1
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Lv Y, Yan S, Deng K, Chen Z, Yang Z, Li F, Luo Q. Unlocking the Molecular Variations of a Micron-Scale Amyloid Plaque in an Early Stage Alzheimer's Disease by a Cellular-Resolution Mass Spectrometry Imaging Platform. ACS Chem Neurosci 2024; 15:337-345. [PMID: 38166448 DOI: 10.1021/acschemneuro.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Uncovering the molecular changes at the site where Aβ is deposited plays a critical role in advancing the diagnosis and treatment of Alzheimer's disease. However, there is currently a lack of a suitable label-free imaging method with a high spatial resolution for brain tissue analysis. In this study, we propose a modified desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) method, called segmented temperature-controlled DESI (STC-DESI), to achieve high-resolution and high-sensitivity spatial metabolomics observation by precisely controlling desorption and ionization temperatures. By concentrating the spray plume and accelerating solvent evaporation at different temperatures, we achieved an impressive spatial resolution of 20 μm that enables direct observation of the heterogeneity around a single cell or an individual Aβ plaque and an exciting sensitivity that allows a variety of low-abundance metabolites and less ionizable neutral lipids to be detected. We applied this STC-DESI method to analyze the brains of transgenic AD mice and identified molecular changes associated with individual Aβ aggregates. More importantly, our study provides the first evidence that carnosine is significantly depleted and 5-caffeoylquinic acid (5-CQA) levels rise sharply around Aβ deposits. These observations highlight the potential of carnosine as a sensitive molecular probe for clinical magnetic resonance imaging diagnosis and the potential of 5-CQA as an efficient therapeutic strategy for Aβ clearance in the early AD stage. Overall, our findings demonstrate the effectiveness of our STC-DESI method and shed light on the potential roles of these molecules in AD pathology, specifically in cellular endocytosis, gray matter network disruption, and paravascular Aβ clearance.
Collapse
Affiliation(s)
- Yueguang Lv
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shuxiong Yan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ka Deng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyu Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyi Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qian Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
4
|
González LM, Bourissai A, Lessard-Beaudoin M, Lebel R, Tremblay L, Lepage M, Graham RK. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol Neurobiol 2023; 60:5624-5641. [PMID: 37329383 DOI: 10.1007/s12035-023-03401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Olfactory dysfunction and atrophy of olfactory brain regions are observed early in mild cognitive impairment and Alzheimer disease. Despite substantial evidence showing neuroprotective effects in MCI/AD with treatment of docosahexaenoic acid (DHA), an omega-3 fatty acid, few studies have assessed DHA and its effects on the olfactory system deficits. We therefore performed structural (MRI), functional (olfactory behavior, novel object recognition), and molecular (markers of apoptosis and inflammation) assessments of APOE4 and wild-type mice ± DHA treatment at 3, 6, and 12 months of age. Our results demonstrate that APOE4 mice treated with the control diet show recognition memory deficits, abnormal olfactory habituation, and discrimination abilities and an increase in IBA-1 immunoreactivity in the olfactory bulb. These phenotypes were not present in APOE4 mice treated with a DHA diet. Alterations in some brain regions' weights and/or volumes were observed in the APOPE4 mice and may be due to caspase activation and/or neuroinflammatory events. These results suggest that the consumption of a diet rich in DHA may provide some benefit to E4 carriers but may not alleviate all symptoms.
Collapse
Affiliation(s)
- Laura Martínez González
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Adam Bourissai
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mélissa Lessard-Beaudoin
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada
| | - Réjean Lebel
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Rona K Graham
- Research Centre on Aging CIUSSS de l'Estrie-CHUS, Sherbrooke, Quebec, Canada.
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, QC, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
5
|
Minné D, Stromin J, Docrat T, Engel-Hills P, Marnewick JL. The effects of tea polyphenols on emotional homeostasis: Understanding dementia risk through stress, mood, attention & sleep. Clin Nutr ESPEN 2023; 57:77-88. [PMID: 37739736 DOI: 10.1016/j.clnesp.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 09/24/2023]
Abstract
Decades of research provide evidence that certain phytochemicals in tea (Camellia sinensis) and other herbal beverages are protective against the development of sporadic types of dementia in later life. Since tea drinking is an economical and widely adopted social-cultural practice across all age groups, it is an ideal product to target in designing low-cost dietary interventions for Alzheimer's Disease (AD), the most prevalent form of dementia. In this review, we focus on the protective roles of tea-derived polyphenols and other phytochemicals on mood, the stress response, attention, and sleep, in keeping with the perspective that many early neuropathological events in AD may stem, in part, from allostatic overload. This approach aligns with the perspective that many forms of dementia, including AD, begin to take root in the brain decades prior to symptom onset, underscoring the need for early uptake of accessible and viable lifestyle interventions. The findings reviewed here suggest that consuming green and oolong tea can improve mood and reduce overall stress. However, given the caffeine content in tea and its association with stress reactivity, the effects of daily whole tea consumption on the emotional state are likely dose-dependent with an inverted-U relationship to wellbeing. Plant-based beverages that are to be consumed in high daily quantities for health purposes and which are naturally free of caffeine, such as Rooibos, may be more appropriate as a dietary supplement for managing emotional regulation over the lifetime.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa; Health and Wellness Sciences Faculty, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Juliet Stromin
- Psychology Department, University of Cape Town, Lover's Walk, Rondebosch, Cape Town, 7700, South Africa.
| | - Taskeen Docrat
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Penelope Engel-Hills
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa; Health and Wellness Sciences Faculty, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Symphony Way, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
6
|
Feng Y, Chen X, Zhang XD, Huang C. Metabolic Pathway Pairwise-Based Signature as a Potential Non-Invasive Diagnostic Marker in Alzheimer's Disease Patients. Genes (Basel) 2023; 14:1285. [PMID: 37372465 PMCID: PMC10298314 DOI: 10.3390/genes14061285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder. Early screening, particularly in blood plasma, has been demonstrated as a promising approach to the diagnosis and prevention of AD. In addition, metabolic dysfunction has been demonstrated to be closely related to AD, which might be reflected in the whole blood transcriptome. Hence, we hypothesized that the establishment of a diagnostic model based on the metabolic signatures of blood is a workable strategy. To that end, we initially constructed metabolic pathway pairwise (MPP) signatures to characterize the interplay among metabolic pathways. Then, a series of bioinformatic methodologies, e.g., differential expression analysis, functional enrichment analysis, network analysis, etc., were used to investigate the molecular mechanism behind AD. Moreover, an unsupervised clustering analysis based on the MPP signature profile via the Non-Negative Matrix Factorization (NMF) algorithm was utilized to stratify AD patients. Finally, aimed at distinguishing AD patients from non-AD groups, a metabolic pathway-pairwise scoring system (MPPSS) was established using multi-machine learning methods. As a result, many metabolic pathways correlated to AD were disclosed, including oxidative phosphorylation, fatty acid biosynthesis, etc. NMF clustering analysis divided AD patients into two subgroups (S1 and S2), which exhibit distinct activities of metabolism and immunity. Typically, oxidative phosphorylation in S2 exhibits a lower activity than that in S1 and non-AD group, suggesting the patients in S2 might possess a more compromised brain metabolism. Additionally, immune infiltration analysis showed that the patients in S2 might have phenomena of immune suppression compared with S1 and the non-AD group. These findings indicated that S2 probably has a more severe progression of AD. Finally, MPPSS could achieve an AUC of 0.73 (95%CI: 0.70, 0.77) in the training dataset, 0.71 (95%CI: 0.65, 0.77) in the testing dataset, and an AUC of 0.99 (95%CI: 0.96, 1.00) in one external validation dataset. Overall, our study successfully established a novel metabolism-based scoring system for AD diagnosis using the blood transcriptome and provided new insight into the molecular mechanism of metabolic dysfunction implicated in AD.
