1
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Zhou X, Wang X, Li J, Zhang M, Yang Y, Lei S, He Y, Yang H, Zhou D, Guo C. Integrated Network Pharmacology and in vivo Experimental Validation Approach to Explore the Potential Antioxidant Effects of Annao Pingchong Decoction in Intracerebral Hemorrhage Rats. Drug Des Devel Ther 2024; 18:699-717. [PMID: 38465266 PMCID: PMC10922012 DOI: 10.2147/dddt.s439873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
Background Annao Pingchong decoction (ANPCD) is a traditional Chinese decoction which has definite effects on treating intracerebral hemorrhage (ICH) validated through clinical and experimental studies. However, the impact of ANPCD on oxidative stress (OS) after ICH remains unclear and is worth further investigating. Aim To investigate whether the therapeutic effects of ANPCD on ICH are related to alleviating OS damage and seek potential targets for its antioxidant effects. Materials and Methods The therapeutic candidate genes of ANPCD on ICH were identified through a comparison of the target genes of ANPCD, target genes of ICH and differentially expressed genes (DEGs). Protein-protein interaction (PPI) network analysis and functional enrichment analysis were combined with targets-related literature to select suitable antioxidant targets. The affinity between ANPCD and the selected target was verified using macromolecular docking. Subsequently, the effects of ANPCD on OS and the selected target were further investigated through in vivo experiments. Results Forty-eight candidate genes were screened, in which silent information regulator sirtuin 1 (SIRT1) is one of the core genes that has antioxidant effects and ICH significantly affected its expression. The good affinity between 6 compounds of ANPCD and SIRT1 was also demonstrated by macromolecular docking. The results of in vivo experiments demonstrated that ANPCD significantly decreased modified neurological severity scoring (mNSS) scores and serum MDA and 8-OHdG content in ICH rats, while significantly increasing serum SOD and CAT activity, complicated with the up-regulation of ANPCD on SIRT1, FOXO1, PGC-1α and Nrf2. Furthermore, ANPCD significantly decreased the apoptosis rate and the expression of apoptosis-related proteins (P53, cytochrome c and caspase-3). Conclusion ANPCD alleviates OS damage and apoptosis after ICH in rats. As a potential therapeutic target, SIRT1 can be effectively regulated by ANPCD, as are its downstream proteins.
Collapse
Affiliation(s)
- Xuqing Zhou
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Xu Wang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Jiaqi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Mengxue Zhang
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Yi Yang
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shihui Lei
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
| | - Desheng Zhou
- Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Chun Guo
- Experiment Center of Medical Innovation, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| |
Collapse
|
3
|
Okon E, Koval M, Wawruszak A, Slawinska-Brych A, Smolinska K, Shevera M, Stepulak A, Kukula-Koch W. Emodin-8- O-Glucoside-Isolation and the Screening of the Anticancer Potential against the Nervous System Tumors. Molecules 2023; 28:7366. [PMID: 37959784 PMCID: PMC10650745 DOI: 10.3390/molecules28217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2'-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Maryna Koval
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | | | - Katarzyna Smolinska
- Chronic Wounds Laboratory, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Myroslav Shevera
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska Str., 010601 Kyiv, Ukraine;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
4
|
Avan İ, Akbulut VM. Synthesis and Antioxidant Evaluation of O-Methylated Emodacidamides: Starting from Parietin, a Secondary Metabolite of Lichen Xanthoria parietina. Chem Biodivers 2023; 20:e202200771. [PMID: 36512748 DOI: 10.1002/cbdv.202200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Polyhydroxy-anthraquinones bearing amino acids are found rather seldom in nature. Emodacidamides, isolated from a marine-derived fungus, Penicillium sp. SCSIO sof101 by Luo et al. (2017) are the first natural example of amino acid conjugated anthraquinone. In this study, O-methylated emodacidamides and emodinic acid-anilides were synthesized starting from parietin, extracted from the lichen Xanthoria parietina (L.) Th. Fr. The structural elucidations of prepared compounds were confirmed by 1D and 2D NMR analyses including HSQC and HMBC techniques. In addition, all newly synthesized compounds were evaluated for the antioxidant activities with free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. The synthesized compounds showed low to moderate antioxidant and DPPH scavenging activities. The antioxidant activities were supported within quantum chemical calculations using the DFT-B3LYP/6-311++G(d,p) level of theory. It is observed that the antioxidant activity of emodacidamides mostly depends on the phenolic groups on anthraquinone ring. The phenolic groups on other substituents help to improve antioxidant activity and also the position of hydroxy group is a decisive factor for antioxidant ability.
Collapse
Affiliation(s)
- İlker Avan
- Eskisehir Technical University, Faculty of Science, Department of Chemistry, Eskişehir, Türkiye
| | - Volkan Mustafa Akbulut
- Eskisehir Technical University, Faculty of Science, Department of Chemistry, Eskişehir, Türkiye
| |
Collapse
|
5
|
Parihar RD, Dhiman U, Bhushan A, Gupta PK, Gupta P. Heterorhabditis and Photorhabdus Symbiosis: A Natural Mine of Bioactive Compounds. Front Microbiol 2022; 13:790339. [PMID: 35422783 PMCID: PMC9002308 DOI: 10.3389/fmicb.2022.790339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.
Collapse
Affiliation(s)
| | | | - Anil Bhushan
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Kumar Gupta
- Department of Horticulture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
7
|
Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 2021; 160:112790. [PMID: 34971761 DOI: 10.1016/j.fct.2021.112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) is overexpressed in neuronal cells. However, there are few studies on the involvement of PKM2 modulators in neurodegenerative diseases. Emodin, a dominating anthraquinone derivative extracting from the rhizome of rhubarb, has received expanding consideration due to its pharmacological properties. Our data reveal that emodin could resist hydrogen peroxide- or 6-hydroxydopamine-mediated mitochondrial fission and apoptosis in PC12 cells (a neuron-like rat pheochromocytoma cell line). Notably, emodin at nontoxic concentrations significantly inhibits PKM2 activity and promotes dissociation of tetrameric PKM2 into dimers in cells. The PKM2 dimerization enhances the interaction of PKM2 and NFE2-related factor 2 (Nrf2), which further triggers the activation of the Nrf2/ARE pathway to upregulate a panel of cytoprotective genes. Modulating the PKM2/Nrf2/ARE axis by emodin unveils a novel mechanism for understanding the pharmacological functions of emodin. Our findings indicate that emodin is a potential candidate for the treatment of oxidative stress-related neurodegenerative disorders.
Collapse
|
8
|
Cucu AA, Baci GM, Dezsi Ş, Nap ME, Beteg FI, Bonta V, Bobiş O, Caprio E, Dezmirean DS. New Approaches on Japanese Knotweed ( Fallopia japonica) Bioactive Compounds and Their Potential of Pharmacological and Beekeeping Activities: Challenges and Future Directions. PLANTS (BASEL, SWITZERLAND) 2021; 10:2621. [PMID: 34961091 PMCID: PMC8705504 DOI: 10.3390/plants10122621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 05/17/2023]
Abstract
Known especially for its negative ecological impact, Fallopia japonica (Japanese knotweed) is now considered one of the most invasive species. Nevertheless, its chemical composition has shown, beyond doubt, some high biological active compounds that can be a source of valuable pharmacological potential for the enhancement of human health. In this direction, resveratrol, emodin or polydatin, to name a few, have been extensively studied to demonstrate the beneficial effects on animals and humans. Thus, by taking into consideration the recent advances in the study of Japanese knotweed and its phytochemical constituents, the aim of this article is to provide an overview on the high therapeutic potential, underlining its antioxidant, antimicrobial, anti-inflammatory and anticancer effects, among the most important ones. Moreover, we describe some future directions for reducing the negative impact of Fallopia japonica by using the plant for its beekeeping properties in providing a distinct honey type that incorporates most of its bioactive compounds, with the same health-promoting properties.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (G.-M.B.); (V.B.); (D.S.D.)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (G.-M.B.); (V.B.); (D.S.D.)
| | - Ştefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Mircea-Emil Nap
- Faculty of Geodesy, Technical University of Civil Engineering Bucharest, 020396 Bucharest, Romania;
- Faculty of Horticulture, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Florin Ioan Beteg
- Faculty of Veterinary Medicine, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Victoriţa Bonta
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (G.-M.B.); (V.B.); (D.S.D.)
| | - Otilia Bobiş
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (G.-M.B.); (V.B.); (D.S.D.)
| | - Emilio Caprio
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università, Portici, 100-80055 Naples, Italy;
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-A.C.); (G.-M.B.); (V.B.); (D.S.D.)
| |
Collapse
|
9
|
Krzak A, Swiech O, Majdecki M, Garbacz P, Gwardys P, Bilewicz R. Adjusting the Structure of β-Cyclodextrin to Improve Complexation of Anthraquinone-Derived Drugs. Molecules 2021; 26:7205. [PMID: 34885787 PMCID: PMC8659250 DOI: 10.3390/molecules26237205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
β-Cyclodextrin (CD) derivatives containing an aromatic triazole ring were studied as potential carriers of the following drugs containing an anthraquinone moiety: anthraquinone-2-sulfonic acid (AQ2S); anthraquinone-2-carboxylic acid (AQ2CA); and a common anthracycline, daunorubicin (DNR). UV-Vis and voltammetry measurements were carried out to determine the solubilities and association constants of the complexes formed, and the results revealed the unique properties of the chosen CDs as effective pH-dependent drug complexing agents. The association constants of the drug complexes with the CDs containing a triazole and lipoic acid (βCDLip) or galactosamine (βCDGAL), were significantly larger than that of the native βCD. The AQ2CA and AQ2S drugs were poorly soluble, and their solubilities increased as a result of complex formation with βCDLip and βCDGAL ligands. AQ2CA and AQ2S are negatively charged at pH 7.4. Therefore, they were less prone to form an inclusion complex with the hydrophobic CD cavity than at pH 3 (characteristic of gastric juices) when protonated. The βCDTriazole and βCDGAL ligands were found to form weaker inclusion complexes with the positively charged drug DNR at an acidic pH (pH 5.5) than in a neutral medium (pH 7.4) in which the drug dissociates to its neutral, uncharged form. This pH dependence is favorable for antitumor applications.
Collapse
Affiliation(s)
- Agata Krzak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Olga Swiech
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01224 Warsaw, Poland;
| | - Piotr Garbacz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
| | - Paulina Gwardys
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
10
|
Sun ML, Chen XY, Cao JJ, Cui XH, Wang HB. Polygonum multiflorum Thunb extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1/SKN-1. Food Funct 2021; 12:8774-8786. [PMID: 34374387 DOI: 10.1039/d1fo01908b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polygonum multiflorum Thunb (PMT), as a traditional Chinese herbal medicine, has been widely used in the prevention and treatment of aging-related diseases, including Alzheimer's disease, Parkinson's disease, hyperlipidemia, atherosclerosis and inflammation. However, the effect of PMT on the lifespan and its molecular mechanisms are still unclear. Here we found that 60% ethanol refined fraction (PMT-E) of Polygonum multiflorum Thunb at 50 μg mL-1, which contained two main bioactive compounds, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and emodin-8-O-β-D-glucoside (EG), could significantly increase the mean lifespan by 19.82%, delay the age-related decline of phenotypes, enhance stress resistance and reduce ROS accumulation in Caenorhabditis elegans. Moreover, we also found that the mitochondrial membrane potential (ΔΨ) and ATP content of worms treated with 50 μg mL-1 PMT-E were obviously improved. Further mechanistic studies revealed that DAF-16, SIR-2.1 and SKN-1 transcription factors were required for PMT-E-mediated lifespan extension. Finally, we found that PMT-E could significantly inhibit the toxicity induced by β-amyloid (Aβ) in Aβ transgenic worms. Altogether, these findings laid the foundation for the use of Polygonum multiflorum Thunb to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Meng-Lu Sun
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xin-Yan Chen
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jin-Jin Cao
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xiang-Huan Cui
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Hong-Bing Wang
- Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Ai X, Dong X, Guo Y, Yang P, Hou Y, Bai J, Zhang S, Wang X. Targeting P2 receptors in purinergic signaling: a new strategy of active ingredients in traditional Chinese herbals for diseases treatment. Purinergic Signal 2021; 17:229-240. [PMID: 33751327 PMCID: PMC8155138 DOI: 10.1007/s11302-021-09774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.
Collapse
Affiliation(s)
- Xiaopeng Ai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Xing Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
12
|
Chao HWH, Chen YK, Liu JH, Pan HT, Lin HM, Chao HM. Emodin protected against retinal ischemia insulted neurons through the downregulation of protein overexpression of β-catenin and vascular endothelium factor. BMC Complement Med Ther 2020; 20:338. [PMID: 33167932 PMCID: PMC7654144 DOI: 10.1186/s12906-020-03136-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Emodin has been proved to have an anti-ischemic effect on the brain, however little research has been done on its effect on vision-threatening retinal ischemia. Thus, an investigation was carried out into the hypothetical efficacy of emodin against retinal ischemia and the role of β-catenin/VEGF in its therapeutic mechanism. Methods Retinal ischemia, followed by reperfusion (IR), was inducted by raising the intraocular pressure of a Wistar rat’s eye to 120 mmHg for 60 min. Additionally, pre-ischemic/post-ischemic intravitreous injections of emodin (4, 10 and 20 μM) or vehicle were carried out on the eye with retinal ischemia. MTT assay, electroretinograms, cresyl violet staining retinal thickness measurements, and fluorogold retrograde labelling of retinal ganglion cells (RGCs) as well as Western blotting were carried out. Results Cultured RGC-5 cells subjected to oxygen glucose deprivation (OGD) were used to confirm the effective concentrations of emodin (administered 1 h pre-OGD, pre-OGD emodin). The most effective and significant (P = 0.04) dose of pre-OGD emodin was observed at 0.5 μM (cell viability: 47.52 ± 3.99%) as compared to pre-OGD vehicle treatment group (38.30 ± 2.51%). Furthermore, pre-ischemic intravitreous injection of 20 μM emodin (Emo20 + IR = 0.99 ± 0.18, P < 0.001) significantly attenuated the ischemia induced reduction in ERG b-wave amplitude, as compared to pre-ischemic intravitreous vehicle (Vehicle+IR = 0.04 ± 0.02). Post-ischemic intravitreous 20 μM emodin also significantly (P < 0.001) attenuated the ischemia associated b-wave reduction (IR + Em20 = 0.24 ± 0.09). Compared with pre-ischemic intravitreous vehicle (Vehicle+IR; whole retina thickness = 71.80 ± 1.08 μm; inner retina thickness = 20.97 ± 0.85 μm; RGC =2069.12 ± 212.82/0.17mm2), the significant (P < 0.001) protective effect was also present with pre-ischemic administration of emodin. This was shown by observing cresyl violet stained retinal thickness (Emo20 + IR: whole retina = 170.10 ± 0.10 μm; inner retina = 70.65 ± 2.06 μm) and retrograde fluorogold immunolabeled RGC density (4623.53 ± 179.48/0.17mm2). As compared to the normal control (the ratio of β-catenin/VEGF to β-actin was set as 1 in the Sham group), the β-catenin/VEGF protein level significantly (P < 0.001) increased after retinal ischemia and when pre-ischemic intravitreous vehicle (Vehicle+IR = 1.64 ± 0.14/7.67 ± 2.57) was carried out. However, these elevations were significantly (P = 0.02) attenuated by treatment with emodin 20 μM (Emo20 + IR = 1.00 ± 0.19/1.23 ± 0.44). Conclusions The present results suggest that emodin might protect against retinal ischemia insulted neurons such as RGCs by significantly downregulating the upregulation of β-catenin/VEGF protein that occurs during ischemia. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12906-020-03136-7.
