactivation of TRPV1.
Collapse
Affiliation(s)
- Lia Walcher
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clara Budde
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arina Böhm
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | | | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus W Schweiger
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henriette von der Waydbrink
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ilka Reimers
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Oxaliplatin induces pH acidification in dorsal root ganglia neurons. Sci Rep 2018; 8:15084. [PMID: 30305703 PMCID: PMC6180129 DOI: 10.1038/s41598-018-33508-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Oxaliplatin induced peripheral neurotoxicity is characterized by an acute cold-induced syndrome characterized by cramps, paresthesias/dysesthesias in the distal limbs and perioral region, that develops rapidly and lasts up to one week affecting nearly all the patients as well as by long-lasting symptoms. It has been previously shown that pharmacological or genetic ablation of TRPA1 responses reduces oxaliplatin-induced peripheral neurotoxicity in mouse models. In the present report, we show that treatment with concentrations of oxaliplatin similar to those found in plasma of treated patients leads to an acidification of the cytosol of mouse dorsal root ganglia neurons in culture and this in turn is responsible for sensitization of TRPA1 channels, thereby providing a mechanistic explanation to toxicity of oxaliplatin. Reversal of the acidification indeed leads to a significantly reduced activity of TRPA1 channels. Last, acidification occurs also in vivo after a single injection of therapeutically-relevant doses of oxaliplatin.
Collapse
|
12
|
TRP Channels as Drug Targets to Relieve Itch. Pharmaceuticals (Basel) 2018; 11:ph11040100. [PMID: 30301231 PMCID: PMC6316386 DOI: 10.3390/ph11040100] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Although acute itch has a protective role by removing irritants to avoid further damage, chronic itch is debilitating, significantly impacting quality of life. Over the past two decades, a considerable amount of stimulating research has been carried out to delineate mechanisms of itch at the molecular, cellular, and circuit levels. There is growing evidence that transient receptor potential (TRP) channels play important roles in itch signaling. The purpose of this review is to summarize our current knowledge about the role of TRP channels in the generation of itch under both physiological and pathological conditions, thereby identifying them as potential drug targets for effective anti-itch therapies.
Collapse
|
13
|
Türker E, Garreis F, Khajavi N, Reinach PS, Joshi P, Brockmann T, Lucius A, Ljubojevic N, Turan E, Cooper D, Schick F, Reinholz R, Pleyer U, Köhrle J, Mergler S. Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T 1AM) in Human Corneal Keratocytes. Front Endocrinol (Lausanne) 2018; 9:670. [PMID: 30524369 PMCID: PMC6262029 DOI: 10.3389/fendo.2018.00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.
Collapse
Affiliation(s)
- Ersal Türker
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Noushafarin Khajavi
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Pooja Joshi
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Brockmann
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Alexander Lucius
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elizabeth Turan
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Drew Cooper
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schick
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rob Reinholz
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Pleyer
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Stefan Mergler
| |
Collapse
|
14
|
The anthelminthic drug praziquantel is a selective agonist of the sensory transient receptor potential melastatin type 8 channel. Toxicol Appl Pharmacol 2017; 336:55-65. [PMID: 29054683 DOI: 10.1016/j.taap.2017.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022]
Abstract
Praziquantel is the most effective anthelminthic drug for the treatment of schistosomiasis, an infectious disease caused by the platyhelminth Schistosoma mansoni. While praziquantel is known to trigger calcium influx into schisostomes, followed by spastic paralysis of the worms and tegumental disruption, the mechanism of action of the drug is not completely understood. Although relatively well tolerated, praziquantel has been reported to cause mild adverse effects, including nausea, abdominal pain and headaches. As a number of putative Transient Receptor Potential (TRP) channel genes have recently been predicted in S. mansoni, we sought to investigate the effect of praziquantel on three mammalian TRP channels, TRP melastatin type 8 (TRPM8), TRP vanilloid type 1 (TRPV1) and TRP ankyrin type 1 (TRPA1). Using calcium microfluorimetry and the patch clamp technique, we recorded the effect of praziquantel on HEK293T cells expressing recombinant TRPM8, TRPV1 or TRPA1, as well as on cultured dorsal root ganglion (DRG) neurons from wild type and TRPM8 null mutant mice. We discovered that praziquantel is a relatively potent and selective partial agonist of the mammalian and avian cold and menthol receptor TRPM8. The activation of cultured DRG neurons by clinically relevant concentrations of praziquantel is predominantly mediated by TRPM8. Our results may provide clues to a better understanding of praziquantel's mechanism of action and its adverse effects.