Collapse
Affiliation(s)
- Yunwen Feng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| | - Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| | - Xiaohua Douglas Zhang
- Department of Biostatitics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| |
Collapse
|
7
|
Minné D, Marnewick JL, Engel-Hills P. Early Chronic Stress Induced Changes within the Locus Coeruleus in Sporadic Alzheimer's Disease. Curr Alzheimer Res 2023; 20:301-317. [PMID: 37872793 DOI: 10.2174/1567205020666230811092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/25/2023]
Abstract
Chronic exposure to stress throughout the lifespan has been the focus of many studies on Alzheimer's disease (AD) because of the similarities between the biological mechanisms involved in chronic stress and the pathophysiology of AD. In fact, the earliest abnormality associated with the disease is the presence of phosphorylated tau protein in locus coeruleus neurons, a brain structure highly responsive to stress and perceived threat. Here, we introduce allostatic load as a useful concept for understanding many of the complex, interacting neuropathological changes involved in the AD degenerative process. In response to chronic stress, aberrant tau proteins that begin to accumulate within the locus coeruleus decades prior to symptom onset appear to represent a primary pathological event in the AD cascade, triggering a wide range of interacting brain changes involving neuronal excitotoxicity, endocrine alterations, inflammation, oxidative stress, and amyloid plaque exacerbation. While it is acknowledged that stress will not necessarily be the major precipitating factor in all cases, early tau-induced changes within the locus coeruleus-norepinephrine pathway suggests that a therapeutic window might exist for preventative measures aimed at managing stress and restoring balance within the HPA axis.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| |
Collapse
|
8
|
Khan MJ, Chung NA, Hansen S, Dumitrescu L, Hohman TJ, Kamboh MI, Lopez OL, Robinson RAS. Targeted Lipidomics To Measure Phospholipids and Sphingomyelins in Plasma: A Pilot Study To Understand the Impact of Race/Ethnicity in Alzheimer's Disease. Anal Chem 2022; 94:4165-4174. [PMID: 35235294 PMCID: PMC9126486 DOI: 10.1021/acs.analchem.1c03821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) is increasing rapidly every year. One aspect of AD that is often overlooked is the disproportionate incidence of AD among African American/Black populations. With the recent development of novel assays for lipidomics analysis in recent times, there has been a drastic increase in the number of studies focusing on changes of lipids in AD. However, very few of these studies have focused on or even included samples from African American/Black individuals samples. In this study, we aimed to determine if the lipidome in AD is universal across non-Hispanic White and African American/Black individuals. To accomplish this, a targeted mass spectrometry lipidomics analysis was performed on plasma samples (N = 113) obtained from cognitively normal (CN, N = 54) and AD (N = 59) individuals from African American/Black (N = 56) and non-Hispanic White (N = 57) backgrounds. Five lipids (PS 18:0_18:0, PS 18:0_20:0, PC 16:0_22:6, PC 18:0_22:6, and PS 18:1_22:6) were altered between AD and CN sample groups (p value < 0.05). Upon racial stratification, there were notable differences in lipids that were unique to African American/Black or non-Hispanic White individuals. PS 20:0_20:1 was reduced in AD in samples from non-Hispanic White but not African American/Black adults. We also tested whether race/ethnicity significantly modified the association between lipids and AD status by including a race × diagnosis interaction term in a linear regression model. PS 20:0_20:1 showed a significant interaction (p = 0.004). The discovery of lipid changes in AD in this study suggests that identifying relevant lipid biomarkers for diagnosis will require diversity in sample cohorts.
Collapse
Affiliation(s)
- Mostafa J Khan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nadjali A Chung
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shania Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - M Ilyas Kamboh
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Abu-Elfotuh K, Ragab GM, Salahuddin A, Jamil L, Abd Al Haleem EN. Attenuative Effects of Fluoxetine and Triticum aestivum against Aluminum-Induced Alzheimer's Disease in Rats: The Possible Consequences on Hepatotoxicity and Nephrotoxicity. Molecules 2021; 26:molecules26216752. [PMID: 34771159 PMCID: PMC8588015 DOI: 10.3390/molecules26216752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting β-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. METHOD Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. CONCLUSIONS AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aβ, the elevation of ACHE and GSK-3β, down-regulation of BDNF, and β-catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. CONCLUSION Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| | - Ghada M. Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
- Correspondence: ; Tel.: +20-100-518-2320
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University, Giza 12585, Egypt;
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| |
Collapse
|
10
|
Laubach K, Zhang J, Chen X. The p53 Family: A Role in Lipid and Iron Metabolism. Front Cell Dev Biol 2021; 9:715974. [PMID: 34395447 PMCID: PMC8358664 DOI: 10.3389/fcell.2021.715974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The p53 family of tumor suppressors, which includes p53, p63, and p73, has a critical role in many biological processes, such as cell cycle arrest, apoptosis, and differentiation. In addition to tumor suppression, the p53 family proteins also participate in development, multiciliogenesis, and fertility, indicating these proteins have diverse roles. In this review, we strive to cover the relevant studies that demonstrate the roles of p53, p63, and p73 in lipid and iron metabolism.
Collapse
Affiliation(s)
| | | | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Peleg-Raibstein D. Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging. Front Neurosci 2021; 15:645569. [PMID: 33716660 PMCID: PMC7953988 DOI: 10.3389/fnins.2021.645569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity has long been identified as a global epidemic with major health implications such as diabetes and cardiovascular disease. Maternal overnutrition leads to significant health issues in industrial countries and is one of the risk factors for the development of obesity and related disorders in the progeny. The wide accessibility of junk food in recent years is one of the major causes of obesity, as it is low in nutrient content and usually high in salt, sugar, fat, and calories. An excess of nutrients during fetal life not only has immediate effects on the fetus, including increased growth and fat deposition in utero, but also has long-term health consequences. Based on human studies, it is difficult to discern between genetic and environmental contributions to the risk of disease in future generations. Consequently, animal models are essential for studying the impact of maternal overnutrition on the developing offspring. Recently, animal models provided some insight into the physiological mechanisms that underlie developmental programming. Most of the studies employed thus far have focused only on obesity and metabolic dysfunctions in the offspring. These studies have advanced our understanding of how maternal overnutrition in the form of high-fat diet exposure can lead to an increased risk of obesity in the offspring, but many questions remain open. How maternal overnutrition may increase the risk of developing brain pathology such as cognitive disabilities in the offspring and increase the risk to develop metabolic disorders later in life? Further, does maternal overnutrition exacerbate cognitive- and cardio-metabolic aging in the offspring?