Collapse
Affiliation(s)
| | - Yu-Kuang Chen
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jorn-Hon Liu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hwai-Tzong Pan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-May Lin
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Hsiao-Ming Chao
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan. .,Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Li R, Liu W, Ou L, Gao F, Li M, Wang L, Wei P, Miao F. Emodin Alleviates Hydrogen Peroxide-Induced Inflammation and Oxidative Stress via Mitochondrial Dysfunction by Inhibiting the PI3K/mTOR/GSK3 β Pathway in Neuroblastoma SH-SY5Y Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1562915. [PMID: 32832542 PMCID: PMC7428951 DOI: 10.1155/2020/1562915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 02/02/2023]
Abstract
Emodin is an active monomer extracted from rhubarb root, which has many biological functions, including anti-inflammation, antioxidation, anticancer, and neuroprotection. However, the protective effect of emodin on nerve injury needs to be further elucidated. The purpose of this study is to investigate the effect of emodin on the neuroprotection and the special molecular mechanism. Here, the protective activity of emodin inhibiting H2O2-induced apoptosis and neuroinflammation as well as its molecular mechanisms was examined using human neuroblastoma cells (SH-SY5Y cells). The results showed that emodin significantly enhanced cell viability, reduced cell apoptosis and LDH release. Simultaneously, emodin downregulated H2O2-induced inflammatory factors, including IL-6, NO, and TNF-α, and alleviated H2O2-induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In addition, emodin inhibited the activation of the PI3K/mTOR/GSK3β signaling pathway. What is more, the PI3K/mTOR/GSK3β pathway participated in the protective mechanism of emodin on H2O2-induced cell damage. Collectively, it suggests that emodin alleviates H2O2-induced apoptosis and neuroinflammation potentially by regulating the PI3K/mTOR/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Rui Li
- Department of Internal Medicine and Western Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Wenzhou Liu
- Department of Traditional Chinese Medicine, Xi'an XD group Hospital, Xi'an, Shaanxi 710077, China
| | - Li Ou
- College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Feng Gao
- College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Min Li
- College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Liping Wang
- College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Peifeng Wei
- College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Feng Miao
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| |
Collapse
|
14
|
Neuroprotective Effects of Emodin against Ischemia/Reperfusion Injury through Activating ERK-1/2 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21082899. [PMID: 32326191 PMCID: PMC7215870 DOI: 10.3390/ijms21082899] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 01/28/2023] Open
Abstract
Background: Stroke is one of the leading causes of death and disability worldwide and places a heavy burden on the economy in our society. Current treatments, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days, even weeks, after stroke occurs, which might provide a second window for treatment. Emodin, a traditional Chinese medicinal herb widely used to treat acute hepatitis, has been reported to possess antioxidative capabilities and protective effects against myocardial ischemia/reperfusion injury. However, the underlying mechanisms and neuroprotective functions of Emodin in a rat middle cerebral artery occlusion (MCAO) model of ischemic stroke remain unknown. This study investigates neuroprotective effects of Emodin in ischemia both in vitro and in vivo. Methods: PC12 cells were exposed to oxygen-glucose deprivation to simulate hypoxic injury, and the involved signaling pathways and results of Emodin treatment were evaluated. The therapeutic effects of Emodin in ischemia animals were further investigated. Results: Emodin reduced infarct volume and cell death following focal cerebral ischemia injury. Emodin treatment restored PC12 cell viability and reduced reactive oxygen species (ROS) production and glutamate release under conditions of ischemia/hypoxia. Emodin increased Bcl-2 and glutamate transporter-1 (GLT-l) expression but suppressed activated-caspase 3 levels through activating the extracellular signal-regulated kinase (ERK)-1/2 signaling pathway. Conclusion: Emodin induced Bcl-2 and GLT-1 expression to inhibit neuronal apoptosis and ROS generation while reducing glutamate toxicity via the ERK-1/2 signaling pathway. Furthermore, Emodin alleviated nerve cell injury following ischemia/reperfusion in a rat MCAO model. Emodin has neuroprotective effects against ischemia/reperfusion injury both in vitro and in vivo, which may be through activating the ERK-1/2 signaling pathway.
Collapse
|
15
|
Doycheva D, Xu N, Kaur H, Malaguit J, McBride DW, Tang J, Zhang JH. Adenoviral TMBIM6 vector attenuates ER-stress-induced apoptosis in a neonatal hypoxic-ischemic rat model. Dis Model Mech 2019; 12:dmm040352. [PMID: 31636086 PMCID: PMC6898997 DOI: 10.1242/dmm.040352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a major pathology encountered after hypoxic-ischemic (HI) injury. Accumulation of unfolded proteins triggers the unfolded protein response (UPR), resulting in the activation of pro-apoptotic cascades that lead to cell death. Here, we identified Bax inhibitor 1 (BI-1), an evolutionarily conserved protein encoded by the transmembrane BAX inhibitor motif-containing 6 (TMBIM6) gene, as a novel modulator of ER-stress-induced apoptosis after HI brain injury in a neonatal rat pup. The main objective of our study was to overexpress BI-1, via viral-mediated gene delivery of human adenoviral-TMBIM6 (Ad-TMBIM6) vector, to investigate its anti-apoptotic effects as well as to elucidate its signaling pathways in an in vivo neonatal HI rat model and in vitro oxygen-glucose deprivation (OGD) model. Ten-day-old unsexed Sprague Dawley rat pups underwent right common carotid artery ligation followed by 1.5 h of hypoxia. Rat pups injected with Ad-TMBIM6 vector, 48 h pre-HI, showed a reduction in relative infarcted area size, attenuated neuronal degeneration and improved long-term neurological outcomes. Furthermore, silencing of BI-1 or further activating the IRE1α branch of the UPR, using a CRISPR activation plasmid, was shown to reverse the protective effects of BI-1. Based on our in vivo and in vitro data, the protective effects of BI-1 are mediated via inhibition of IRE1α signaling and in part via inhibition of the second stress sensor receptor, PERK. Overall, this study showed a novel role for BI-1 and ER stress in the pathophysiology of HI and could provide a basis for BI-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Desislava Doycheva
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Ningbo Xu
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Department of Interventional Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Harpreet Kaur
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jay Malaguit
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Devin William McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiping Tang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
16
|
Son B, Lee S, Kim H, Kang H, Jeon J, Jo S, Seong KM, Lee SJ, Youn H, Youn B. Decreased FBP1 expression rewires metabolic processes affecting aggressiveness of glioblastoma. Oncogene 2019; 39:36-49. [PMID: 31444412 DOI: 10.1038/s41388-019-0974-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Radiotherapy is a standard treatment option for patients with glioblastoma (GBM). Although it has high therapeutic efficacy, some proportion of the tumor cells that survive after radiotherapy may cause side effects. In this study, we found that fructose 1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was downregulated upon treatment with ionizing radiation (IR). Ets1, which was found to be overexpressed in IR-induced infiltrating GBM, was suggested to be a transcriptional repressor of FBP1. Furthermore, glucose uptake and extracellular acidification rates were increased upon FBP1 downregulation, which indicated an elevated glycolysis level. We found that emodin, an inhibitor of phosphoglycerate mutase 1 derived from natural substances, significantly suppressed the glycolysis rate and IR-induced GBM migration in in vivo orthotopic xenograft mouse models. We propose that the reduced FBP1 level reprogrammed the metabolic state of GBM cells, and thus, FBP1 is a potential therapeutic target regulating GBM metabolism following radiotherapy.
