1
|
Chen HQ, Zhang QG, Zhang XY, Zeng XB, Xu JW, Ling S. 4'-O-methylbavachalcone alleviates ischemic stroke injury by inhibiting parthanatos and promoting SIRT3. Eur J Pharmacol 2024; 972:176557. [PMID: 38574839 DOI: 10.1016/j.ejphar.2024.176557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.
Collapse
Affiliation(s)
- Hong-Qing Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing-Guang Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin-Yuan Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiang-Bing Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Morante-Carriel J, Živković S, Nájera H, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Obrebska A, Samper-Herrero A, Bru-Martínez R. Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1211. [PMID: 38732426 PMCID: PMC11085352 DOI: 10.3390/plants13091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Suzana Živković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Susana Sellés-Marchart
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| |
Collapse
|
3
|
Omar EM, Elatrebi S, Soliman NAH, Omar AM, Allam EA. Effect of icariin in a rat model of colchicine-induced cognitive deficit: role of β -amyloid proteolytic enzymes. Nutr Neurosci 2023; 26:1172-1182. [PMID: 36342068 DOI: 10.1080/1028415x.2022.2140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACTThe deposition of β-amyloid plaques, either due to their over-production or insufficient clearance, is an important pathological process in cognitive impairment and dementia. Icariin (ICA), a flavonoid compound extracted from Epimedium, has recently gained attention for numerous age-related diseases, such as neurodegenerative diseases. We aimed to explore the possible neuro-protective effect of ICA supplementation in colchicine-induced cognitive deficit rat model and exploring its effect on the β-amyloid proteolytic enzymes. The study included four groups (10 rats each): normal control, untreated colchicine, colchicine + 10 mg/kg ICA, and colchicine + 30 mg/ kg ICA. Results revealed that intra-cerebro-ventricular colchicine injection produced neuronal morphological damage, β amyloid deposition, and evident cognitive impairment in the behavioral assessment. Icariin supplementation in the two doses for 21 days attenuated neuronal death, reduced the β amyloid levels, and improved memory consolidation. This was associated with modulation of the proteolytic enzymes (Neprilysin, Matrix Metalloproteinase-2, and insulin-degrading enzyme) concluding that β-amyloid enzymatic degradation may be the possible therapeutic target for ICA.
Collapse
Affiliation(s)
- Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Soha Elatrebi
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada A H Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira M Omar
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Cheng YJ, Fan F, Zhang Z, Zhang HJ. Lipid metabolism in malignant tumor brain metastasis: reprogramming and therapeutic potential. Expert Opin Ther Targets 2023; 27:861-878. [PMID: 37668244 DOI: 10.1080/14728222.2023.2255377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Brain metastasis is a highly traumatic event in the progression of malignant tumors, often symbolizing higher mortality. Metabolic alterations are hallmarks of cancer, and the mask of lipid metabolic program rearrangement in cancer progression is gradually being unraveled. AREAS COVERED In this work, we reviewed clinical and fundamental studies related to lipid expression and activity changes in brain metastases originating from lung, breast, and cutaneous melanomas, respectively. Novel roles of lipid metabolic reprogramming in the development of brain metastasis from malignant tumors were identified and its potential as a therapeutic target was evaluated. Published literature and clinical studies in databases consisting of PubMed, Embase, Scopus and www.ClinicalTrials.gov from 1990 to 2022 were searched. EXPERT OPINION Lipid metabolic reprogramming in brain metastasis is involved in de novo lipid synthesis within low lipid availability environments, regulation of lipid uptake and storage, metabolic interactions between brain tumors and the brain microenvironment, and membrane lipid remodeling, in addition to being a second messenger for signal transduction. Although some lipid metabolism modulators work efficiently in preclinical models, there is still a long way to go from laboratory to clinic. This area of research holds assurance for the organ-targeted treatment of brain metastases through drug-regulated metabolic targets and dietary interventions.
Collapse
Affiliation(s)
- Yan-Jie Cheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Oncology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Fan Fan
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Zheng L, Wu S, Jin H, Wu J, Wang X, Cao Y, Zhou Z, Jiang Y, Li L, Yang X, Shen Q, Guo S, Shen Y, Li C, Ji L. Molecular mechanisms and therapeutic potential of icariin in the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154890. [PMID: 37229892 DOI: 10.1016/j.phymed.2023.154890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aβ via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.
Collapse
Affiliation(s)
- Lingyan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Sichen Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiaqi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaole Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuxiao Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhihao Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yaona Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linhong Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xinyue Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical, Hangzhou 310014, Zhejiang, China.