Collapse
|
15
|
Bais S, Greenberg RM. TRP channels in schistosomes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:335-342. [PMID: 27496302 PMCID: PMC5196486 DOI: 10.1016/j.ijpddr.2016.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/22/2022]
Abstract
Praziquantel (PZQ) is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP) channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV) that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA) has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting. We provide an overview of transient receptor potential (TRP) channels in schistosomes and other parasitic helminths. TRP channels are important for sensory signaling, ion homeostasis, organellar trafficking, and a host of other functions. Very little work has been done on TRP channels in parasitic helminths. TRPV channels, found throughout the Metazoa, appear not to be present in parasitic platyhelminths. TRP channels in schistosomes appear to have atypical pharmacology, perhaps an entrée for therapeutic targeting.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Bais S, Churgin MA, Fang-Yen C, Greenberg RM. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni. PLoS Negl Trop Dis 2015; 9:e0004295. [PMID: 26655809 PMCID: PMC4676680 DOI: 10.1371/journal.pntd.0004295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7-8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew A. Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lucius A, Khajavi N, Reinach PS, Köhrle J, Dhandapani P, Huimann P, Ljubojevic N, Grötzinger C, Mergler S. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells. Cell Signal 2015; 28:136-147. [PMID: 26689735 DOI: 10.1016/j.cellsig.2015.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
3-Iodothyronamine (3T1AM) is an endogenous thyroid hormone metabolite that interacts with the human trace amine-associated receptor 1 (hTAAR1), a G-protein-coupled receptor, to induce numerous physiological responses including dose-dependent body temperature lowering in rodents. 3T1AM also directly activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) channels in human conjunctival epithelial cells (HCjEC) at constant temperature as well as reducing rises in IL-6 release induced by transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin (CAP). Here, we describe that 3T1AM-induced TRPM8 activation suppresses through crosstalk TRPV1 activation in immortalized human corneal epithelial cells (HCEC). RT-PCR and immunofluorescent staining identified TRPM8 gene and protein expression. Increases in Ca(2+) influx induced by the TRPM8 agonists either 3T1AM (0.1-10 μM), menthol (500 μM), icilin (15-60 μM) or temperature lowering (either <17°C or >17°C) were all blocked by 10-20 μM BCTC, a mixed TRPV1/TRPM8 antagonist. BCTC blocked 3T1AM-induced recombinant TRPM8 activation of Ca(2+) transients in an osteosarcoma heterologous expression system. The effects of BCTC in HCEC were attributable to selective TRPM8 inhibition since whole-cell patch-clamp currents underlying Ca(2+) rises induced by 20 μM CAP were BCTC insensitive. On the other hand, Ca(2+) transients induced by activating TRPV1 with either CAP or a hyperosmolar medium were suppressed during exposure to either 1 μM 3T1AM or 15 μM icilin. All of these modulatory effects on intracellular Ca(2+) regulation induced by the aforementioned agents were attributable to changes in underlying inward and outward current. Taken together, TRPM8 activation by 3T1AM markedly attenuates and even eliminates hyperosmolar and CAP induced TRPV1 activation through crosstalk.