Collapse
Affiliation(s)
- Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.,Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, 48108, Republic of Korea
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan, 48108, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
17
|
Emodin inhibits zinc-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Biosci Rep 2019; 39:BSR20182378. [PMID: 31023967 PMCID: PMC6522748 DOI: 10.1042/bsr20182378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Emodin is a natural anthraquinone derivative with numerous beneficial effects, including antioxidant properties, anti-tumor activities, and protecting the nerves. Zinc-induced neurotoxicity plays a crucial role in the pathogenesis of vascular dementia (VD) and Parkinson’s disease (PD). Here, the protective activity of emodin inhibiting zinc-induced neurotoxicity and its molecular mechanisms such as cellular Zn2+ influx and zinc-induced gene expression were examined using human neuroblastoma cells (SH-SY5Y cells). Our findings showed that emodin obviously enhanced cell viability and reduced cell apoptosis and lactate dehydrogenase release. Bedsides, we detected a decrease of intracellular Zn2+ concentration after SH-SY5Y cells were pretreated with emodin. Simultaneously, the expression of zinc transporter-1, metallothionein-1, and metallothionein-2 were weakened in emodin-pretreated SH-SY5Y cells. In addition, emodin prevented the depletion of NAD+ and ATP induced by zinc. Emodin also reduced intracellular reactive oxygen species and endoplasmic reticulum-stress levels. Strikingly, emodin elevated SH-SY5Y cell viability and inhibited cell apoptosis caused by AMP-activated protein kinase signaling pathway activation. Thus, emodin could protect against neurotoxicity induced by Zn2+ in neuroblastoma SH-SY5Y cells. It is expected to have future therapeutic potential for VD or PD and other neurodegenerative diseases.
Collapse
|
18
|
Yoo JM, Park KI, Yang JH, Cho WK, Lee B, Ma JY. Anti-allergic actions of F-PASA, a novel herbal cocktail, in IgE/antigen-mediated allergic responses in RBL-2H3 cells and passive cutaneous anaphylaxis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:229-237. [PMID: 30668433 DOI: 10.1016/j.phymed.2018.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The anti-inflammatory actions of Polygonum cuspidatum, Angelica gigas, Sophora flavescens and Arctium fruit are well known. Nonetheless, effects of herbal combination (PASA) or its fermentation by microorganisms (F-PASA) on the allergic response remain unknown. PURPOSE We investigated whether PASA or F-PASA could inhibit IgE/antigen complex (IgE/Ag)-mediated allergic responses. METHODS To evaluate and compare anti-allergic actions of PASA and F-PASA, we performed cell viability, β-hexosaminidase activity, ELISA assays for cytokines and eicosanoids, immunoblot analysis, HPLC analysis and passive cutaneous anaphylaxis (PCA) models. RESULTS F-PASA had stronger anti-degranulation actions (IC50, 510.9 µg/ml) than PASA (IC50, 1,261 µg/ml) without cytotoxicity until 2000 µg/ml in IgE/Ag-activated RBL-2H3 cells. Additionally, F-PASA inhibited formation of tumor necrosis factor-α (IC50, 147.4 µg/ml), interleukin-4 (IC50, 213.4 µg/ml), prostaglandin D2 (IC50, 42.40 µg/ml) and leukotriene C4 (IC50, 157.9 µg/ml). Moreover, F-PASA dose-dependently inhibited the phosphorylation and expression of proteins that are related to the FcεRI and arachidonate cascades. Consistent with in vitro studies, F-PASA from 25 to 100 mg/kg also suppressed IgE/Ag-induced PCA reaction more than PASA did in mice. In phytochemical analysis, using PASA and F-PASA, F-PASA showed a higher level of emodin-8-O-β-d-glucoside, whereas the level of arctiin, an artigenin glycoside, was reduced compared with that using PASA. CONCLUSION These findings indicate that F-PASA, including both artigenin and emodin-8-O-β-d-glucoside, possesses stronger anti-allergic properties. Therefore, F-PASA may be useful as a functional food or as a phytomedicine for allergic diseases.
Collapse
Affiliation(s)
- Jae-Myung Yoo
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kwang Il Park
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Ju-Hye Yang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Bohyoung Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| |
Collapse
|
19
|
Arcella A, Oliva MA, Staffieri S, Sanchez M, Madonna M, Riozzi B, Esposito V, Giangaspero F, Frati L. Effects of aloe emodin on U87MG glioblastoma cell growth: In vitro and in vivo study. ENVIRONMENTAL TOXICOLOGY 2018; 33:1160-1167. [PMID: 30218594 DOI: 10.1002/tox.22622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 05/23/2023]
Abstract
Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence other approaches have been investigated to target more pathways involved in glioblastoma development and progression. Here we investigate the anticancer effect of Aloe-Emodin (AE), an anthraquinone compound presents in the leaves of Aloe arborescens, on human glioblastoma cell line U87MG. U87MG were treated with various concentrations of AE (20 and 40 μM) for different times (24, 48, and 72 hr). Cell growth was monitored by daily cell count after treatments. Growth analysis showed that AE significantly decrease proliferation of U87MG in a time and dose dependent manner. FACS analysis demonstrates a block of cell cycle in S and G2/M phase. AE probably induced also apoptosis by releasing of apoptosis-inducing factor: PARP and Lamin activation leading to nuclear shrinkage. In addition, exposure of U87MG to AE reduced pAKT phosphorylation. AE inhibition of U87MG growth is a result of more mechanism together. Here we report that AE has a specific growth inhibition on U87MG also in in vivo. The growth of U87MG, subcutaneously injected in nude mice with severe combined immunodeficiency, is inhibited without any appreciable toxic effects on the animals after AE treatment. AE might represent a conceptually new lead antitumor adjuvant drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincenzo Esposito
- IRCCS NEUROMED, Pozzilli, Italy
- University of Rome "Sapienza", Rome, Italy
| | | | | |
Collapse
|
20
|
Lee K, Joo H, Sun M, Kim M, Kim B, Lee BJ, Cho JH, Jung JY, Park JW, Bu Y. Review on the characteristics of liver-pacifying medicinal in relation to the treatment of stroke: from scientific evidence to traditional medical theory. J TRADIT CHIN MED 2018. [DOI: 10.1016/j.jtcm.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lin YR, Peng KC, Chan MH, Peng HL, Liu SY. Effect of Pachybasin on General Toxicity and Developmental Toxicity in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10489-10494. [PMID: 29111710 DOI: 10.1021/acs.jafc.7b03879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To document the safety of pachybasin, a secondary metabolite of Trichoderma harzianum, for use as a bioagricultural agent, it was subjected to general toxicological testing in mice and developmental toxicity in zebrafish. With either 5 or 20 mg kg-1 pachybasin i.p. injection, mice behavioral responses such as motor coordination, spontaneous locomotor activity, or nociceptive pain were not influenced. In long-term effect (daily injection for 14 days), the physiological, hematological, liver, and kidney functions were not altered either. Evidence for the developmental toxicity of pachybasin (10-100 μM) in 72-h exposure period was shown in zebrafish larvae, based on developmental retardation, impairment of chorion, and increase of mortality. In summary, there are no significant general toxicities presented in the pachybasin-treated adult male mice. However, the embryo-toxicity in aquatic biota should be taken into consideration during bioagricultural agent application.