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Hangzhou 311106, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
6
|
Gani I, Jameel S, Bhat SA, Amin H, Bhat KA. Prenylated Flavonoids of Genus Epimedium: Phytochemistry, Estimation and Synthesis. ChemistrySelect 2023. [DOI: 10.1002/slct.202204263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Ifshana Gani
- CSIR-Indian Institute of Integrative Medicine Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Salman Jameel
- CSIR-Indian Institute of Integrative Medicine Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Showkat Ahmad Bhat
- CSIR-Indian Institute of Integrative Medicine Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Henna Amin
- CSIR-Indian Institute of Integrative Medicine Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Khursheed Ahmad Bhat
- CSIR-Indian Institute of Integrative Medicine Srinagar, Jammu and Kashmir 190005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
7
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
8
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Khezri MR, Ghasemnejad-Berenji M. Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease. Neurochem Res 2022; 47:2954-2962. [PMID: 35802286 DOI: 10.1007/s11064-022-03667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Srinivasan E, Chandrasekhar G, Rajasekaran R. Probing the polyphenolic flavonoid, morin as a highly efficacious inhibitor against amyloid(A4V) mutant SOD1 in fatal amyotrophic lateral sclerosis. Arch Biochem Biophys 2022; 727:109318. [PMID: 35690129 DOI: 10.1016/j.abb.2022.109318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Deposition of misfolded protein aggregates in key areas of human brain is the quintessential trait of various pertinent neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). Genetic point mutations in Cu/Zn superoxide dismutase (SOD1) are found to be the most important contributing factor behind familial ALS. Especially, single nucleotide polymorphism (SNP) A4V is the most nocuous since it substantially decreases life expectancy of patients. Besides, the use of naturally occurring polyphenolic flavonoids is profoundly being advocated for palliating amyloidogenic behavior of proteopathic proteins. In the present analysis, through proficient computational tools, we have attempted to ascertain a pharmacodynamically promising flavonoid compound that effectively curbs the pathogenic behavior of A4V SOD1 mutant. Initial screening of flavonoids that exhibit potency against amyloids identified morin, myricetin and epigallocatechin gallate as promising leads. Further, with the help of feasible and yet adept protein-ligand interaction studies and stalwart molecular simulation analyses, we were able to observe that aforementioned flavonoids were able to considerably divert mutant A4V SOD1 from its distinct pathogenic behavior. Among which, morin showed the most curative potential against A4V SOD1. Therefore, morin holds a great therapeutic potential in contriving highly efficacious inhibitors in mitigating fatal and insuperable ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India; Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
11
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
12
|
Shi S, Li J, Zhao X, Liu Q, Song SJ. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. PHYTOCHEMISTRY 2021; 191:112895. [PMID: 34403885 DOI: 10.1016/j.phytochem.2021.112895] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Prenylated flavonoids, a unique class of flavonoids which combine a flavonoid skeleton and a lipophilic prenyl side-chain, possess great potential biological activities including cytotoxicity, anti-inflammation, anti-Alzheimer, anti-microbial, anti-oxidant, anti-diabetes, estrogenic, vasorelaxant and enzyme inhibition. Recently, prenylated flavonoids have become an indispensable anchor for the development of new therapeutic agents, and have received increasing from medicinal chemists. The prenylated flavonoids have been outstanding developed through isolation, semi or fully synthesis in a very short period of time, which proves the great value in medicinal chemistry researches. In this review, research progress of prenylated flavonoids including natural prenylated flavonoids, structural modification, synthetic methodologies and pharmacological activities was summarized comprehensively. Furthermore, the structure-activity relationships (SARs) of prenylated flavonoids were summarized which provided a basis for the selective design and optimization of multifunctional prenylated flavonoid derivatives for the treatment of multi-factorial diseases in clinic.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuemei Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping, 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Qian X, Zhang S, Duan L, Yang F, Zhang K, Yan F, Ge S. Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2021; 79:1785-1800. [PMID: 33459718 DOI: 10.3233/jad-201007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although periodontitis is reportedly associated with increased cognitive decline in Alzheimer's disease, the mechanisms underlying this process remain unknown. Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) is an endotoxin associated with periodontal disease. OBJECTIVE We investigated the effect of periodontitis on learning capacity and memory of amyloid-β protein precursor (AβPP)/presenilin (PS1) transgenic mice along with the mechanisms underlying these effects. METHODS Mice were randomly assigned to three groups, namely AβPP/PS1 (control), P.g-LPS Injection, and P.g-LPS Injection + Ligation. Mice from the P.g-LPS Injection group were injected with P.g-LPS in the periodontal tissue three times per week for 8 weeks, while mice from the P.g-LPS Injection + Ligation group were injected with P.g-LPS and subjected to ligation of the gingival sulcus of the maxillary second molar. RESULTS Expression of gingival proinflammatory cytokines as well as alveolar bone resorption in P.g-LPS-injected and ligatured mice was increased compared to that in control mice. Mice in the P.g-LPS Injection + Ligation group exhibited cognitive impairment and a significant reduction in the number of neurons. Glial cell activation in the experimental groups with significantly increased amyloid-β (Aβ) levels was more pronounced relative to the control group. Induction of periodontitis was concurrent with an increase in cyclooxygenase-2, inducible nitric oxide synthase, AβPP, and beta-secretase 1 expression and a decrease in A disintegrin and metalloproteinase domain-containing protein 10 expression. CONCLUSION These findings indicated that periodontitis exacerbated learning and memory impairment in AβPP/PS1 mice and augmented Aβ and neuroinflammatory responses. Our study provides a theoretical basis for risk prediction and early intervention of Alzheimer's disease and periodontitis.