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
12
|
Madireddy S, Madireddy S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients 2021; 13:nu13020362. [PMID: 33504066 PMCID: PMC7911739 DOI: 10.3390/nu13020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Dietary intake of multivitamins, zinc, polyphenols, omega fatty acids, and probiotics have all shown benefits in learning, spatial memory, and cognitive function. It is important to determine the most effective combination of antioxidants and/or probiotics because regular ingestion of all nutraceuticals may not be practical. This study examined various combinations of nutrients to determine which may best enhance spatial memory and cognitive performance in the house cricket (Acheta domesticus (L.)). Methods: Based on the 31 possible combinations of multivitamins, zinc, polyphenols, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics, 128 house crickets were divided into one control group and 31 experimental groups with four house crickets in each group. Over eight weeks, crickets were fed their respective nutrients, and an Alternation Test and Recognition Memory Test were conducted every week using a Y-maze to test spatial working memory. Results: The highest-scoring diets shared by both tests were the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf; Alternation: slope = 0.07226, Recognition Memory: slope = 0.07001), the combination of probiotics, polyphenols, multivitamins, zinc, and omega-3 PUFAs (ProPolVitZncPuf; Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001), the combination of probiotics, multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf; Alternation: slope = 0.06999, Recognition Memory: slope = 0.07001), and the combination of polyphenols, multivitamins, zinc, and omega-3 PUFAs (PolVitZncPuf; Alternation: slope = 0.06873, Recognition Memory: slope = 0.06956). Conclusion: All of the nutrient combinations demonstrated a benefit over the control diet, but the most significant improvement compared to the control was found in the VitZncPuf, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf. Since this study found no significant difference between the performance and improvement of subjects within these four groups, the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf) was concluded to be the most effective option for improving memory and cognitive performance.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence:
| | | |
Collapse
|
13
|
Habibitabar E, Moridi H, Shateri H, Karimi SA, Salehi I, Komaki A, Sarihi A. Chronic NaHS treatment improves spatial and passive avoidance learning and memory and anxiety-like behavior and decreases oxidative stress in rats fed with a high-fat diet. Brain Res Bull 2020; 164:380-391. [PMID: 32942011 DOI: 10.1016/j.brainresbull.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Cognitive function is impaired by increased consumption of a high-fat diet (HFD). Also, HFD consumption can alter hydrogen sulfide (H2S) metabolism. H2S is an important signaling molecule with antioxidant effects that regulates multiple functions in the brain. In the present study, we investigated the effect of sodium hydrosulfide (NaHS, an H2S donor) on cognitive impairment and oxidative stress changes induced by HFD consumption. Following 11 weeks of HFD regimes in Wistar rats, elevated plus-maze (EPM), Morris water maze (MWM), and passive avoidance learning (PAL) tasks were used to evaluate the anxiety-like behavior and spatial and passive learning and memory, respectively. Daily intraperitoneal injection of NaHS was done during the dietary regimen. Serum and hippocampal oxidative stress biomarkers (malondialdehyde (MDA), total antioxidant capacity (TAC), and total oxidant status (TOS)) were measured. We demonstrated that treatment with NaHS ameliorated the impairment in the retrieval of reference memory and passive avoidance learning. Moreover, HFD increased anxiety-like behavior, which was reversed by the administration of NaHS. Additionally, the increase in MDA and TOS and the decrease in TAC induced by HFD in the serum and hippocampus were significantly reduced following administration of NaHS. These results indicate that NaHS could significantly ameliorate HFD-induced spatial and passive learning and memory impairment and anxiety-like behavior, at least in part, via its antioxidant activities. Therefore, the administration of NaHS can provide a therapeutic approach for HFD-induced memory impairment.
Collapse
Affiliation(s)
- Elahe Habibitabar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heresh Moridi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Shateri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
15
|
Estrada LD, Ahumada P, Cabrera D, Arab JP. Liver Dysfunction as a Novel Player in Alzheimer's Progression: Looking Outside the Brain. Front Aging Neurosci 2019; 11:174. [PMID: 31379558 PMCID: PMC6650779 DOI: 10.3389/fnagi.2019.00174] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/25/2019] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) afflicts an estimated 20 million people worldwide and is the fourth-leading cause of death in the developed world. The most common cause of dementia in older individuals, AD is characterized by neuropathologies including synaptic and neuronal degeneration, amyloid plaques, and neurofibrillary tangles (NTFs). Amyloid plaques are primarily composed of amyloid-beta peptide (Aβ), which accumulates in the brains of patients with AD. Further, small aggregates termed Aβ oligomers are implicated in the synaptic loss and neuronal degeneration underlying early cognitive impairments. Whether Aβ accumulates in part because of dysregulated clearance from the brain remains unclear. The flow of substances (e.g., nutrients, drugs, toxins) in and out of the brain is mediated by the blood-brain-barrier (BBB). The BBB exhibits impairment in AD patients and animal models. The effect of BBB impairment on Aβ, and whether BBB function is affected by non-neurological pathologies that impair peripheral clearance requires further investigation. In particular, impaired peripheral clearance is a feature of nonalcoholic fatty liver disease (NAFLD), a spectrum of liver disorders characterized by accumulation of fat in the liver accompanied by varying degrees of inflammation and hepatocyte injury. NAFLD has reached epidemic proportions, with an estimated prevalence between 20% and 30% of the general population. This chronic condition may influence AD pathogenesis. This review article summarizes the current state of the literature linking NAFLD and AD, highlighting the role of the major Aβ efflux and clearance protein, the LRP-1 receptor, which is abundantly expressed in liver, brain, and vasculature.
Collapse
Affiliation(s)
- Lisbell D. Estrada
- Bionanotechnology Laboratory, Integrative Center for Applied Biology and Chemistry (CIBQA), Department of Chemical & Biological Sciences, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pablo Ahumada
- Bionanotechnology Laboratory, Integrative Center for Applied Biology and Chemistry (CIBQA), Department of Chemical & Biological Sciences, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Daniel Cabrera
- Bionanotechnology Laboratory, Integrative Center for Applied Biology and Chemistry (CIBQA), Department of Chemical & Biological Sciences, Universidad Bernardo O’Higgins, Santiago, Chile
- Laboratório de Hepatologia Experimental, Gastroenterology Department, Facultad de Medicina, Centro de Envejecimiento y Regeneración (CARE Chile-UC), P. Universidad Catolica de Chile, Santiago, Chile
| | - Juan P. Arab
- Laboratório de Hepatologia Experimental, Gastroenterology Department, Facultad de Medicina, Centro de Envejecimiento y Regeneración (CARE Chile-UC), P. Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Arya M, Manoj Kumar MK, Sabitha M, Menon KN, Nair SC. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer's disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Zhang A, Zhao Q, Xu D, Jiang S. Brain APOE expression quantitative trait loci-based association study identified one susceptibility locus for Alzheimer's disease by interacting with APOE ε4. Sci Rep 2018; 8:8068. [PMID: 29795290 PMCID: PMC5966425 DOI: 10.1038/s41598-018-26398-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Some studies have demonstrated interactions of AD-risk single nucleotide polymorphisms (SNPs) in non-APOE regions with APOE genotype. Nevertheless, no study reported interactions of expression quantitative trait locus (eQTL) for APOE with APOE genotype. In present study, we included 9286 unrelated AD patients and 8479 normal controls from 12 cohorts of NIA Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 34 unrelated brain eQTLs for APOE were compiled from BRAINEAC and GTEx. We used multi-covariate logistic regression analysis to identify eQTLs interacted with APOE ε4. Adjusted for age and gender, substantia nigra eQTL rs438811 for APOE showed significantly strong interaction with APOE ε4 status (OR, 1.448; CI, 1.124–1.430; P-value = 7.94 × 10−6). APOE ε4-based sub-group analyses revealed that carrying one minor allele T of rs438811 can increase the opportunity of developing to AD by 26.75% in APOE ε4 carriers but not in non-carriers. We revealed substantia nigra eQTL rs438811 for APOE can interact with APOE ε4 and confers risk in APOE ε4 carriers only.