Collapse
Affiliation(s)
- Yi-Ruu Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University , Hualien 97401, Taiwan
| | - Kou-Cheng Peng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University , Hualien 97401, Taiwan
- Faculty of Sciences and Humanities, SUNY Korea , Incheon 21985, Korea
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University , Taipei 11605, Taiwan
| | - Huan-Lin Peng
- Department of Molecular Biotechnology, Da-Yeh University , Changhua 51591, Taiwan
| | - Shu-Ying Liu
- Department of Molecular Biotechnology, Da-Yeh University , Changhua 51591, Taiwan
| |
Collapse
|
22
|
Huang L, Shang E, Fan W, Li X, Li B, He S, Fu Y, Zhang Y, Li Y, Fang W. S-oxiracetam protect against ischemic stroke via alleviating blood brain barrier dysfunction in rats. Eur J Pharm Sci 2017; 109:40-47. [DOI: 10.1016/j.ejps.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
|
23
|
Ahn SM, Kim HN, Kim YR, Choi YW, Kim CM, Shin HK, Choi BT. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:13-20. [PMID: 27151150 DOI: 10.1016/j.jep.2016.04.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. has been used widely in East Asia in treatment of diseases associated with aging. Emodin, an active component from Polygonum multiflorum Thunb., provides benefits for brain disturbances induced by severe cerebral injury. AIM OF THE STUDY We investigated the neuroprotective effect of emodin from Polygonum multiflorum Thunb. against glutamate-induced oxidative toxicity and cerebral ischemia. MATERIALS AND METHODS For examination of neuroprotective effects of emodin, cell viability, cytotoxicity, flow cytometry, and Western blot were performed in HT22 cells and infarct volume, behavioral tests and Western blot in a mouse model of photothrombotic ischemic stroke. RESULTS Pretreatment with emodin resulted in significantly reduced glutamate-induced apoptotic cell death in HT22 cells. However, blocking of phosphatidylinositol-3 kinase (PI3K) activity with LY294002 resulted in significantly inhibited cell survival by emodin. Exposure of glutamate-treated cells to emodin induced an increase in the level of Bcl-2 expression, whereas the expression of Bax and active caspase-3 proteins was significantly reduced. In addition, treatment with emodin resulted in increased phosphorylation of Akt and cAMP response element binding protein (CREB), and expression of mature brain-derived neurotrophic factor (BDNF). This expression by emodin was also significantly inhibited by blocking of PI3K activity. In a photothrombotic ischemic stroke model, treatment with emodin resulted in significantly reduced infarct volume and improved motor function. We confirmed the critical role of the expression levels of Bcl-2/Bax, active caspase-3, phosphorylated (p)Akt, p-CREB, and mature BDNF for potent neuroprotective effects of emodin in cerebral ischemia. CONCLUSIONS These results suggest that emodin may afford a significant neuroprotective effect against glutamate-induced apoptosis through activation of the PI3K/Akt signaling pathway, and subsequently enhance behavioral function in cerebral ischemia.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Biochemistry, College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
24
|
Wang P, He Q, Zhu J. Emodin-8-O-glucuronic acid, from the traditional Chinese medicine qinghuobaiduyin, affects the secretion of inflammatory cytokines in LPS-stimulated raw 264.7 cells via HSP70. Mol Med Rep 2016; 14:2368-72. [DOI: 10.3892/mmr.2016.5512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 06/28/2016] [Indexed: 11/05/2022] Open
|
25
|
Ismaiel AA, Rabie GH, Abd El-Aal MA. Antimicrobial and morphogenic effects of emodin produced by Aspergillus awamori WAIR120. Biologia (Bratisl) 2016; 71:464-474. [DOI: 10.1515/biolog-2016-0067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/09/2016] [Indexed: 09/02/2023]
|
26
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
27
|
Karthick V, Nagasundaram N, Doss CGP, Chakraborty C, Siva R, Lu A, Zhang G, Zhu H. Virtual screening of the inhibitors targeting at the viral protein 40 of Ebola virus. Infect Dis Poverty 2016; 5:12. [PMID: 26888469 PMCID: PMC4757971 DOI: 10.1186/s40249-016-0105-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Ebola virus is highly pathogenic and destructive to humans and other primates. The Ebola virus encodes viral protein 40 (VP40), which is highly expressed and regulates the assembly and release of viral particles in the host cell. Because VP40 plays a prominent role in the life cycle of the Ebola virus, it is considered as a key target for antiviral treatment. However, there is currently no FDA-approved drug for treating Ebola virus infection, resulting in an urgent need to develop effective antiviral inhibitors that display good safety profiles in a short duration. METHODS This study aimed to screen the effective lead candidate against Ebola infection. First, the lead molecules were filtered based on the docking score. Second, Lipinski rule of five and the other drug likeliness properties are predicted to assess the safety profile of the lead candidates. Finally, molecular dynamics simulations was performed to validate the lead compound. RESULTS Our results revealed that emodin-8-beta-D-glucoside from the Traditional Chinese Medicine Database (TCMD) represents an active lead candidate that targets the Ebola virus by inhibiting the activity of VP40, and displays good pharmacokinetic properties. CONCLUSION This report will considerably assist in the development of the competitive and robust antiviral agents against Ebola infection.
Collapse
Affiliation(s)
- V Karthick
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - N Nagasundaram
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - C George Priya Doss
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chiranjib Chakraborty
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Noida, India
| | - R Siva
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hailong Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
28
|
A Review on Potential Mechanisms of Terminalia chebula in Alzheimer's Disease. Adv Pharmacol Sci 2016; 2016:8964849. [PMID: 26941792 PMCID: PMC4749770 DOI: 10.1155/2016/8964849] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/13/2022] Open
Abstract
The current management of Alzheimer's disease (AD) focuses on acetylcholinesterase inhibitors (AChEIs) and NMDA receptor antagonists, although outcomes are not completely favorable. Hence, novel agents found in herbal plants are gaining attention as possible therapeutic alternatives. The Terminalia chebula (Family: Combretaceae) is a medicinal plant with a wide spectrum of medicinal properties and is reported to contain various biochemicals such as hydrolysable tannins, phenolic compounds, and flavonoids, so it may prove to be a good therapeutic alternative. In this research, we reviewed published scientific literature found in various databases: PubMed, Science Direct, Scopus, Web of Science, Scirus, and Google Scholar, with the keywords: T. chebula, AD, neuroprotection, medicinal plant, antioxidant, ellagitannin, gallotannin, gallic acid, chebulagic acid, and chebulinic acid. This review shows that T. chebula extracts and its constituents have AChEI and antioxidant and anti-inflammatory effects, all of which are currently relevant to the treatment of Alzheimer's disease.
Collapse
|
29
|
Modification of emodin and aloe-emodin by glycosylation in engineered Escherihia coli. World J Microbiol Biotechnol 2015; 31:611-9. [PMID: 25663173 DOI: 10.1007/s11274-015-1815-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022]
Abstract
Glycosyltransferase from Bacillus licheniformis DSM13 (YjiC) was used for enzymatic modification of emodin and aloe-emodin in vitro and in vivo. In order to increase the availability of UDP-glucose, three genes involved in the production of precursors of NDP-sugar in Escherichia coli BL21 (DE3) viz. D-glucose phosphate isomerase (pgi), D-glucose-6-phosphate dehydrogenase (zwf), and UDP-sugar hydrolase (ushA) were deleted and glucose-1-phosphate urididyltransferase (galU) gene was over expressed. To improve the yield of the products; substrate, time and media parameters were optimized, and the production was scaled up using a 3 L fermentor. The maximum yield of glycosylated products of emodin (emodin-O-β-D-glucoside) and aloe-emodin (aloe-emodin-O-β-D-glucoside) were approximately 144 µM (38 mg/L) and 168 µM (45 mg/L) respectively, representing almost 72 % and 84 % bioconversion of emodin and aloe-emodin when 200 µM of emodin and aloe-emodin were supplemented in the culture. Additionally, the emodin and aloe emodin major glycosylated products exhibited the highest stability at pH 8.0 and the stability of products was up to 70 °C and 60 °C respectively. Furthermore, the biological activities of emodin and its major glucoside (P1) were compared and their anti-cancer activities were assayed in several cancer cell lines. The results demonstrate that YjiC has the capacity to catalyze the glycosylation of these aromatic compounds and that glycosylation of anthraquinones enhances their aqueous solubility while retaining their biological activities.
Collapse
|
30
|
Guo H, Shen X, Xu Y, Yuan J, Zhao D, Hu W. Emodin prevents hypoxic-ischemic neuronal injury: Involvement of the activin A pathway. Neural Regen Res 2014; 8:1360-7. [PMID: 25206430 PMCID: PMC4107762 DOI: 10.3969/j.issn.1673-5374.2013.15.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/18/2013] [Indexed: 01/04/2023] Open
Abstract
Emodin, an extract of dried rhizomes and the root of the Rhizoma Polygoni Cuspidati, can protect neurons from hypoxic-ischemic brain damage. This study aimed to verify the underlying mechanism. After PC12 cells had differentiated into neuron-like cells under the induction of mouse nerve growth factor, cells were subjected to oxygen-glucose deprivation and treated with emodin. Results showed that the viability of neuron-like cells cultured under an ischemia-hypoxia environment decreased, while the expression of activin A and caspase-3 in cells increased. Emodin raised the survival rate of oxygen-glucose deprived neuron-like cells, increased activin A expression, and decreased caspase-3 expression. Experimental findings indicate that emodin can inhibit neuronal apoptosis and alleviate the injury of nerve cells after oxygen-glucose deprivation through the activin A pathway.