Collapse
Affiliation(s)
- Xueshen Qian
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lian Duan
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fengchun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kun Zhang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Song Ge
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
14
|
Wu W, He X, Xie S, Li B, Chen J, Qu Y, Li B, Lei M, Liu X. Protective effects of Huang-Lian-Jie-Du-Tang against A β25-35-induced memory deficits and oxidative stress in rats. J Int Med Res 2021; 48:300060519893859. [PMID: 32223685 PMCID: PMC7133406 DOI: 10.1177/0300060519893859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Huang-Lian-Jie-Du-Tang (HLJDT), a traditional Chinese medicine, improves cognitive ability in rat models of Alzheimer’s disease (AD). The objective of this study was to evaluate the protective effects of HLJDT on learning and memory impairment that are caused by Aβ25–35. Methods Rats were randomly assigned to the following groups: control (water), Aβ25–35, donepezil hydrochloride 1.05 mg/kg, HLJDT 6 g/kg, HLJDT 3 g/kg, and HLJDT 1.5 g/kg and the corresponding drugs were administered for 28 days by oral gavage. HLJDT for the prevention of Aβ25–35-induced injury in rats and the underlying mechanisms were assessed. Aβ25–35 and amyloid precursor protein (APP) levels were measured in the hippocampal specimens. Total superoxide dismutase (T-SOD), glutathione (GSH), and malondialdehyde (MDA) levels in the hippocampus were also measured. The ultrastructure of CA1 hippocampal region was observed using electron microscopy. Results HLJDT treatment ameliorated impaired learning and memory significantly, decreased Aβ25–35, and APP levels in the hippocampus, increased T-SOD and GSH activity and decreased the MDA concentration, and alleviated the nuclear and cytoplasmic abnormalities of the hippocampal CA 1 region that were induced by Aβ25–35 injection. Conclusions HLJDT might decrease hippocampal vulnerability to Aβ25–35, suggesting its potential neuroprotective effect in AD.
Collapse
Affiliation(s)
- Wenbin Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xiaojing He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Shuling Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Bin Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Jinxin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yanqin Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Baiyang Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xuehui Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
15
|
Li Y, Yang Q, Yu Y. A Network Pharmacological Approach to Investigate the Mechanism of Action of Active Ingredients of Epimedii Herba and Their Potential Targets in Treatment of Alzheimer's Disease. Med Sci Monit 2020; 26:e926295. [PMID: 32980851 PMCID: PMC7528617 DOI: 10.12659/msm.926295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Epimedii Herba is a traditional Chinese herbal medicine used to treat central nervous system diseases such as Alzheimer’s disease in China. However, the pharmacological mechanism is unclear. To investigate the mechanisms of Epimedii Herba in the treatment of Alzheimer’s disease, we assessed effective compounds, corresponding targets, and related pathways of Epimedii Herba in the treatment of Alzheimer’s disease based on network pharmacology. Material/Methods The active components and targets of Epimedii Herba were obtained through the TCMSP database and the DrugBank database. The DisGeNET database and GeneCards database were used to search for Alzheimer’s disease targets. The common targets of components and disease were obtained by Wayne diagram. Gene ontology (GO) analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed using the DAVID database. The component-target-pathway interaction network model was constructed using Cytoscape software. Auto Duck Vina software was used for molecular docking to analyze the affinity of the key ingredients and the main targets. Results We screened 17 active ingredients and 27 key targets of Epimedii Herba in the treatment of Alzheimer’s disease, which were related to the HIF-1 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, NF-κB signaling pathway, VEGF signaling pathway, and sphingolipid signaling pathway. Conclusions Based on network pharmacology, the multi-component, multi-target, and multi-pathway characteristics of Epimedii Herba in the treatment of Alzheimer’s disease were explored. Our results provide new ideas for future pharmacological and experimental research on Epimedii Herba in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qin Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
16
|
Icaritin Improves Memory and Learning Ability by Decreasing BACE-1 Expression and the Bax/Bcl-2 Ratio in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8963845. [PMID: 32714426 PMCID: PMC7345953 DOI: 10.1155/2020/8963845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Icaritin (ICT) is the main component in the traditional Chinese herb Epimedium, and it has been shown to have anti-Alzheimer's disease (AD) effects, but its neuroprotective effects and the pharmacological mechanisms are unclear. In the present study, senescence-accelerated mouse prone 8 (SAMP8) mice were randomly divided into a model group and an ICT-treated group. Learning and memory abilities were detected by the Morris water maze assay, and the expression of amyloid beta protein (Aβ) and β-site APP cleavage enzyme 1 (BACE1) was determined by Western blotting and polymerase chain reaction (PCR). Histological changes in CA1 and CA3 were detected by hematoxylin-eosin staining (H&E staining), and the immunohistochemical analysis was used to detect the expression and localization of Bax and Bcl-2. The results showed that compared with the SAMP8 mice, the ICT-treated SAMP8 mice showed improvements in spatial learning and memory retention. In addition, the number of necrotic cells and the morphological changes in CA1 and CA3 areas were significantly alleviated in the group of ICT-treated SAMP8 mice, and the expression of BACE1, Aβ1-42 levels, and the Bax/Bcl-2 ratio in the hippocampus was obviously decreased in the ICT-treated group compared with the control group. The results demonstrated that ICT reduced BACE-1 levels, the contents of Aβ1-42, and the Bax/Bcl-2 ratio, suggesting that ICT might have potential therapeutic benefits by delaying or modifying the progression of AD.