Collapse
Affiliation(s)
- Aiqian Zhang
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qingnan Zhao
- Department of Pediatrics, The University of Texas MD Anderson Cancer center, Houston, Texas, USA
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Xie F, Peng F. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography. J Alzheimers Dis 2018; 59:527-536. [PMID: 28671127 DOI: 10.3233/jad-170280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangyu Peng
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
20
|
Leon AM, Medina WT, Park DJ, Aguilera JM. Properties of microparticles from a whey protein isolate/alginate emulsion gel. FOOD SCI TECHNOL INT 2018; 24:414-423. [PMID: 29486594 DOI: 10.1177/1082013218762210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Designing soft, palatable and nutritious texture-modified foods for the elderly is a challenge for food technologists. The aim of this work was to produce and characterize emulsion-gelled microparticles (EGM) made from whey protein isolate (WPI) and sodium alginate (NaAlg) that may be used to modify the rheology of liquid foods and as carriers of lipids and lipophilic nutrients and bioactives. Olive oil microdroplets became embedded in the WPI/NaAlg gel matrix in the form of an emulsion produced by ultrasound (US) or high-speed blending (HSB). Oil microdroplets were obtained by US and HSB, with an average equivalent diameter varying between 2.0-3.2 µm and 4.5-6.7 µm, respectively. Oil incorporation increased compression stress of bulk emulsion gels at small deformations compared to the no-oil microgel, but this effect was reversed at high strains. EGM were prepared by shear-induced size reduction. Rheological tests at 20 ℃ and 40 ℃ showed that US-EGM and HSB-EGM exhibited a predominant elastic behavior, with G' > G″ throughout the frequency range. However, when HSB-EGM were heated at 60 ℃ their rheological behavior changed to a more fluid-like condition, but not that of US-EGM. Consequently, EGM have the properties needed to improve food texture for people with masticatory/swallowing dysfunctions or needing special nutrition.
Collapse
Affiliation(s)
- Alicia M Leon
- 1 Department of Chemical and Bioprocesses Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,2 Department of Agroindustries, Faculty of Agrarian Sciences, Universidad Nacional del Altiplano de Puno, Puno, Peru
| | - Wenceslao T Medina
- 2 Department of Agroindustries, Faculty of Agrarian Sciences, Universidad Nacional del Altiplano de Puno, Puno, Peru
| | - Dong J Park
- 3 Korean Food Research Institute, Bundang-gu, Republic of Korea
| | - José M Aguilera
- 1 Department of Chemical and Bioprocesses Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Arredondo M, González M, Latorre M. Copper. TRACE ELEMENTS AND MINERALS IN HEALTH AND LONGEVITY 2018. [DOI: 10.1007/978-3-030-03742-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Wiesmann M, Timmer NM, Zinnhardt B, Reinhard D, Eligehausen S, Königs A, Ben Jeddi H, Dederen PJ, Jacobs AH, Kiliaan AJ. Effect of a multinutrient intervention after ischemic stroke in female C57Bl/6 mice. J Neurochem 2017; 144:549-564. [PMID: 28888042 DOI: 10.1111/jnc.14213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/05/2023]
Abstract
Stroke can affect females very differently from males, and therefore preclinical research on underlying mechanisms and the effects of interventions should not be restricted to male subjects, and treatment strategies for stroke should be tailored to benefit both sexes. Previously, we demonstrated that a multinutrient intervention (Fortasyn) improved impairments after ischemic stroke induction in male C57Bl/6 mice, but the therapeutic potential of this dietary treatment remained to be investigated in females. We now induced a transient middle cerebral artery occlusion (tMCAo) in C57Bl/6 female mice and immediately after surgery switched to either Fortasyn or an isocaloric Control diet. The stroke females performed several behavioral and motor tasks before and after tMCAo and were scanned in an 11.7 Tesla magnetic resonance imaging (MRI) scanner to assess brain perfusion, integrity, and functional connectivity. To assess brain plasticity, inflammation, and vascular integrity, immunohistochemistry was performed after killing of the mice. We found that the multinutrient intervention had diverse effects on the stroke-induced impairments in females. Similar to previous observations in male stroke mice, brain integrity, sensorimotor integration and neurogenesis benefitted from Fortasyn, but impairments in activity and motor skills were not improved in female stroke mice. Overall, Fortasyn effects in the female stroke mice seem more modest in comparison to previously investigated male stroke mice. We suggest that with further optimization of treatment protocols more information on the efficacy of specific interventions in stroked females can be gathered. This in turn will help with the development of (gender-specific) treatment regimens for cerebrovascular diseases such as stroke. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Maximilian Wiesmann
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Nienke M Timmer
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Dirk Reinhard
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Sarah Eligehausen
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany
| | - Anja Königs
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Hasnae Ben Jeddi
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Pieter J Dederen
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms University Münster, Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Centre for Medical Neuroscience, Donders Institute for Brain, Cognition & Behaviour, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Wiesmann M, Zerbi V, Jansen D, Lütjohann D, Veltien A, Heerschap A, Kiliaan AJ. Hypertension, cerebrovascular impairment, and cognitive decline in aged AβPP/PS1 mice. Theranostics 2017; 7:1277-1289. [PMID: 28435465 PMCID: PMC5399593 DOI: 10.7150/thno.18509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular risk factors, especially hypertension, are also major risk factors for Alzheimer's disease (AD). To elucidate the underlying vascular origin of neurodegenerative processes in AD, we investigated the relation between systolic blood pressure (SBP) cerebral blood flow (CBF) and vasoreactivity with brain structure and function in a 16-18 months old double transgenic AβPPswe/PS1dE9 (AβPP/PS1) mouse model for AD. These aging AβPP/PS1 mice showed an increased SBP linked to a declined regional CBF. Furthermore, using advanced MRI techniques, decline of functional and structural connectivity was revealed in the AD-like mice coupled to impaired cognition, increased locomotor activity, and anxiety-related behavior. Post mortem analyses demonstrated also increased neuroinflammation, and both decreased synaptogenesis and neurogenesis in the AβPP/PS1 mice. Additionally, deviant levels of fatty acids and sterols were present in the brain tissue of the AβPP/PS1 mice indicating maladapted brain fatty acid metabolism. Our findings suggest a link between increased SBP, decreased cerebral hemodynamics and connectivity in an AD mouse model during aging, leading to behavioral and cognitive impairments. As these results mirror the complex clinical symptomatology in the prodromal phase of AD, we suggest that this AD-like murine model could be used to investigate prevention and treatment strategies for early AD patients. Moreover, this study helps to develop more efficient therapies and diagnostics for this very early stage of AD.
Collapse
|
24
|
Schreurs BG, Sparks DL. Dietary high cholesterol and trace metals in the drinking water increase levels of ABCA1 in the rabbit hippocampus and temporal cortex. J Alzheimers Dis 2016; 49:201-9. [PMID: 26444796 DOI: 10.3233/jad-150601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). OBJECTIVE AND METHODS Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. RESULTS The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. CONCLUSIONS These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery.