Collapse
Affiliation(s)
- Hongliang Guo
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China ; Beihua University, Jilin 132001, Jilin Province, China
| | - Xiaoran Shen
- Jilin Municipal Central Hospital, Jilin 132001, Jilin Province, China
| | - Ye Xu
- Jilin Medical College, Jilin 132001, Jilin Province, China
| | - Junliang Yuan
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Dongming Zhao
- Beihua University, Jilin 132001, Jilin Province, China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|
31
|
Zhou Y, Huang J, He W, Fan W, Fang W, He G, Wu Q, Chu S, Li Y. N2 ameliorates neural injury during experimental ischemic stroke via the regulation of thromboxane A2 production. Pharmacol Biochem Behav 2014; 124:458-65. [PMID: 24955863 DOI: 10.1016/j.pbb.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/05/2014] [Accepted: 06/15/2014] [Indexed: 01/24/2023]
Abstract
Thromboxane A2 (TXA2) promotes ischemic stroke injury and has strong effects in vascular contraction and vascular endothelial cell dysfunction. Agents that reduce TXA2 production have potential for ameliorating neural injury in ischemic stroke. Thromboxane synthetase (TXS) is essential for TXA2 production, and TXS inhibitors have been developed as drugs for the prevention and treatment of stroke. However, ozagrel, a typical TXS inhibitor currently in clinical use, must be delivered via intravenous injection (I.V.). N2, 4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoate, is a potential thromboxane synthetase (TXS) inhibitor, which is being developed as an orally available formulation. The aim of this study was to investigate the effects of N2 on focal cerebral ischemia-reperfusion injury and related mechanisms. Neurological deficits, a Y-maze test and infarct volume were measured to evaluate the effects of N2 post-treatment on middle cerebral artery occlusion (MCAO)-induced ischemia/reperfusion (I/R) injury in rats. Furthermore, the influence of N2 on U46619-induced rat aorta contraction was investigated ex vivo. Moreover, we investigated the protective effects of N2 on rat brain microvessel endothelial cells (RBMECs) in hypoxia/deoxygenating (H/R) induced by Na2S2O4 in vitro. Cell viability and TXA2 biosynthesis were measured by 3-(4, 5-dimethylthiazol-2-yl)- 195 2, 5-diphenyltetrazolium bromide (MTT) and enzyme-linked immunosorbent assay (ELISA) assays, respectively. The results showed that N2 treatment effectively improves performance in neurological deficit and the Y-maze test and reduces the infarct volume in I/R rats. U46619-induced rat aorta contraction was inhibited by N2 ex vivo. Furthermore, N2 incubation improved the morphology of RBMECs, increased cell viability, and suppressed TXA2 production by inhibiting TXS during H/R damage. In summary, this study demonstrated that N2 was neural protective in focal cerebral I/R injury, which might be associated with the effects of N2 on endothelium protection and vascular contraction inhibition. In depth, the mechanisms underlying this phenomenon might be the influence of N2 on TXA2 production targeting TXS.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinru Huang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxiang Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| | | | - Qiang Wu
- Hefei Yigong Medicine Co., Ltd., PR China
| | | | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Xiao HT, Qi XL, Liang Y, Lin CY, Wang X, Guan ZZ, Hao XY. Membrane permeability-guided identification of neuroprotective components from Polygonum cuspidatun. PHARMACEUTICAL BIOLOGY 2014; 52:356-361. [PMID: 24143857 DOI: 10.3109/13880209.2013.837078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Polygonum cuspidatum Sieb et Zucc. (Polygonaceae) possesses various pharmacological activities and has been widely using as one of the most popular and valuable Chinese herbal medicines in clinics. Its usage has increasingly attracted much of our attention and urges investigation on its bioactive components. OBJECTIVE To establish a rapid and valid approach for screening potential neuroprotective components from P. cuspidatum. MATERIALS AND METHODS Potential neuroprotective components from P. cuspidatum were screened utilizing liposome equilibrium dialysis followed by high-performance liquid chromatography (HPLC) analysis. Their neuroprotective effects on modulation of protein expression of α7 nAChR, α3 nAChR and synaptophysin (SPY) on SH-SY5Y human neuroblastoma cell line (SH-SY5Y) were evaluated by means of Western blotting. RESULTS Two potential compounds, polydatin (C1) and emodin-8-O-β-D-glucoside (C2), were detected and identified in our study. The biological tests showed that both compounds C1 and C2, respectively, at concentrations of 0.1 and 0.25 mg/mL significantly increased protein expression of α7 and α3 nicotinic acetylcholine receptors (nAChRs) in SH-SY5Y cells. Moreover, C1 and C2 at 0.1 mg/mL significantly reversed the Aβ₁₋₄₂-induced decrease of α7 and α3 nAChRs protein expression in SH-SY5Y cells. In addition, C2 at 0.1 mg/mL significantly increased protein expression of SPY in SH-SY5Y cells and Aβ1₁₋₄₂-induced SH-SY5Y cells whereas C1 did not provide any positive effects. DISCUSSION AND CONCLUSION In conclusion, our approach utilizing liposome equilibrium dialysis combined with HPLC analysis and cell-based assays is a prompt and useful method for screening neuroprotective agents.
Collapse
|
33
|
A Review of the Pharmacological Effects of the Dried Root of Polygonum cuspidatum (Hu Zhang) and Its Constituents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:208349. [PMID: 24194779 PMCID: PMC3806114 DOI: 10.1155/2013/208349] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/10/2013] [Accepted: 08/17/2013] [Indexed: 01/05/2023]
Abstract
Traditional Chinese medicine (TCM) has been widely used in China for thousands of years to treat and prevent diseases. TCM has been proven safe and effective, and it is being considered as one of the important types of complementary and alternative medicine and receives increasing attention worldwide. The dried root of Polygonum cuspidatum Sieb. et Zucc. (also known as “Hu Zhang” in Chinese) is one of the medicinal herbs listed in the Pharmacopoeia of the People's Republic of China. Hu Zhang is widely distributed in the world. It can be found in Asia and North America and is used as folk medicine in countries such as Japan and Korea. In China, Hu Zhang is usually used in combination with other TCM herbs. The therapeutic uses of those Hu Zhang-containing TCM prescriptions or formulations are for treating cough, hepatitis, jaundice, amenorrhea, leucorrhea, arthralgia, burns and snake bites. Recent pharmacological and clinical studies have indicated that Hu Zhang has antiviral, antimicrobial, anti-inflammatory, neuroprotective, and cardioprotective functions. This review gives a summary of the reported therapeutic effects of the active compounds and the different extracts of Hu Zhang.
Collapse
|
34
|
Chen H, Tuck T, Ji X, Zhou X, Kelly G, Cuerrier A, Zhang J. Quality assessment of Japanese knotweed (Fallopia japonica) grown on Prince Edward Island as a source of resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6383-6392. [PMID: 23742076 DOI: 10.1021/jf4019239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Japanese knotweed (Fallopia japonica , also known as Polygonum cuspidatum) is a common invasive plant species on Prince Edward Island (PEI), Canada, whereas it has been used in Chinese medicine and more recently as a raw material for extracting resveratrol. This paper reports on the quantification of resveratrol, polydatin, emodin, and physcion in roots, stems, and leaves of Japanese knotweed samples from PEI and British Columbia (BC), Canada, and nine provinces of China, by ultraperformance liquid chromatography (UPLC). The results showed that the root contains a much higher level of resveratrol than the stem and leaf, and it is accumulated in its highest level in October. PEI-grown knotweed contains similar levels of resveratrol and polydatin compared to Chinese samples collected in the month of October, but the contents of the other anthraquinones (emodin and physcion) are different. As such, Japanese knotweed grown in PEI could be a commercially viable source of raw material for resveratrol production; however, caution has to be taken in harvesting the right plant species.