Collapse
|
17
|
Zhang S, Yang F, Wang Z, Qian X, Ji Y, Gong L, Ge S, Yan F. Poor oral health conditions and cognitive decline: Studies in humans and rats. PLoS One 2020; 15:e0234659. [PMID: 32614834 PMCID: PMC7332063 DOI: 10.1371/journal.pone.0234659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background The relationship between poor oral health conditions and cognitive decline is unclear. Objective To examine the association between oral health and cognition in humans and rats. Methods In humans: a cross-sectional study was conducted. Cognitive levels were evaluated by the Mini Mental State Examination (MMSE); oral conditions were reflected by the number of missing index teeth, bleeding on probing, and probing pocket depth (PD). In rats: a ligature-induced (Lig) periodontitis model and Aβ25-35-induced model of Alzheimer’s disease (AD) were established; tumor necrosis factor-α (TNF-α), interleukin 1 (IL-1), interleukin 6 (IL-6), and C-reactive protein levels in the hippocampus and cerebral cortex were detected. Results MMSE scores for the number of missing index teeth ≥ 7 group were significantly lower than those in the ≤ 6 group. A negative relationship (correlation coefficient ρ = −0.310, P = 0.002) was observed between MMSE scores and number of missing index teeth. More missing index teeth and lower education levels were independent risk factors for cognitive decline. A negative relationship (correlation coefficient ρ = −0.214, P = 0.031) was observed between MMSE scores and average PD. TNF-α and IL-6 levels in the hippocampus of the Lig+AD group were significantly higher than those of the AD group. IL-1 and IL-6 levels in the cerebral cortex of the Lig+AD group were significantly higher than those of the AD group. Conclusion Poor oral health conditions including more missing index teeth and higher average PD may be risk factors for cognitive decline. Periodontitis may increase inflammatory cytokines in rat models of AD.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Fengchun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueshen Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Yan Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Ling Gong
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Song Ge
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- * E-mail: (FY); (SG)
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (FY); (SG)
| |
Collapse
|
18
|
Wu J, Qu JQ, Zhou YJ, Zhou YJ, Li YY, Huang NQ, Deng CM, Luo Y. Icariin improves cognitive deficits by reducing the deposition of β-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice. Neuroreport 2020; 31:663-671. [PMID: 32427716 DOI: 10.1097/wnr.0000000000001466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective therapeutic drugs for prevent or reverse the pathobiology of Alzheimer's disease (AD) have not been developed. Icariin (ICA), a prenylated flavonol glycoside derived from the traditional Chinese herb Epimedium sagittatum, exerts a variety of pharmacological activities and shows promise in the treatment and prevention of AD. This study investigated the neuroprotective effects of ICA in SAMP8 mice model of aspects of early AD and explored potential underlying mechanisms. Our results showed that intragastric administration of ICA could reverse the learning and memory impairment of SAMP8 mice in the Morris water maze. Western blot of hippocampal specimens revealed that ICA down-regulated the expression of BACE1 to reduce the expression of cytotoxic Aβ1-42. Furthermore, ICA siginificantly increase the Bcl-2/Bax ratio by increasing the expression of anti-apoptotic protein Bcl-2, and decreasing the expression of pro-apoptotic protein Bax, and thus inhibit neurons apoptosis. These findings indicate that ICA could improve cognitive deficits by reducing the deposition of β1-42 and inhibition of neurons apoptosis and provide further evidence for the clinical efficacy of ICA in the treatment of AD.
Collapse
Affiliation(s)
- Jie Wu
- Scientific Research Center, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical University
- Zunyi Key Laboratory of Genetic Diagnosis & Targeted Drug Therapy, the First People's Hospital of Zunyi
| | - Jing-Qiu Qu
- Office of Drug Clinical Trial Institution, the Third Affiliated Hospital of Zunyi Medical University
| | - Yan-Jun Zhou
- Department of Neurology, the Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong-Jian Zhou
- Department of Neurology, the Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan-Yuan Li
- Office of Drug Clinical Trial Institution, the Third Affiliated Hospital of Zunyi Medical University
| | - Nan-Qu Huang
- Office of Drug Clinical Trial Institution, the Third Affiliated Hospital of Zunyi Medical University
| | - Cheng-Min Deng
- Scientific Research Center, the First People's Hospital of Zunyi, the Third Affiliated Hospital of Zunyi Medical University
- Zunyi Key Laboratory of Genetic Diagnosis & Targeted Drug Therapy, the First People's Hospital of Zunyi
| | - Yong Luo
- Department of Neurology, the Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
19
|
He C, Wang Z, Shi J. Pharmacological effects of icariin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 87:179-203. [PMID: 32089233 DOI: 10.1016/bs.apha.2019.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Icariin (ICA) is a principal active component from traditional Chinese medicine Epimedium grandiflorum. To explain its traditional medical usages by modern science, a variety of pharmacological effects have been studied for ICA. In this review, we summarized the pharmacokinetics of ICA as well as its pharmacological mechanisms in neurodegenerative disease, cardiovascular disease, anti-osteoporosis, anti-inflammation, anti-oxidative stress, anti-depression and anti-tumors.
Collapse
Affiliation(s)
- Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P.R. China; Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Ze Wang
- Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, P.R. China; Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
20
|
Hu L, Li L, Zhang H, Li Q, Jiang S, Qiu J, Sun J, Dong J. Inhibition of airway remodeling and inflammatory response by Icariin in asthma. Altern Ther Health Med 2019; 19:316. [PMID: 31744482 PMCID: PMC6862818 DOI: 10.1186/s12906-019-2743-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Icariin (ICA) is the major active ingredient extracted from Chinese herbal medicine Epimedium, which has the effects of improving cardiovascular function, inducing tumor cell differentiation and increasing bone formation. It is still rarely reported that ICA can exert its therapeutic potential in asthma via anti-airway remodeling. The point of the study was to estimate the role of ICA in anti-. airway remodeling and its possible mechanism of action in a mouse ovalbumin. (OVA)-induced asthma model. METHODS Hematoxylin and Eosin Staining were performed for measuring airway remodeling related indicators. ELISA, Western blot and Immunohistochemistr-. y (IHC) were used for analyzing the level of protein. RT-PCR was used for analyzing the level of mRNA. RESULTS On days 1 and 8, mice were sensitized to OVA by intraperitoneal injection. From day 16 to day 43, previously sensitized mice were exposed to OVA once daily by nebulizer. Interventions were performed orally with ICA (ICA low, medium and high dose groups) or dexamethasone 1 h prior to each OVA exposure. ICA improves pulmonary function, attenuates pulmonary inflammation and airway remodeling in mice exposed to OVA. Histological and Western blot analysis of the lungs show that ICA suppressed transforming growth factor beta 1 and vascular endothelial growth factor expression. Increase in interleukin 13 and endothelin-1 in serum and bronchoalveolar lavage fluid in OVA-induced asthmatic mice are also decreased by ICA. ICA attenuates airway smooth muscle cell proliferation, as well as key factors in the MAPK/Erk pathway. CONCLUSIONS The fact that ICA can alleviate OVA-induced asthma at least partly through inhibition of ASMC proliferation via MAPK/Erk pathway provides a solid theoretical basis for ICA as a replacement therapy for asthma. These data reveal the underlying reasons of the use of ICA-rich herbs in Traditional Chinese Medicine to achieve good results in treating asthma.