Collapse
Affiliation(s)
- Bernard G Schreurs
- West Virginia University and Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
25
|
Chouinard-Watkins R, Pinçon A, Coulombe JD, Spencer R, Massenavette L, Plourde M. A Diet Rich in Docosahexaenoic Acid Restores Liver Arachidonic Acid and Docosahexaenoic Acid Concentrations in Mice Homozygous for the Human Apolipoprotein E ε4 Allele. J Nutr 2016; 146:1315-21. [PMID: 27306896 DOI: 10.3945/jn.116.230052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolism of long-chain polyunsaturated fatty acids (LC-PUFAs) is disturbed in carriers of the apolipoprotein E (APOE) ε4 allele (APOE4). More specifically, APOE4 carriers are lower responders to ω-3 (n-3) LC-PUFA supplementation; this might be because LC-PUFA transport into cells or β-oxidation is disturbed. However, high doses of dietary docosahexaenoic acid (DHA) seem to restore DHA homeostasis in APOE4 carriers, but the contribution of hepatic fatty acid (FA) transporters is unknown. OBJECTIVES With the use of mice carrying human APOE isoforms, we sought to investigate whether a DHA-rich diet could restore DHA homeostasis in APOE4 mice and whether this involved hepatic FA transporters. METHODS Male and female mice homozygous for the APOE ε2 allele, APOE ε3 allele (APOE3), and APOE4 were fed either a diet enriched with DHA (0.7 g DHA/100 g diet) or a control diet for 8 mo and were killed at 12 mo of age. Liver and plasma FA profiles were measured by GC, and FA transporter expression was evaluated by Western immunoblotting. RESULTS There was a significant genotype × diet interaction for hepatic concentrations of arachidonic acid (AA) and DHA (P = 0.005 and P = 0.002, respectively) and a trend toward an interaction for liver expression of fatty acid binding protein 1 (FABP1) (P-interaction = 0.05). APOE4 mice had 60-100% higher liver AA, DHA, and FABP1 than did APOE3 mice, but only when fed the control diet. Independent of diet, APOE4 mice had 20-30% lower plasma concentrations of AA and DHA than did APOE3 mice. Overall, mice fed the DHA diet had 50% lower concentrations of liver total FAs than did mice fed the control diet. CONCLUSIONS These findings in transgenic mice suggest that a long-term diet rich in DHA suppresses the APOE4-specific disturbances in hepatic transport and concentration of AA and DHA and also reduces hepatic total FA concentrations, regardless of genotype.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Anthony Pinçon
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Jean-Denis Coulombe
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Riley Spencer
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and
| | - Laurence Massenavette
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Medicine, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
26
|
Bou Khalil R, Khoury E, Koussa S. Linking multiple pathogenic pathways in Alzheimer’s disease. World J Psychiatry 2016; 6:208-214. [PMID: 27354962 PMCID: PMC4919259 DOI: 10.5498/wjp.v6.i2.208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/16/2016] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder presenting as progressive cognitive decline with dementia that does not, to this day, benefit from any disease-modifying drug. Multiple etiologic pathways have been explored and demonstrate promising solutions. For example, iron ion chelators, such as deferoxamine, are a potential therapeutic solution around which future studies are being directed. Another promising domain is related to thrombin inhibitors. In this minireview, a common pathophysiological pathway is suggested for the pathogenesis of AD to prove that all these mechanisms converge onto the same cascade of neuroinflammatory events. This common pathway is initiated by the presence of vascular risk factors that induce brain tissue hypoxia, which leads to endothelial cell activation. However, the ensuing hypoxia stimulates the production and release of reactive oxygen species and pro-inflammatory proteins. Furthermore, the endothelial activation may become excessive and dysfunctional in predisposed individuals, leading to thrombin activation and iron ion decompartmentalization. The oxidative stress that results from these modifications in the neurovascular unit will eventually lead to neuronal and glial cell death, ultimately leading to the development of AD. Hence, future research in this field should focus on conducting trials with combinations of potentially efficient treatments, such as the combination of intranasal deferoxamine and direct thrombin inhibitors.
Collapse
|
27
|
Del Valle E, Navarro A, Martínez-Pinilla E, Torices S, Tolivia J. Apo J and Apo D: Complementary or Antagonistic Roles in Alzheimer's Disease? J Alzheimers Dis 2016; 53:639-50. [PMID: 27197790 DOI: 10.3233/jad-160032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apolipoprotein D (Apo D) and Apolipoprotein J (Apo J) are among the only nine apolipoproteins synthesized in the nervous system. Apart from development, these apolipoproteins are implicated in the normal aging process as well as in different neuropathologies as Alzheimer's disease (AD), where a neuroprotective role has been postulated. Different authors have proposed that Apo D and Apo J could be biomarkers for AD but as far as we know, there are no studies about the relationship between them as well as their expression pattern along the progression of the disease. In this paper, using double immunohistochemistry techniques, we have demonstrated that Apo D is mainly located in glial cells while Apo J expression preferentially occurs in neurons; both proteins are also present in AD diffuse and mature senile plaques but without signal overlap. In addition, we have observed that Apo J and Apo D immunostaining shows a positive correlation with the progression of the disease and the Braak's stages. These results suggest complementary and cell-dependent neuroprotective roles for each apolipoprotein during AD progress.
Collapse
|
28
|
Associations Between Hepatic Functions and Plasma Amyloid-Beta Levels—Implications for the Capacity of Liver in Peripheral Amyloid-Beta Clearance. Mol Neurobiol 2016; 54:2338-2344. [DOI: 10.1007/s12035-016-9826-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
|
29
|
Zhang XW, Hou WS, Li M, Tang ZY. Omega-3 fatty acids and risk of cognitive decline in the elderly: a meta-analysis of randomized controlled trials. Aging Clin Exp Res 2016; 28:165-6. [PMID: 26025463 DOI: 10.1007/s40520-015-0381-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/12/2015] [Indexed: 11/30/2022]
Abstract
Evidence has demonstrated that omega-3 fatty acids intake may be associated with age-related cognitive decline. However, randomized controlled trials (RCTs) have drawn inconsistent conclusions. We performed a meta-analysis to assess the association between omega-3 fatty acids and risk of cognitive decline in the elderly. A strategic literature search of PubMed, EMBASE, and Cochrane Library (updated to December 2014) was performed. We retrieved six randomized controlled studies as eligible for our meta-analysis. Among these six studies, the duration time ranged from 3 to 40 months. The dose of omega-3 fatty acids (DHA + EPA) ranged from 400 to 1800 mg. The result of our meta-analysis expressed that omega-3 fatty acids statistically decrease the rate of cognitive decline in MMSE score (WMD = 0.15, [0.05, 0.25]; p = 0.003). In conclusion, our meta-analysis indicated that omega-3 fatty acids may help to prevent cognitive decline in the elderly.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen-Shang Hou
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Min Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen-Yu Tang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
30
|
Huang L, Tang X, Zhang W, Jiang R, Zhong H. Laser Activated Electron Tunneling Based Mass Spectrometric Imaging of Molecular Architectures of Mouse Brain Revealing Regional Specific Lipids. Anal Chem 2015; 88:732-9. [DOI: 10.1021/acs.analchem.5b02871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lulu Huang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Xuemei Tang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Wenyang Zhang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Ruowei Jiang
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| | - Hongying Zhong
- Mass Spectrometry Center
for Structural Identification of Biological Molecules and Precision
Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry
of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China
| |
Collapse
|
31
|
Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5421-31. [PMID: 26491253 PMCID: PMC4598222 DOI: 10.2147/dddt.s89279] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Apolipoprotein is genetically associated with the risk of Alzheimer’s disease (AD). The APOA1, APOC3, and APOA4 genes are closely linked and located on human chromosome 11. Therefore, this gene cluster may be related to the risk of AD. Patients and methods A total of 147 AD patients and 160 healthy controls were randomly recruited from June 2013 to August 2014. APOA1, APOC3, and APOA4 levels were measured using real-time quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Results APOA1, APOC3 and APOA4 levels were significantly lower in AD patients than controls (P<0.01). APOA1, APOC3, and APOA4 levels were negatively related with the severities of AD determined by Clinical Dementia Rating scores (P<0.01). APOA1, APOC3, and APOA4 levels showed a negative relation with Montgomery–Åsberg Depression Rating Scale scores and a positive relation with RAND 36-item health-survey scores (P<0.01). There was a decreased trend for levels of APOA1, APOC3, and APOA4 in AD patients. Conclusion Low levels of APOA1, APOC3, and APOA4 are associated with risk of AD. APOA1, APOC3, and APOA4 should be developed as combined drugs for the therapy of AD.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Internal Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunpeng Cao
- Neural Department of Internal Medicine, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Gao
- Department of Anatomy, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
32
|
Chouinard-Watkins R, Conway V, Minihane AM, Jackson KG, Lovegrove JA, Plourde M. Interaction between BMI and APOE genotype is associated with changes in the plasma long-chain-PUFA response to a fish-oil supplement in healthy participants. Am J Clin Nutr 2015; 102:505-13. [PMID: 26085515 DOI: 10.3945/ajcn.114.103507] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Carriers of the apolipoprotein E ɛ4 (APOE4) allele are lower responders to a docosahexaenoic acid (DHA) supplement than are noncarriers. This effect could be exacerbated in overweight individuals because DHA metabolism changes according to body mass index (BMI; in kg/m²). OBJECTIVES We evaluated the plasma fatty acid (FA) response to a DHA-rich supplement in APOE4 carriers and noncarriers consuming a high-saturated fat diet (HSF diet) and, in addition, evaluated whether being overweight changed this response. DESIGN This study was part of the SATgenɛ trial. Forty-one APOE4 carriers and 41 noncarriers were prospectively recruited and consumed an HSF diet for 8-wk followed by 8 wk of consumption of an HSF diet with the addition of DHA and eicosapentaenoic acid (EPA) (HSF + DHA diet; 3.45 g DHA/d and 0.5 g EPA/d). Fasting plasma samples were collected at the end of each intervention diet. Plasma total lipids (TLs) were separated into free FAs, neutral lipids (NLs), and phospholipids by using solid-phase extraction, and FA profiles in each lipid class were quantified by using gas chromatography. RESULTS Because the plasma FA response to the HSF + DHA diet was correlated with BMI in APOE4 carriers but not in noncarriers, the following 2 groups were formed according to the BMI median: low BMI (<25.5) and high BMI (≥25.5). In response to the HSF + DHA diet, there were significant BMI × genotype interactions for changes in plasma concentrations of arachidonic acid and DHA in phospholipids and TLs and of EPA in NLs and TLs (P ≤ 0.05). APOE4 carriers were lower plasma responders to the DHA supplement than were noncarriers but only in the high-BMI group. CONCLUSIONS Our findings indicate that apolipoprotein E genotype and BMI may be important variables that determine the plasma long-chain PUFA response to dietary fat manipulation. APOE4 carriers with BMI ≥25.5 may need higher intakes of DHA for cardiovascular or other health benefits than do noncarriers.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; Departments of Physiology and
| | - Valérie Conway
- Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; Departments of Physiology and
| | - Anne M Minihane
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; and
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre - University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; Departments of Physiology and Medicine, University of Sherbrooke, Sherbrooke, Canada;
| |
Collapse
|
33
|
Zuliani G, Soavi C, Maggio M, De Vita F, Cherubini A, Volpato S. Counteracting inflammation and insulin resistance with diet and exercise: A strategy for frailty prevention? Eur Geriatr Med 2015. [DOI: 10.1016/j.eurger.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Evans AR, Gu L, Guerrero R, Robinson RAS. Global cPILOT analysis of the APP/PS-1 mouse liver proteome. Proteomics Clin Appl 2015; 9:872-84. [PMID: 25620666 DOI: 10.1002/prca.201400149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE A quantitative proteomics strategy called combined precursor isotopic labeling and isobaric tagging (cPILOT) was designed to discover alterations in the amyloid precursor protein/presenilin-1 (APP/PS-1) mouse liver proteome. The multiplexing strategy allows simultaneous quantitation of 12 samples in a single experiment. EXPERIMENTAL DESIGN For cPILOT samples, six APP/PS-1 and six heterozygous mouse livers were modified using precursor dimethylation (pH 2.5) followed by isobaric tagging (pH 8.0). Samples were pooled, fractioned with strong cation exchange, and analyzed using RPLC-MS(3) for protein identification and relative quantitation. In order to increase proteome coverage, a two-tiered data collection strategy was employed. Six duplex precursor dimethylation experiments were also performed to verify cPILOT protein quantitation. RESULTS The combination of cPILOT with precursor dimethylation data resulted in 2437 total liver proteins identified and 77 differentially expressed proteins in APP/PS-1 liver. Differentially expressed proteins are involved in metabolic processes such as B-oxidation, pyruvate metabolism, and glucose regulation. CONCLUSIONS AND CLINICAL RELEVANCE cPILOT expands protein quantitation using isobaric tags and can be applied to any clinical laboratory interested in enhanced multiplexing strategies. Differentially expressed proteins in APP/PS-1 mouse liver suggest the potential use of ketone bodies to alleviate metabolic dysregulation in Alzheimer's disease brain. Our work also suggests alterations in the alanine cycle potentially leading to hyperammonia production, may contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Adam R Evans
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rodolfo Guerrero
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
De Rouvray C, Jésus P, Guerchet M, Fayemendy P, Mouanga AM, Mbelesso P, Clément JP, Preux PM, Desport JC. The nutritional status of older people with and without dementia living in an urban setting in Central Africa: the EDAC study. J Nutr Health Aging 2014; 18:868-75. [PMID: 25470801 DOI: 10.1007/s12603-014-0483-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To determine the nutritional status of elderly African people and to investigate the association between undernutrition and dementia. DESIGN Door-to-door cross-sectional surveys in the general population. SETTING Representative districts of Bangui (Central African Republic) and Brazzaville (Republic of Congo). PARTICIPANTS Population aged over 65 years. MEASUREMENT Undernutrition was defined as a body mass index <18.5. Anthropometric parameters (arm circumference, waist circumference and triceps skinfold thickness) were measured, and information was gathered on nutritional habits. PARTICIPANTS underwent cognitive screening using the Community Screening Interview for Dementia (CSI-D) and the Five-Word Test. After further neuropsychological testing and neurological examination, the diagnosis of dementia was confirmed according to DSM-IV criteria. Multivariate logistic regression models were applied in order to identify factors associated with undernutrition in populations with or without dementia. RESULTS 1016 people were included. In the general population, the prevalence of undernutrition was 19.2%. Dementia was found in 7.4% of elderly people. Compared with healthy people, patients with dementia had an increased prevalence of undernutrition (32.0% vs. 17.7%; p = 0.002), lower weight (49.3 ± 10.5 kg vs. 58.4 ± 13.5 kg ; p < 0.001), and lower BMI (20.8 ± 4.1 vs. 22.9 ± 4.8 ; p < 0.001); they were less likely to eat their fill (38.9% vs. 45.9% ; p = 0.001), had more dietary restrictions (36.1% vs. 24.3% ; p = 0.03) and ate less often with their family (66.7% vs. 90.6% ; p < 0.0001). Eating only one meal per day was the sole factor associated with undernutrition in dementia (OR: 7.23 [CI: 1.65-31.7]; p = 0.03). CONCLUSION The prevalence of undernutrition is high in the older population. The nutritional status of patients with dementia is more impaired than that of healthy patients. However, they are less often malnourished than in French home care settings. This study is the first to look at the nutritional status of at-home patients with dementia in Africa. These comparative data will eventually be used in the development of new nutritional intervention strategies.