Collapse
Affiliation(s)
- Huaguo Chen
- Aquatic and Crop Resource Development, National Research Council Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Jackson TC, Verrier JD, Kochanek PM. Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis 2013; 4:e451. [PMID: 23303125 PMCID: PMC3563977 DOI: 10.1038/cddis.2012.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/04/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022]
Abstract
Anthraquinone derivatives such as emodin have recently been shown to protect in models of beta amyloid β (Aβ) and tau aggregation-induced cell death. The mechanisms of action possibly involve preconditioning effects, anti-aggregation properties, and/or enhancing the phosphatidylinositol-3-kinase (PI3K)/AKT survival mechanism. We studied several natural (emodin, rhein, and aloin) and synthetic (AQ2S) anthraquinones, to screen for post-treatment therapeutic benefit in two models of neuronal death, namely hydrogen peroxide (H(2)O(2)) and staurosporine (STS)-induced injury. Treatment with emodin, rhein, or aloin failed to reduce H(2)O(2) injury. Moreover, consistent with emodin behaving like a mild toxin, it exacerbated oxidative injury at the highest concentration used (50 μM) in our post-treatment paradigm, and potently inhibited AKT. In contrast, AQ2S was neuroprotective. It reduced H(2)O(2) injury at 50 and 75 μM. In addition, AQ2S potently inhibited staurosporine (STS)-induced injury. The mechanisms of action involve caspase inhibition and AKT activation. However, blockade of AKT signaling with LY294002 failed to abolish AQ2S-mediated protection on the STS assay. This is the first study to report that AQ2S is a new neuroprotective compound and a novel caspase inhibitor.
Collapse
Affiliation(s)
- T C Jackson
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Safar Center for Resuscitation Research, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
36
|
Wang LS, Shi ZF, Zhang YF, Guo Q, Huang YW, Zhou LL. Effect of Xiongbing compound on the pharmacokinetics and brain targeting of tetramethylpyrazine. J Pharm Pharmacol 2012; 64:1688-94. [DOI: 10.1111/j.2042-7158.2012.01546.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
To investigate the effect of the Xiongbing compound (XBC) on the pharmacokinetics and brain targeting of tetramethylpyrazine (TMP).
Methods
Three microemulsions containing the same TMP concentration were prepared. XBC microemulsions were made from Rhizoma ligustric Chuanxiong extracts, borneol and TMP. TMP microemulsions were made with TMP only. Borneol microemulsions contained borneol and TMP. Microdialysis with high performance liquid chromatography (HPLC) was used to measure the concentration of TMP in the blood and striatum after intravenous (i.v.) or intragastric (i.g.) administration of the three different microemulsions.
Key findings
The pharmacokinetics of free TMP concentration in the blood and the striatum fit a first-order rate, open two-compartment model after intravenous and intragastric microemulsion administration. The maximal concentration (Cmax) and area under curve (AUC) values in the XBC microemulsion i.v. group were significantly higher than that in the TMP microemulsion and borneol microemulsion i.v. groups. After XBC microemulsion i.g. administration, the t1/2, mean residence time (MRT) and AUC of TMP in both plasma and brain tissues were greater than those with TMP microemulsion and borneol microemulsion administration. The relative brain targeting efficiency of TMP for the XBC microemulsion i.v and i.g. groups relative to the TMP microemulsion and borneol microemulsion groups were greater than 1.
Conclusion
XBC microemulsion can enhance TMP oral bioavailability, brain targeting and tissue distribution, mainly through a synergistic action of Rhizoma ligustric Chuanxiong extracts and borneol.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zong-Feng Shi
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying-Feng Zhang
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Guo
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Wei Huang
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ling Zhou
- Department of Pharmacy, College of Chinese Traditional Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Sun J, Li Y, Fang W, Mao L. Therapeutic time window for treatment of focal cerebral ischemia reperfusion injury with XQ-1h in rats. Eur J Pharmacol 2011; 666:105-10. [DOI: 10.1016/j.ejphar.2011.05.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 12/24/2022]
|
38
|
Su SY, Hsieh CL. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia. Chin Med 2011; 6:26. [PMID: 21740583 PMCID: PMC3152532 DOI: 10.1186/1749-8546-6-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
Abstracts Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.
Collapse
Affiliation(s)
- Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| | | |
Collapse
|
39
|
Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J, Liu J, Kong F, Wu R, Li G, Liang S. Effect of emodin on neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons. Brain Res Bull 2011; 84:406-13. [PMID: 21303687 DOI: 10.1016/j.brainresbull.2011.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/22/2011] [Accepted: 01/27/2011] [Indexed: 12/11/2022]
Abstract
Neuropathic pain is the most difficult type of pain to cure. The P2X(2/3) receptors play a crucial role in facilitating the transmission of pain at neuropathic pain states. Emodin is a natural anthraquinone in rhubarb. The present research investigated the effects of emodin on the pain transmission in neuropathic pain states that was mediated by P2X(2/3) receptor in primary sensory neurons. Chronic constriction injury (CCI) model was used as neuropathic pain model. Emodin was dissolved in 0.5% sodium carboxymethyl cellulose (CMC) as vehicle. Sprague-Dawley male rats had been randomly divided into Sham+vehicle group, CCI+emodin group, and CCI+vehicle group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. P2X(2/3) expression in L4/L5 dorsal root ganglion (DRG) was detected by immunohistochemistry, in situ hybridization (ISH) and RT-PCR. The mechanical withdrawal threshold and thermal withdrawal latency in CCI+vehicle group were lower than those in Sham+vehicle group and CCI+emodin group (p<0.05), while P2X(2) and P2X(3) receptor expression of L4/L5 DRG in CCI+vehicle group was higher than those in the other two groups (p<0.05). The co-local staining of P2X(2) and P2X(3) in the DRG of CCI group appeared to be more intense than that in the DRG of the other two groups with double-label fluorescence immunohistochemistry. The results showed that the application of emodin alleviated the hyperalgesia of CCI rats and significantly decreased the P2X(2/3) expression of L4/L5 DRG in CCI+emodin group compared with that in CCI+vehicle group (p<0.05). The data of ISH and RT-PCR in P2X(2) and P2X(3) mRNA expression suggest that the pharmacologic mechanism of emodin is involved in the nucleic acid level. The results showed that emodin can inhibit the transmission of neuropathic pain mediated by P2X(2/3) receptor of primary sensory neurons to alleviate chronic neuropathic pain.
Collapse
Affiliation(s)
- Yun Gao
- Department of Physiology, Medical College of Nanchang University, Bayi Road #461, Nanchang, Jiangxi, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Emodin-8-O-β-D-glucoside from Polygonum amplexicaule D. Don var. sinense Forb. promotes proliferation and differentiation of osteoblastic MC3T3-E1 cells. Molecules 2011; 16:728-37. [PMID: 21245807 PMCID: PMC6259125 DOI: 10.3390/molecules16010728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/07/2011] [Accepted: 01/17/2011] [Indexed: 11/28/2022] Open
Abstract
Polygonum amplexicaule D. Don var. sinense Forb. (Polygonaceae) (PAF) is a famous traditional herb used to treat fractures, rheumatoid arthritis, muscle injury and pain. The present study was designed to investigate a PAF derived-chemical compound emodin-8-O-β-d-glucoside (EG) on the proliferation and differentiation of osteoblastic MC3T3-E1 cell in vitro. A compound was isolated from PAF extract by HPLC and identified as emodin-8-O-β-d-glucoside (EG) by spectroscopic methods. EG significantly promoted cell proliferation at 0.1–100 ng/mL, and increased the cell proportion in S-phase from 16.34% to 32.16%. Moreover, EG increased alkaline phosphatase (ALP) expression in MC3T3-E1 cells at the concentration from 0.1 to 100 ng/mL and inhibited PGE2 production induced by TNF-α in osteoblasts at the concentrations ranging from 10–100 ng/mL, suggesting that cell differentiation was induced in MC3T3-E1 osteoblasts. Taken together, these results indicated compound EG directly stimulated cell proliferation and differentiation of osteoblasts, therefore this study preliminarily explored the pharmacological mechanism of PAF to promote the healing of bone rheumatism and various fractures.