Collapse
|
21
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
22
|
Zeng R, Wang X, Zhou Q, Fu X, Wu Q, Lu Y, Shi J, Klaunig JE, Zhou S. Icariin protects rotenone-induced neurotoxicity through induction of SIRT3. Toxicol Appl Pharmacol 2019; 379:114639. [DOI: 10.1016/j.taap.2019.114639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022]
|
23
|
Zeng R, Zhou Q, Zhang W, Fu X, Wu Q, Lu Y, Shi J, Zhou S. Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicol Rep 2019; 6:637-644. [PMID: 31334034 PMCID: PMC6624214 DOI: 10.1016/j.toxrep.2019.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023] Open
Abstract
Rotenone (ROT) is an environmental neurotoxin which has been demonstrated to cause characteristic loss of dopamine (DA) neurons in Parkinson's disease (PD). Icariin (ICA) is a flavonoid glucoside isolated from Herba Epimedii that has been shown to display neuroprotective functions. The present study evaluated protective effects of ICA on ROT-induced neurotoxicity and determined the modulation of ICA on the regulation of autophagy in vivo and in vitro. Rats were treated with ROT (1.0 mg/kg/day) with a co-administration of ICA (15 or 30 mg/kg/day) for 5 weeks. Immunohistochemical analysis showed a significant loss in DA neurons in the substantia nigra (SN) of rats treated with ROT, accompanied by an increase in the accumulation of α-synuclein and a compromised mitochondrial respiration. However, co-administration of ICA potently ameliorated the ROT-induced neuronal cell injury and improved mitochondrial function and decreased the accumulation of α-synuclein. ROT treatment resulted in a decrease in the protein expression of LC3-II and Beclin-1, and an increase in the protein level of P62, and upregulated the activation of mammalian target of rapamycin (mTOR), whereas ICA significantly reversed these aberrant changes caused by ROT. Furthermore, the neuroprotective effect of ICA was further verified in PC12 cells. Cells treated with ROT displayed an increased cytotoxicity and a decreased oxygen consumption which were rescued by the presence of ICA. Furthermore, ROT decreased the protein expression level of LC3-II, enhanced Beclin-1 expression, and activated phosphorylation of mTOR, whereas ICA markedly reversed this dysregulation of autophagy caused by ROT in the PC12 cells. Collectively, these results suggest that ICA mediated activation of autophagic flux confers a neuroprotective action on ROT-induced neurotoxicity.
Collapse
Key Words
- Autophagy
- BCA, bicinchoninic acid
- DA, dopamine
- DMEM, Dulbecco's modified Eagle's medium
- HRP, horseradish peroxidase
- ICA, icariin
- Icariin
- LDH, lactate dehydrogenase
- Mitochondrial function
- Neurotoxicity
- OCR, oxygen consumption rate
- PD, Parkinson`s disease
- PE, phosphatidylethano-lamine
- ROT, rotenone
- Rotenone
- SN, substantia nigra
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Ru Zeng
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhou
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zhang
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanfu Lu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Environmental Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
24
|
Wang Y, Zhu T, Wang M, Zhang F, Zhang G, Zhao J, Zhang Y, Wu E, Li X. Icariin Attenuates M1 Activation of Microglia and Aβ Plaque Accumulation in the Hippocampus and Prefrontal Cortex by Up-Regulating PPARγ in Restraint/Isolation-Stressed APP/PS1 Mice. Front Neurosci 2019; 13:291. [PMID: 31001073 PMCID: PMC6455051 DOI: 10.3389/fnins.2019.00291] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Studies have shown that psychosocial stress is involved in Alzheimer's disease (AD) pathogenesis; it induces M1 microglia polarization and production of pro-inflammatory cytokines, leading to neurotoxic outcomes and decreased β-amyloid (Aβ) clearance. Icariin has been proven to be an effective anti-inflammatory agent and to activate peroxisome proliferator-activated receptors gamma (PPARγ) which induces the M2 phenotype in the microglia. However, whether restraint/isolation stress reduces the clearance ability of microglia by priming and polarizing microglia to the M1 phenotype, and the effects of icariin in attenuating the inflammatory response and relieving the pathological changes of AD are still unclear. Methods APP/PS1 mice (male, aged 3 months) were randomly divided into a control group, a restraint/isolation stress group, and a restraint/isolation stress + icariin group. The restraint/isolation stress group was subjected to a paradigm to build a depressive animal model. Sucrose preference, open field, elevated plus maze, and Y maze test were used to assess the stress paradigm. The Morris water maze test was performed to evaluate spatial reference learning and memory. Enzyme-linked immunosorbent assay and immunohistochemistry were used to identify the microglia phenotype and Aβ accumulation. Western blotting was used to detect the expression of PPARγ in the hippocampus and prefrontal cortex (PFC). Results Restraint/isolation stress induced significant depressive-like behaviors in APP/PS1 mice at 4 months of age and memory impairment at 10 months of age, while 6 months of icariin administration relieved the memory damage. Restraint/isolation stressed mice had elevated pro-inflammatory cytokines, decreased anti-inflammatory cytokines, increased Aβ plaque accumulation and more M1 phenotype microglia in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration relieved these changes. Moreover, restraint/isolation stressed mice had down-regulated PPARγ expression in the hippocampus and PFC at 10 months of age, while 6 months of icariin administration reversed the alteration, especially in the hippocampus. Conclusion Restraint/isolation stress induced depressive-like behaviors and spatial memory damage, over-expression of M1 microglia markers and more severe Aβ accumulation by suppressing PPARγ in APP/PS1 mice. Icariin can be considered a new treatment option as it induces the switch of the microglia phenotype by activating PPARγ.