Collapse
Affiliation(s)
- C De Rouvray
- Dr Jésus Pierre, Unité de Nutrition, CHU Dupuytren, 2 Avenue Martin Luther King, 87042 Limoges Cedex, France, Phone : (33) 5 55 05 66 21, Mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
GC-EI-MS Analysis of Fatty Acid Composition in Brain and Serum of Twitcher Mouse. Lipids 2014; 49:1115-25. [DOI: 10.1007/s11745-014-3945-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
37
|
Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Mañucat-Tan NB, Tan J, Zhou XF, Wang YJ. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol Neurobiol 2014; 51:1-7. [DOI: 10.1007/s12035-014-8694-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022]
|
38
|
Wang G, Zhou Y, Huang FJ, Tang HD, Xu XH, Liu JJ, Wang Y, Deng YL, Ren RJ, Xu W, Ma JF, Zhang YN, Zhao AH, Chen SD, Jia W. Plasma metabolite profiles of Alzheimer's disease and mild cognitive impairment. J Proteome Res 2014; 13:2649-58. [PMID: 24694177 DOI: 10.1021/pr5000895] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous studies have demonstrated altered metabolites in samples of Alzheimer's disease (AD) patients. However, the sample size from many of them is relatively small and the metabolites are relatively limited. Here we applied a comprehensive platform using ultraperformance liquid chromatography-time-of-flight mass spectrometry and gas chromatography-time-of-flight mass spectrometry to analyze plasma samples from AD patients, amnestic mild cognitive impairment (aMCI) patients, and normal controls. A biomarker panel consisting of six plasma metabolites (arachidonic acid, N,N-dimethylglycine, thymine, glutamine, glutamic acid, and cytidine) was identified to discriminate AD patients from normal control. Another panel of five plasma metabolites (thymine, arachidonic acid, 2-aminoadipic acid, N,N-dimethylglycine, and 5,8-tetradecadienoic acid) was able to differentiate aMCI patients from control subjects. Both biomarker panels had good agreements with clinical diagnosis. The 2 panels of metabolite markers were all involved in fatty acid metabolism, one-carbon metabolism, amino acid metabolism, and nucleic acid metabolism. Additionally, no altered metabolites were found among the patients at different stages, as well as among those on anticholinesterase medication and those without anticholinesterase medication. These findings provide a comprehensive global plasma metabolite profiling and may contribute to making early diagnosis as well as understanding the pathogenic mechanism of AD and aMCI.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vandal M, Alata W, Tremblay C, Rioux-Perreault C, Salem N, Calon F, Plourde M. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J Neurochem 2014; 129:516-26. [PMID: 24345162 DOI: 10.1111/jnc.12640] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022]
Abstract
Benefits on cognition from docosahexaenoic acid (DHA, 22 : 6 n-3) intake are absent in humans carrying apolipoprotein E ε4 allele (APOE4), the most important genetic risk factor for Alzheimer's disease (AD). To test the hypothesis that carrying APOE4 impairs DHA distribution, we evaluated plasma and brain fatty acid profiles and uptake of [(14) C]-DHA using in situ cerebral perfusion through the blood-brain barrier in 4- and 13-month-old male and female APOE-targeted replacement mice (APOE2, APOE3, and APOE4), fed with a DHA-depleted diet. Cortical and plasma DHA were 9% lower and 34% higher in APOE4 compared to APOE2 mice, respectively. Brain uptake of [(14) C]-DHA was 24% lower in APOE4 versus APOE2 mice. A significant relationship was established between DHA and apoE concentrations in the cortex of mice (r(2) = 0.21) and AD patients (r(2) = 0.32). Altogether, our results suggest that lower brain uptake of DHA in APOE4 than in APOE2 mice may limit the accumulation of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of AD. Using human APOE2, 3, and 4 isoform-specific transgenic mice, we found a lower brain uptake of docosahexaenoic acid (DHA) in APOE4 than in APOE2 mice that may limit the biodistribution of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Milène Vandal
- Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec City, Québec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Solomon A, Kivipelto M. Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 2014; 9:695-709. [DOI: 10.1586/ern.09.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Repetitive transcranial magnetic stimulation applications normalized prefrontal dysfunctions and cognitive-related metabolic profiling in aged mice. PLoS One 2013; 8:e81482. [PMID: 24278445 PMCID: PMC3838337 DOI: 10.1371/journal.pone.0081482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022] Open
Abstract
Chronic high-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has recently received increasing interests as a therapeutic procedure for neurodegenerative diseases. To identify the metabolism mechanism underlying the improving effects of rTMS, we observed that high frequency (25Hz) rTMS for 14 days could reverse the decline of the performance of the passive avoidance task in aged mice. We further investigated the metabolite profiles in the prefrontal cortex (PFC) in those mice and found that rTMS could also reverse the metabolic abnormalities of gamma-aminobutyric acid, N-acetyl aspartic, and cholesterol levels to the degree similar to the young mice. These data suggested that the rTMS could ameliorate the age-related cognitive impairment and improving the metabolic profiles in PFC, and potentially can be used to improve cognitive decline in the elderly.
Collapse
|
42
|
Karimi SA, Salehi I, Komaki A, Sarihi A, Zarei M, Shahidi S. Effect of high-fat diet and antioxidants on hippocampal long-term potentiation in rats: an in vivo study. Brain Res 2013; 1539:1-6. [PMID: 24095795 DOI: 10.1016/j.brainres.2013.09.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/28/2023]
Abstract
The objective of this study was to determine the relation between the chronic consumption of a high-fat diet (HFD) and antioxidants on long-term potentiation (LTP) in dentate gyrus (DG) of the adult rat hippocampus in vivo. Forty adult male Wistar rats were randomly assigned into five groups (N=6-8): control group consumed an ordinary diet; HFD group received HFD only; ANO group received HFD plus antioxidants; RHFD group received a restricted HFD (30% less fat than the HFD group); and RANO group received restricted HFD plus antioxidants. Following 6 months of controlled diets in each experimental group, the rats were anesthetized with intraperitoneal injection of ketamine and xylazin (100 and 2.5 mg/kg, respectively), and placed into a stereotaxic apparatus for surgery, electrode implantation and field potential recording. The population spike (PS) amplitude and slope of excitatory post synaptic potentials (EPSP) were measured in DG area of adult rats in response to stimulation applied to the perforant pathway (PP) by 400 Hz tetanization. The results showed that HFD decreased EPSP slope and PS amplitude with respect to the control group, whereas antioxidants increased these parameters compared to the control group. It was suggested that chronic HFD consumption can impair hippocampal LTP in the granular cells of the DG, and antioxidant supplementation reverses the impairment of synaptic plasticity induced in DG.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | |
Collapse
|
43
|
Ibáñez C, Simó C, Barupal DK, Fiehn O, Kivipelto M, Cedazo-Mínguez A, Cifuentes A. A new metabolomic workflow for early detection of Alzheimer's disease. J Chromatogr A 2013; 1302:65-71. [DOI: 10.1016/j.chroma.2013.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/16/2022]
|
44
|
Disturbance in uniformly 13C-labelled DHA metabolism in elderly human subjects carrying the apoE ε4 allele. Br J Nutr 2013; 110:1751-9. [PMID: 23631810 DOI: 10.1017/s0007114513001268] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carrying the apoE ε4 allele (E4+ ) is the most important genetic risk for Alzheimer’s disease. Unlike non-carriers (E4- ), E4+ seem not to be protected against Alzheimer's disease when consuming fish. We hypothesised that this may be linked to a disturbance in n-3 DHA metabolism in E4+. The aim of the present study was to evaluate [13C]DHA metabolism over 28 d in E4+ v. E4-. A total of forty participants (twenty-six women and fourteen men) received a single oral dose of 40 mg [13C]DHA, and its metabolism was monitored in blood and breath over 28 d. Of the participants, six were E4+ and thirty-four were E4-. In E4+, mean plasma [13C]DHA was 31% lower than that in E4-, and cumulative b-oxidation of [13C]DHA was higher than that in E4- 1–28 d post-dose (P ≤0·05). A genotype x time interaction was detected for cumulative b-oxidation of [13C]DHA (P ≤ 0·01). The whole-body half-life of [13C]DHA was 77% lower in E4+ compared with E4- (P ≤0·01). In E4+ and E4-, the percentage dose of [13C]DHA recovered/h as 13CO2 correlated with [13C]DHA concentration in plasma, but the slope of linear regression was 117% steeper in E4+ compared with E4- (P ≤ 0·05). These results indicate that DHA metabolism is disturbed in E4+, and may help explain why there is no association between DHA levels in plasma and cognition in E4+. However, whether E4+ disturbs the metabolism of 13C-labelled fatty acids other than DHA cannot be deduced from the present study.