Collapse
Affiliation(s)
- Alexander Lucius
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Noushafarin Khajavi
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Priyavathi Dhandapani
- Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Huimann
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carsten Grötzinger
- Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
18
|
Khajavi N, Reinach PS, Slavi N, Skrzypski M, Lucius A, Strauß O, Köhrle J, Mergler S. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal 2014; 27:315-25. [PMID: 25460045 DOI: 10.1016/j.cellsig.2014.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
3-Iodothyronamine (T1AM), an endogenous thyroid hormone (TH) metabolite, induces numerous responses including a spontaneously reversible body temperature decline. As such an effect is associated in the eye with increases in basal tear flow and thermosensitive transient receptor potential melastatin 8 (TRPM8) channel activation, we determined in human conjunctival epithelial cells (IOBA-NHC) if T1AM also acts as a cooling agent to directly affect TRPM8 activation at a constant temperature. RT-PCR and quantitative real-time PCR (qPCR) along with immunocytochemistry probed for TRPM8 gene and protein expression whereas functional activity was evaluated by comparing the effects of T1AM with those of TRPM8 mediators on intracellular Ca(2+) ([Ca(2+)]i) and whole-cell currents. TRPM8 gene and protein expression was evident and icilin (20μM), a TRPM8 agonist, increased Ca(2+) influx as well as whole-cell currents whereas BCTC (10μM), a TRPM8 antagonist, suppressed these effects. Similarly, either temperature lowering below 23°C or T1AM (1μM) induced Ca(2+) transients that were blocked by this antagonist. TRPM8 activation by both 1µM T1AM and 20μM icilin prevented capsaicin (CAP) (20μM) from inducing increases in Ca(2+) influx through TRP vanilloid 1 (TRPV1) activation, whereas BCTC did not block this response. CAP (20μM) induced a 2.5-fold increase in IL-6 release whereas during exposure to 20μM capsazepine this rise was completely blocked. Similarly, T1AM (1μM) prevented this response. Taken together, T1AM like icilin is a cooling agent since they both directly elicit TRPM8 activation at a constant temperature. Moreover, there is an inverse association between changes in TRPM8 and TRPV1 activity since these cooling agents blocked both CAP-induced TRPV1 activation and downstream rises in IL-6 release.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter S Reinach
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Nefeli Slavi
- Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Alexander Lucius
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Olaf Strauß
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Stefan Mergler
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Klinik für Augenheilkunde, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
19
|
Mergler S, Mertens C, Valtink M, Reinach PS, Székely VC, Slavi N, Garreis F, Abdelmessih S, Türker E, Fels G, Pleyer U. Functional significance of thermosensitive transient receptor potential melastatin channel 8 (TRPM8) expression in immortalized human corneal endothelial cells. Exp Eye Res 2013; 116:337-49. [PMID: 24135298 DOI: 10.1016/j.exer.2013.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/17/2013] [Accepted: 10/03/2013] [Indexed: 11/18/2022]
Abstract
Human corneal endothelial cells (HCEC) maintain appropriate tissue hydration and transparency by eliciting net ion transport coupled to fluid egress from the stroma into the anterior chamber. Such activity offsets tissue swelling caused by stromal imbibition of fluid. As corneal endothelial (HCE) transport function is modulated by temperature changes, we probed for thermosensitive transient receptor potential melastatin 8 (TRPM8) functional activity in immortalized human corneal endothelial cells (HCEC-12) and freshly isolated human corneal endothelial cells (HCEC) as a control. This channel is either activated upon lowering to 28 °C or by menthol, eucalyptol and icilin. RT-PCR and quantitative real-time PCR (qPCR) verified TRPM8 gene expression. Ca(2+) transients induced by either menthol (500 μmol/l), eucalyptol (3 mmol/l), or icilin (2-60 μmol/l) were identified using cell fluorescence imaging. The TRP channel blocker lanthanum III chloride (La(3+), 100 μmol/l) as well as the TRPM8 blockers BCTC (10 μmol/l) and capsazepine (CPZ, 10 μmol/l) suppressed icilin-induced Ca(2+) increases. In and outward currents induced by application of menthol (500 μmol/l) or icilin (50 μmol/l) were detected using the planar patch-clamp technique. A thermal transition from room temperature to ≈ 18 °C led to Ca(2+) increases that were inhibited by a TRPM8 blocker BCTC (10 μmol/l). Other thermosensitive TRP pathways whose heterogeneous Ca(2+) response patterns are suggestive of other Ca(2+) handling pathways were also detected upon strong cooling (≈10 °C). Taken together, functional TRPM8 expression in HCEC-12 and freshly dissociated HCEC suggests that HCE function can adapt to thermal variations through activation of this channel subtype.