Collapse
Affiliation(s)
- Yihe Wang
- School of Medicine, Shandong University, Jinan, China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Feng Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Guitao Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuanyuan Zhang
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery and Department of Pharmaceutical Sciences, Texas A&M University Health Science Center, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
25
|
Angeloni C, Barbalace MC, Hrelia S. Icariin and Its Metabolites as Potential Protective Phytochemicals Against Alzheimer's Disease. Front Pharmacol 2019; 10:271. [PMID: 30941046 PMCID: PMC6433697 DOI: 10.3389/fphar.2019.00271] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder affecting more than 35 million people worldwide. As the prevalence of AD is dramatically rising, there is an earnest need for the identification of effective therapies. Available drug treatments only target the symptoms and do not halt the progression of this disorder; thus, the use of natural compounds has been proposed as an alternative intervention strategy. Icariin, a prenylated flavonoid, has several therapeutic effects, including osteoporosis prevention, sexual dysfunction amelioration, immune system modulation, and improvement of cardiovascular function. Substantial studies indicate that icariin may be beneficial to AD by reducing the production of extracellular amyloid plaques and intracellular neurofibrillary tangles and inhibiting phosphodiesterase-5 activity. Moreover, increasing evidence has indicated that icariin exerts a protective role in AD also by limiting inflammation, oxidative stress and reducing potential risk factors for AD such as atherosclerosis. This mini-review discusses the multiple potential mechanisms of action of icariin on the pathobiology of AD including explanation regarding its bioavailability, metabolism and pharmacokinetic.
Collapse
Affiliation(s)
| | | | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z. An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 2018; 842:20-32. [PMID: 30342950 DOI: 10.1016/j.ejphar.2018.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Icariin is a major active component of the traditional herb Epimedium, also known as Horny Goat Weed. It has been extensively studied throughout the past several years and is known to exert anti-oxidative, anti-neuroinflammatory, and anti-apoptotic effects. It is now being considered as a potential therapeutic agent for a wide variety of disorders, ranging from neoplasm to cardiovascular disease. More recent studies have shown that icariin exhibits potential preventive and/or therapeutic effects in the nervous system. For example, icariin can prevent the production of amyloid β (1-42) and inhibit the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE-1) in animal models of Alzheimer's disease (AD). Icariin has been shown to mitigate pro-inflammatory responses of microglia in culture and in animal models of cerebral ischemia, depression, Parkinson's disease (PD), and multiple sclerosis (MS). Icariin also prevents the neurotoxicity induced by hydrogen peroxide (H2O2), endoplasmic reticulum (ER) stress, ibotenic acid, and homocysteine. In addition, icariin is implicated in facilitating learning and memory in both normal aging animals and disease models. To date, we still have no consolidated source of knowledge about the pharmacological effects of icariin in the nervous system, though its roles in other tissues have been reviewed in recent years. Here, we summarize the pharmacological development of icariin as well as its possible mechanisms in prevention and/or therapy of disorders afflicting the nervous system in hope of expanding the knowledge about the preventive and/or therapeutic effect of icariin in brain disorders.
Collapse
Affiliation(s)
- Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854 New Jersey, United States
| | - Xiaoying Hua
- Department of Pharmacology, Wuxi Ninth People's Hospital, #999 Liangxi Road, Wu xi, Jiangsu 226001, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, Jiangsu 226001, China.