Collapse
|
45
|
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer's disease. Ther Adv Neurol Disord 2013; 6:19-33. [PMID: 23277790 PMCID: PMC3526946 DOI: 10.1177/1756285612461679] [Citation(s) in RCA: 392] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's dementia (AD) is increasingly being recognized as one of the most important medical and social problems in older people in industrialized and non-industrialized nations. To date, only symptomatic treatments exist for this disease, all trying to counterbalance the neurotransmitter disturbance. Three cholinesterase inhibitors (CIs) are currently available and have been approved for the treatment of mild to moderate AD. A further therapeutic option available for moderate to severe AD is memantine, an N-methyl-D-aspartate receptor noncompetitive antagonist. Treatments capable of stopping or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. To block the progression of the disease they have to interfere with the pathogenic steps responsible for the clinical symptoms, including the deposition of extracellular amyloid β plaques and intracellular neurofibrillary tangle formation, inflammation, oxidative damage, iron deregulation and cholesterol metabolism. In this review we discuss current symptomatic treatments and new potential disease-modifying therapies for AD that are currently being studied in phase I-III trials.
Collapse
|
46
|
Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, Li TA, Ebrahimi M. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal peroxisome proliferator activated receptors (PPARα and PPARγ) gene expression in rats. BMC Neurosci 2012; 13:109. [PMID: 22989138 PMCID: PMC3465241 DOI: 10.1186/1471-2202-13-109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 09/14/2012] [Indexed: 12/18/2022] Open
Abstract
Background This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague–Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR. Results Decreasing dietary n-6: n-3 PUFA ratios improved the cognitive performance of animals in the Morris water maze test along with the upregulation of PPARα and PPARγ gene expression. The animals with the lowest dietary n-6: n-3 PUFA ratio presented the highest spatial learning improvement and PPAR gene expression. Conclusion It can be concluded that modulation of n-6: n-3 PUFA ratios in the diet may lead to increased hippocampal PPAR gene expression and consequently improved spatial learning and memory in rats.
Collapse
Affiliation(s)
- Toktam Hajjar
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kuller LH, Lopez OL. Dementia and Alzheimer's disease: a new direction.The 2010 Jay L. Foster Memorial Lecture. Alzheimers Dement 2012; 7:540-50. [PMID: 21889117 DOI: 10.1016/j.jalz.2011.05.901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The modern era of Alzheimer's disease (AD) research began in the early 1980s with the establishment of AD research centers and expanded research programs at the National Institute on Aging. METHODS Over the past 30 years, there has been success in defining criteria for AD and dementia, association of important genetic disorders related to premature dementia in families, the association of apolipoprotein-E(4), and measurement of incidence and prevalence and selected risk factors. However, prevention and treatment have been elusive. RESULTS The development of new technologies, especially magnetic resonance imaging, positron emission tomography to measure amyloid in vivo in the brain and glucose metabolism, cerebrospinal fluid examination, better genetic markers, large-scale longitudinal epidemiology studies, and preventive clinical trials has rapidly begun a new era of research that offers opportunities to better understand etiology, that is, determinants of amyloid biology in the brain, neurofibrillary tangles, synaptic loss, and dementia. CONCLUSIONS There are three major hypotheses related to dementia: amyloid deposition and secondary synaptic loss as a unique disease, vascular injury, and "aging." New research must be hypothesis-driven and lead to testable approaches for treatment and prevention.
Collapse
Affiliation(s)
- Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, PA, USA.
| | | |
Collapse
|
48
|
Gutierres JM, Kaizer RR, Schmatz R, Mazzanti CM, Vieira JM, Rodrigues MV, Jaques J, Carvalho F, Zanini D, Morsch VM, Schetinger MRC, Spanevello RM. α-Tocopherol regulates ectonucleotidase activities in synaptosomes from rats fed a high-fat diet. Cell Biochem Funct 2012; 30:286-92. [PMID: 22223394 DOI: 10.1002/cbf.2797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 12/20/2022]
Abstract
α-Tocopherol (α-Toc) is involved in various physiologic processes, which present antioxidant and neuroprotective properties. High-fat diets have an important role in neurodegenerative diseases and neurological disturbances. This study aimed to investigate the effects of treatment with α-Toc and the consumption of high-fat diets on ectonucleotidase activities in synaptosomes of cerebral cortex, hippocampus and striatum of rats. Animals were divided into four different groups, which received standard diet (control), high-fat saturated diet (HF), α-Toc and high-fat saturated diet plus α-Toc (α-Toc + HF). High-fat saturated diet was administered ad libitum and α-Toc by gavage using a dose of 50 mg·kg(-1). After 3 months of treatment, animals were submitted to euthanasia, and cerebral cortex, hippocampus and striatum were collected for biochemical assays. Results showed that adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) hydrolysis in the cerebral cortex, hippocampus and striatum were decreased in HF in comparison to the other groups (P < 0·05). When rats that received HF were treated with α-Toc, the activity of the ectonucleotidases was similar to the control. ATP, ADP and AMP hydrolysis in the cerebral cortex, hippocampus and striatum were increased in the α-Toc group when compared with the other groups (P < 0·05). These findings demonstrated that the HF alters the purinergic signaling in the nervous system and that the treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.
Collapse
Affiliation(s)
- Jessié Martins Gutierres
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Effects of diet and behavioral enrichment on free fatty acids in the aged canine brain. Neuroscience 2011; 202:326-33. [PMID: 22183056 DOI: 10.1016/j.neuroscience.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/19/2023]
Abstract
Despite several recent studies suggesting that dysregulation of brain lipid metabolism might contribute to the mechanisms of aging and Alzheimer's disease (AD), lipid metabolism has not been evaluated extensively in the aging brain. Here, we use a lipidomic approach to demonstrate that antioxidants plus mitochondrial cofactors treatment, either alone or in combination with behavioral enrichment, attenuates lipid abnormalities in the frontal cortices of aged canine in a manner correlated with cognitive scores. Our analyses revealed that the levels of free palmitoleic acid and nervonic acid were decreased in frontal cortices of aged dogs (n=5-6/group) treated with antioxidant compared with the control group. The monounsaturated/saturated fatty acid ratio, also known as "desaturation index"-an ex-vivo indicator of stearoyl-CoA desaturase activity, was also reduced in the frontal cortex of dogs treated with antioxidants compared with control groups. Increased palmitoleic acid levels and desaturation index were positively correlated with increased reversal learning errors and decreased cognitive performance. In conclusion, our study indicates that the addition of antioxidants and mitochondrial cofactors to the regular diet alters the composition of free fatty acids in the aged brain. Together with data showing increased palmitoleic acid levels in AD patients, our data suggest that reducing palmitoleic acid levels and desaturation index in the brain may be associated with improved cognitive performance.
Collapse
|
50
|
Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011; 34:453-61. [PMID: 21467629 DOI: 10.1248/bpb.34.453] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins in the central nervous system (CNS) are not incorporated from the blood but are formed mainly by glial cells within the CNS. In addition, cholesterol in the CNS is synthesized endogenously because the blood-brain barrier segregates the CNS from the peripheral circulation. Apolipoprotein (apo) E is a major apo in the CNS. In normal condition, apo E is secreted from glia, mainly from astrocytes, and forms cholesterol-rich lipoproteins by ATP-binding cassette transporters. Subsequently, apo E-containing glial lipoproteins supply cholesterol and other components to neurons via a receptor-mediated process. Recent findings demonstrated that receptors of the low density lipoprotein (LDL) receptor family not only internalize lipoproteins into the cells but also, like signaling receptors, transduce signals upon binding the ligands. In this review, the regulation of lipid homeostasis will be discussed as well as roles of lipoproteins and functions of receptors of LDL receptor family in the CNS. Furthermore, the relation between lipid metabolism and Alzheimer's disease (AD) is discussed.
Collapse
Affiliation(s)
- Hideki Hayashi
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjo, Japan.
| |
Collapse
|