Collapse
Affiliation(s)
- Stefan Mergler
- Charité - Universitätsmedizin Berlin, Campus Virchow-Clinic, Department of Ophthalmology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 2013; 110:7476-81. [PMID: 23596210 DOI: 10.1073/pnas.1217431110] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis. TRPM8 expression, localized immunohistochemically in transgenic TRPM8(GFP) mouse colon, was up-regulated in both human- and murine-inflamed colon samples, as measured by real-time PCR. Wild-type mice (but not TRPM8-nulls) treated systemically with the TRPM8 agonist, icilin showed an attenuation of chemically induced colitis, as reflected by a decrease in macroscopic and microscopic damage scores, bowel thickness, and myeloperoxidase activity compared with untreated animals. Furthermore, icilin treatment reduced the 2,4,6-trinitrobenzenesulfonic acid-induced increase in levels of inflammatory cytokines and chemokines in the colon. In comparison with wild-type mice, Dextran Sodium Sulfate (DSS)-treated TRPM8 knockout mice showed elevated colonic levels of the inflammatory neuropeptide calcitonin-gene-related peptide, although inflammatory indices were equivalent for both groups. Further, TRPM8 activation by icilin blocked capsaicin-triggered calcitonin-gene-related peptide release from colon tissue ex vivo and blocked capsaicin-triggered calcium signaling in Transient Receptor Potential Vaniloid-1 (TRPV1) and TRPM8 transfected HEK cells. Our data document an anti-inflammatory role for TRPM8 activation, in part due to an inhibiton of neuropeptide release, pointing to a novel therapeutic target for colitis and other inflammatory diseases.
Collapse
|
21
|
Robbins A, Kurose M, Winterson BJ, Meng ID. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Invest Ophthalmol Vis Sci 2012; 53:7034-42. [PMID: 22952122 DOI: 10.1167/iovs.12-10025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Stimulation to the cornea via noxious chemical and mechanical means evokes tearing, blinking, and pain. In contrast, mild cooling of the ocular surface has been reported to increase lacrimation via activation of corneal cool primary afferent neurons. The purpose of our study was to determine whether menthol induces corneal cool cell activity and lacrimation via the transient receptor potential melastatin-8 (TRPM8) channel without evoking nociceptive responses. METHODS Tear measurements were made using a cotton thread in TRPM8 wild type and knockout mice after application of menthol (0.05-50 mM) to the cornea. In additional studies, nocifensive responses (eye swiping and lid closure) were quantified following cornea menthol application. Trigeminal ganglion electrophysiologic single unit recordings were performed in rats to determine the effect of low and high concentrations of menthol on corneal cool cells. RESULTS At low concentrations, menthol increased tear production in TRPM8 wild type and heterozygous animals, but had no effect in TRPM8 knockout mice, while nocifensive responses remained unaffected. At the highest concentration, menthol (50 mM) increased tearing and nocifensive responses in TRPM8 wild type and knockout animals. A low concentration of menthol (0.1 mM) increased cool cell activity, yet a high concentration of menthol (50 mM) had no effect. CONCLUSIONS These studies indicated that low concentrations of menthol can increase lacrimation via TRPM8 channels without evoking nocifensive behaviors. At high concentrations, menthol can induce lacrimation and nocifensive behaviors in a TRPM8 independent mechanism. The increase in lacrimation is likely due to an increase in cool cell activity.