| |
Collapse
|
27
|
Fu X, Li S, Zhou S, Wu Q, Jin F, Shi J. Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. Altern Ther Health Med 2018; 18:34. [PMID: 29378551 PMCID: PMC5789743 DOI: 10.1186/s12906-018-2095-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
Background Icariin (ICA), a major ingredient of Epimediumbrevicornum, has various pharmacological activities including central nervous system protective functions such as the improvement of learning and memory function in mice models of Alzheimer’s disease. It has been reported that ICA can promote regeneration of peripheral nerve and functional recovery. The purpose of this study was to investigate the potentiating effect of ICA on the proliferation of rat hippocampal neural stem cells, and explore the possible mechanism involved. Methods Primary neural stem cells were prepared from the hippocampus of newly born SD rats, and cells were cultured in special stem cell culture medium. Neural stem cells were confirmed by immunofluorescence detection of nestin, NSE and GFAP expression. The effect of ICA on the growth and proliferation of the neural stem cells was evaluated by 5-ethynyl-2-deoxyuridine (EdU) labeling of proliferating cells, and photomicrographic images of the cultured neural stem cells. Further, the mechanism of ICA-induced cell proliferation of neural stem cells was investigated by analyzing the gene and protein expression of cell cycle related genes cyclin D1 and p21. Results The present study showed that icariin promotes the growth and proliferation of neural stem cells from rat hippocampus in a dose-dependent manner. Incubation of cells with icariin resulted in significant increase in the number of stem cell spheres as well as the increased incorporation of EdU when compared with cells exposed to control vehicle. In addition, it was found that icariin-induced effect on neural stem cells is associated with increased mRNA and protein expression of cell cycle genes cyclin D1 and p21. Conclusions This study evidently demonstrates the potentiating effect of ICA on neural stem cell growth and proliferation, which might be mediated through regulation of cell cycle gene and protein expression promoting cell cycle progression. Electronic supplementary material The online version of this article (10.1186/s12906-018-2095-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Changes of brain activity during a functional magnetic resonance imaging stroop task study: Effect of Chinese herbal formula in Alzheimer’s disease. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Icariin Attenuates Synaptic and Cognitive Deficits in an A β1-42-Induced Rat Model of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7464872. [PMID: 29057264 PMCID: PMC5625750 DOI: 10.1155/2017/7464872] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/26/2023]
Abstract
Icariin (ICA), a prenylated flavanol glycoside present in abundant quantities in Epimedium sagittatum, has shown promise in the treatment and prevention of Alzheimer's disease. Damage to synaptic plasticity induced by amyloid-beta-mediated neurotoxicity is considered a main pathological mechanism driving the learning and memory deficits present in patients with Alzheimer's disease. This study investigated the neuroprotective effects of icariin in an Aβ1–42-induced rat model of Alzheimer's disease. Our results showed that Aβ1–42 injection induced loss of learning and memory behaviour in the Morris water maze, which could be reversed with intragastric administration of ICA. Furthermore, ICA reversed decreases in PSD-95, BDNF, pTrkB, pAkt, and pCREB expressions and prevented deterioration of synaptic interface structure. These findings indicate that ICA may improve synaptic plasticity through the BDNF/TrkB/Akt pathway and provide further evidence for its clinical application to improve learning and memory in patients with Alzheimer's disease.
Collapse
|
30
|
Neuroprotective effects of total flavonoid fraction of the Epimedium koreanum Nakai extract on dopaminergic neurons: In vivo and in vitro. Biomed Pharmacother 2017; 91:656-663. [DOI: 10.1016/j.biopha.2017.04.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022] Open
|
31
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
32
|
Chen WF, Wu L, Du ZR, Chen L, Xu AL, Chen XH, Teng JJ, Wong MS. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:93-99. [PMID: 28190476 DOI: 10.1016/j.phymed.2016.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Epimedium sagittatum is a traditional Chinese herb normally which is used to treat the osteoporosis, cardiovascular dysfunction, and to improve neurological and sexual function in China, Korea and Japan. Icariin is the major active ingredient in Epimedium sagittatum. In the present research, we examined the neuroprotective effects of icariin on dopaminergic neurons and the possible mechanisms in a mouse model of Parkinson's disease (PD). METHODS Ovariectomized PD mice were treated with vehicle or icariin (3 days before MPTP injections) with or without the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. The dopamine (DA) content in the striatum was studied by HPLC. Western blot was used to determine the protein expressions of Bcl-2, Bax and Caspase 3 in the striatum. The numbers of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantial nigra pars compacta (SNpc) were assessed by immunohistochemistry. The activation of Akt and ERK by icariin were detected in doparminergic MES23.5 cells. RESULTS Icariin pretreatment could ameliorate the decreased striatum DA content and the loss of TH-IR neurons in the SNpc induced by MPTP. The MPTP-induced changes of Bcl-2, Bax and caspase 3 protein expressions in the striatum could be reversed by icariin pretreatment. Blockade of PI3K/Akt or MEK/ERK signaling pathway by LY294002 or PD98059 could attenuate the increase of DA content in the striatum and TH-IR in the SNpc induced by icariin in PD mice model. Additionally, icariin treatment alone significantly induced the phosphorylation of Akt and ERK in a time dependent pattern in dopaminergic MES 23.5 cells. These effects were abolished by co-treatment with LY294002 or PD98059. CONCLUSION These data demonstrated that icariin has neuroprotective effect on dopaminergic neurons in PD mice model and the potential mechanisms might be related to PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Wen-Fang Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China..
| | - Lin Wu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China.; Department of Physiology, Heze Medical College, Heze 274000, China
| | - Zhong-Rui Du
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Ai-Li Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China.; Department of Physiology, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Han Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Ji-Jun Teng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, PR China
| |
Collapse
|
33
|
Deng Y, Long L, Wang K, Zhou J, Zeng L, He L, Gong Q. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Front Pharmacol 2017; 8:39. [PMID: 28210222 PMCID: PMC5288340 DOI: 10.3389/fphar.2017.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Long Long
- Department of Pharmacy, Zunyi Medical UniversityGuizhou, China
| | - Keke Wang
- Zunyi Medical and Pharmaceutical CollegeGuizhou, China
| | - Jiayin Zhou
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lingrong Zeng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lianzi He
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| |
Collapse
|
34
|
Nie J, Tian Y, Zhang Y, Lu YL, Li LS, Shi JS. Dendrobium alkaloids prevent Aβ 25-35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice. PeerJ 2016; 4:e2739. [PMID: 27994964 PMCID: PMC5157189 DOI: 10.7717/peerj.2739] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer's disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25-35 (Aβ25-35)-induced neuron and synaptic loss in mice. METHOD Aβ25-35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. RESULTS DNLA significantly attenuated Aβ25-35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25-35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. CONCLUSIONS DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice.