Collapse
|
41
|
Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin 2010; 31:1523-31. [PMID: 21127495 DOI: 10.1038/aps.2010.186] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
More and more attention in the field of drug discovery has been focused on the neuroprotection of natural compounds from traditional medicinal herbs. Cerebral ischemia is a complex pathological process involving a series of mechanisms, and a framework for the development of neuroprotectants from traditional herb medicine is a promising treatment for cerebral ischemia. Natural compounds with the effects of anti-oxidation, anti-inflammation, calcium antagonization, anti-apoptosis, and neurofunctional regulation exhibit preventive or therapeutic effects on experimental ischemic brain injury. According to the pharmacological mechanisms underlying neuroprotection, we evaluated natural products from traditional medicinal herbs that exhibit protective effects on ischemic brain injury and characterized the promising targets.
Collapse
|
42
|
Mizuno M, Kawamura H, Ishizuka Y, Sotoyama H, Nawa H. The anthraquinone derivative emodin attenuates methamphetamine-induced hyperlocomotion and startle response in rats. Pharmacol Biochem Behav 2010; 97:392-8. [PMID: 20863847 DOI: 10.1016/j.pbb.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Abnormal signaling mediated by epidermal growth factor (EGF) or its receptor (ErbB) is implicated in the neuropathology of schizophrenia. Previously, we found that the anthraquinone derivative emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits ErbB1 signaling and ameliorates behavioral deficits of the schizophrenia animal model established by EGF challenge. In the present study, we assessed acute and subchronic effects of its administration on methamphetamine-triggered behavioral hyperactivation in rats. Prior subchronic administration of emodin (50mg/kg/day, 5days, p.o.) suppressed both higher acoustic startle responses and hyperlocomotion induced by acute methamphetamine challenge. In parallel, emodin also attenuated methamphetamine-induced increases in dopamine and its metabolites and decreases in serotonin and its metabolites. Emodin administered alone also had an effect on stereotypic movement but no influence on horizontal or vertical locomotor activity. In contrast to pre-treatment, post-treatment with emodin had no effect on behavioral sensitization to methamphetamine. Administration of emodin in parallel to or following repeated methamphetamine challenge failed to affect hyperlocomotion induced by methamphetamine re-challenges. These findings suggest that emodin has unique pharmacological activity, which interferes with acute methamphetamine signaling and behavior.
Collapse
Affiliation(s)
- Makoto Mizuno
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
| | | | | | | | | |
Collapse
|
43
|
Kim J, Kim MY, Leem KH, Moon S, Jamakattel-Pandit N, Choi H, Kim H, Bu Y. Key compound groups for the neuroprotective effect of roots ofPolygonum cuspidatumon transient middle cerebral artery occlusion in Sprague-Dawley rats. Nat Prod Res 2010; 24:1214-26. [DOI: 10.1080/14786410902992157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Liu T, Jin H, Sun QR, Xu JH, Hu HT. Neuroprotective effects of emodin in rat cortical neurons against beta-amyloid-induced neurotoxicity. Brain Res 2010; 1347:149-60. [PMID: 20573598 DOI: 10.1016/j.brainres.2010.05.079] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 12/21/2022]
Abstract
Accumulation of beta-amyloid protein (Abeta) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). In this study, the neuroprotective effect of emodin extracted from the traditional Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc against Abeta(25-35)-induced cell death in cultured cortical neurons was investigated. We found that pre-treatment with emodin prevented the cultured cortical neurons from beta-amyloid-induced toxicity. The preventive effect of emodin was blocked by pre-treatment with a phosphatidylinositol-3-kinase (PI3K) pathway inhibitor LY294002 or an estrogen receptor (ER) specific antagonist ICI182780, but not by pre-treatment with an extracellular signal-related kinases (ERK) inhibitor U0126. Furthermore, we found that emodin exposure induced the activation of the Akt serine/threonine kinase and increased the level of Bcl-2 expression. Moreover, the application of emodin for 24h was able to induce the activation of Abeta(25-35)-suppressed Akt and decrease the activation of the Jun-N-terminal kinases (JNK), but not of ERK. Interestingly, the up-regulation of Akt and Bcl-2 did not occur in the presence of LY294002 or ICI182780, suggesting that emodin-up-regulated Bcl-2 is mediated via the ER and PI3K/Akt pathway. Taken together, our results suggest that emodin is an effective neuroprotective drug and is a viable candidate for treating AD.
Collapse
Affiliation(s)
- Tao Liu
- Department of Human Anatomy and Histology & Embryology, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | | | |
Collapse
|
45
|
Fang W, Deng Y, Li Y, Shang E, Fang F, Lv P, Bai L, Qi Y, Yan F, Mao L. Blood brain barrier permeability and therapeutic time window of Ginkgolide B in ischemia–reperfusion injury. Eur J Pharm Sci 2010; 39:8-14. [DOI: 10.1016/j.ejps.2009.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/15/2009] [Accepted: 10/04/2009] [Indexed: 01/08/2023]
|
46
|
Erratum: Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:137-144. [PMID: 20046848 PMCID: PMC2798986 DOI: 10.1007/s12177-009-9033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood-brain and/or blood-eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague-Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer's disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, preclinical data to justify bringing such therapeutic compounds to clinical trials in humans is feasible.[This corrects the article on p. in vol. .].
Collapse
|
47
|
Tan Z. Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:57-64. [PMID: 19672463 PMCID: PMC2723671 DOI: 10.1007/s12177-009-9024-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/02/2009] [Indexed: 01/06/2023] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department of Neurology, University of California Irvine School of Medicine, ZOT 4275, 100 Irvine Hall, Irvine, CA 92697 USA
| |
Collapse
|
48
|
Zhang D, Li X, Hao D, Li G, Xu B, Ma G, Su Z. Systematic purification of polydatin, resveratrol and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2008.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Drever BD, Anderson WGL, Riedel G, Kim DH, Ryu JH, Choi DY, Platt B. The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J Pharmacol Sci 2008; 107:380-92. [PMID: 18719316 DOI: 10.1254/jphs.08034fp] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The precise causative factors in neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease remain elusive, but mechanisms implicated comprise excitotoxicity, mitochondrial dysfunction, and in the case of AD, the amyloid beta peptide (Abeta). Current therapeutic strategies for such disorders are very limited; thus, traditional herbal medicines currently receive increased attention. The seeds of Cassia obtisufolia have long been used in traditional eastern medicine and more recently the ethanolic fraction of the seeds (COE) has been shown to attenuate memory impairments in mice. In this study, we set out to determine the effect of COE (range: 0.1 - 10 microg/ml) on calcium dysregulation and cell death models in mouse primary hippocampal cultures implicated in general neurodegenerative processes and in the pathogenesis of AD: excitotoxicity, mitochondrial dysfunction, and Abeta toxicity. It was found that treatment with COE attenuated secondary Ca2+ dysregulation induced by NMDA (700 microM), while a pre-application of COE also reduced NMDA-induced cell death. Furthermore, COE was neuroprotective against the mitochondrial toxin 3-NP (1 mM), while having no significant effect on cell death induced by incubation with naturally-secreted oligomers of Abeta (8.2 pg/ml). Collectively, these results are important for the therapeutic use of COE in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Benjamin D Drever
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Kim HH, Leem JG, Shin JW, Shim JY, Lee DM. Superior Cervical Sympathetic Ganglion Block may not Influence Early Brain Damage Induced by Permanent Focal Cerebral Ischemia in Rats. Korean J Pain 2008. [DOI: 10.3344/kjp.2008.21.1.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyun Hae Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Ulsan Univercity College of Medicine, Seoul, Korea
| | - Jeong Gill Leem
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Ulsan Univercity College of Medicine, Seoul, Korea
| | - Jin Woo Shin
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Ulsan Univercity College of Medicine, Seoul, Korea
| | - Ji Yeon Shim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Ulsan Univercity College of Medicine, Seoul, Korea
| | - Dong Myung Lee
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, Ulsan Univercity College of Medicine, Seoul, Korea
| |
Collapse
|