Collapse
Affiliation(s)
- Ashlee Robbins
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, USA
| | | | | | | |
Collapse
|
22
|
Ferrer-Montiel A, Fernández-Carvajal A, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Messeguer A, González-Muñiz R. Advances in modulating thermosensory TRP channels. Expert Opin Ther Pat 2012; 22:999-1017. [PMID: 22835143 DOI: 10.1517/13543776.2012.711320] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Thermosensory channels are a subfamily of the transient receptor potential (TRP) channel family that are activated by changes in the environmental temperature. These channels, known as thermoTRPs, cover the entire spectrum of temperatures, from noxious cold (< 15°C) to injurious heat (> 42°C). In addition, dysfunction of these channels contributes to the thermal hypersensitivity that accompanies painful conditions. Moreover, because of their wide tissue and cellular distribution, thermoTRPs are also involved in the pathophysiology of several diseases, from inflammation to cancer. AREAS COVERED Although the number of thermoTRPs is increasing with the identification of novel members such as TRPM3, we will cover the recent advances in the pharmacology of the classical thermosensory channels, namely TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. This review will focus on the therapeutic progress carried out for all these channels and will highlight the tenet that TRPV1, TRPM8 and TRPA1 are the most exploited channels, and that the interest on TRPV3 and TRPV4 is growing with the first TRPV3 antagonist that moves into Phase-II clinical trials. In contrast, the pharmacology of TRPV2 is yet in its infancy. EXPERT OPINION Despite the tremendous academic and industrial investment to develop therapeutic modulators of thermoTRPs, it apparently seems that we are still far from the first successful product, although hope is maintained high for all compounds currently in clinical trials. A major concern has been the appearance of side effects. A better knowledge of the thermosensory protein networks (signal-plexes), along with the application of system biology approaches may provide novel strategies to modulate thermoTRPs activity with improved therapeutic index. A case in point is TRPV1, where acting on interacting proteins is providing new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Alicante, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, Blackshaw AL, Brierley SM. A novel role for TRPM8 in visceral afferent function. Pain 2011; 152:1459-1468. [DOI: 10.1016/j.pain.2011.01.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
|
24
|
Baraldi PG, Preti D, Materazzi S, Geppetti P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 2010; 53:5085-107. [PMID: 20356305 DOI: 10.1021/jm100062h] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pier Giovanni Baraldi
- Department of Pharmaceutical Sciences, Ferrara University, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy.
| | | | | | | |
Collapse
|
25
|
Withdrawal-like behavior in planarians is dependent on drug exposure duration. Neurosci Lett 2008; 439:84-8. [DOI: 10.1016/j.neulet.2008.04.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
|
26
|
Rawls SM, Baron S, Ding Z, Roth C, Zaveri N, Raffa RB. Nociceptin attenuates methamphetamine abstinence-induced withdrawal-like behavior in planarians. Neuropeptides 2008; 42:229-37. [PMID: 18479746 DOI: 10.1016/j.npep.2008.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/03/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
Abstract
Planarians display a concentration-related reduction in locomotor activity when amphetamine, cocaine, cannabinoid, or benzodiazepine exposure is abruptly discontinued. In the present study, we tested the hypothesis that abrupt discontinuation of methamphetamine would also cause withdrawal-like behavior in planarians and that the withdrawal-like behavior would be prevented by nociceptin, which has been shown to modulate the effects of methamphetamine in mammals. We observed a concentration-related reduction of locomotor behavior when planarians exposed to methamphetamine (0.1-100 microM) were tested in drug-free water. The withdrawal-like behavior was abolished when methamphetamine (10 microM)-exposed planarians were placed into water containing nociceptin (10 microM) or when planarians co-exposed to methamphetamine (10 microM) and nociceptin (10 microM) were placed into drug-free water. The effects of nociceptin were abolished in the presence of a nociceptin receptor antagonist, JTC-801 (1 microM). Planarians did not display a change in locomotor behavior during exposure to nociceptin (10 microM) or JTC-801 (1 microM) by themselves. These results (1) reveal a functional interaction between nociceptin and methamphetamine in planarians and (2) provide evidence that nociceptin blocks methamphetamine-induced withdrawal-like behavior in planarians through a JTC-801-sensitive mechanism.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy and Center for Substance Abuse Research, Philadelphia, PA 19140, USA.
| | | | | | | | | | | |
Collapse
|