Collapse
Affiliation(s)
- Jing Nie
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China
| | - Yong Tian
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Yu Zhang
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Yan-Liu Lu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Li-Sheng Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College , Zunyi , Guizhou Province , China
| | - Jing-Shan Shi
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, Guizhou Province, China
| |
Collapse
|
35
|
Zong N, Li F, Deng Y, Shi J, Jin F, Gong Q. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus. Behav Brain Res 2016; 313:111-119. [DOI: 10.1016/j.bbr.2016.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
36
|
Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, Goh BH. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives. Front Pharmacol 2016; 7:191. [PMID: 27445824 PMCID: PMC4925704 DOI: 10.3389/fphar.2016.00191] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
37
|
Liu J, Liu Z, Zhang Y, Yin F. A novel antagonistic role of natural compound icariin on neurotoxicity of amyloid β peptide. Indian J Med Res 2016; 142:190-5. [PMID: 26354216 PMCID: PMC4613440 DOI: 10.4103/0971-5916.164254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Amyloid β-peptide (Aβ) has been shown to be responsible for senile plaque formation and cell damage in Alzheimer's disease (AD). This study was aimed to explore the role of natural compound icariin on the aggregation and the cytotoxicity of Aβ in vitro. METHODS Thioflavin T (ThT) fluorescence assay and transmission electron microscopy (TEM) imaging were done to determine the influence of icariin on the aggregation of Aβ1-42 peptide. MTT assay was used to evaluate the protective effect of icariin on Aβ1-42 induced cytotoxicity in neuroblastoma SH-SY5Y cells. RESULTS Icariin inhibited Aβ1-42 aggregation in a dose-dependent manner. Additionally, icariin also prevented the cytotoxicity of Aβ1-42 in SH-SY5Y cells by decreasing the production of peroxide hydrogen during the aggregation of this peptide. INTERPRETATION & CONCLUSIONS The results indicated a novel antagonistic role of icariin in the neurotoxicity of Aβ1-42 via inhibiting its aggregation, suggesting that icariin might have potential therapeutic benefits to delay or modify the progression of AD.
Collapse
Affiliation(s)
- Jianhui Liu
- College of Medicine & Bioengineering, Chongqing Technology of University, Chongqing ; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology & Business University, Chongqing, PR China
| | | | | | - Fei Yin
- College of Medicine & Bioengineering, Chongqing Technology of University, Chongqing ; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology & Business University, Chongqing, PR China
| |
Collapse
|
38
|
The Protective Effect of Icariin on Mitochondrial Transport and Distribution in Primary Hippocampal Neurons from 3× Tg-AD Mice. Int J Mol Sci 2016; 17:ijms17020163. [PMID: 26828481 PMCID: PMC4783897 DOI: 10.3390/ijms17020163] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Icariin, a pharmacologically active component isolated from the Chinese herb Epimedium, has been shown to improve spatial learning and memory abilities in Alzheimer's disease (AD) rats through inhibition of Aβ production and tau protein hyperphosphorylation. However, the potential mechanism of icariin-induced protective effects against mitochondrial dysfunctions in AD still remains unclear. In the present study, we investigated the effect of icariin on the modulation of mitochondrial transport and distribution in primary hippocampal cultures from triple-transgenic (3× Tg) AD mice. The results showed that icariin enhanced mitochondrial motility and increased mitochondrial index and mitochondrial length and size in the diseased neurons. Additionally, the expression of the key mitochondrial enzyme, pyruvate dehydrogenase-E1α (PDHE1α), and the post synaptic density protein 95 (PSD95), was preserved in AD neurons after icariin treatment, accompanied by a downregulation of Aβ and phosphorylated tau expression in the corresponding areas. Further study showed that icariin treatment resulted in a decrease in mitochondrial fission protein dynamin-related protein 1 (Drp1) and an increase in fusion protein Mitofusin 2 (Mfn2). These data indicate that icariin can promote mitochondrial transport, protect mitochondria against fragmentation and preserve the expression of mitochondrial and synaptic functional proteins in AD neurons. Thus, icariin may be a potential therapeutic complement for AD and other mitochondrial malfunction-related neuronal degenerative diseases.
Collapse
|
39
|
Cui Z, Sheng Z, Yan X, Cao Z, Tang K. In Silico Insight into Potential Anti-Alzheimer's Disease Mechanisms of Icariin. Int J Mol Sci 2016; 17:ijms17010113. [PMID: 26784184 PMCID: PMC4730354 DOI: 10.3390/ijms17010113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Herbal compounds that have notable therapeutic effect upon Alzheimer's disease (AD) have frequently been found, despite the recent failure of late-stage clinical drugs. Icariin, which is isolated from Epimedium brevicornum, is widely reported to exhibit significant anti-AD effects in in vitro and in vivo studies. However, the molecular mechanism remains thus far unclear. In this work, the anti-AD mechanisms of icariin were investigated at a target network level assisted by an in silico target identification program (INVDOCK). The results suggested that the anti-AD effects of icariin may be contributed by: attenuation of hyperphosphorylation of tau protein, anti-inflammation and regulation of Ca2+ homeostasis. Our results may provide assistance in understanding the molecular mechanism and further developing icariin into promising anti-AD agents.
Collapse
Affiliation(s)
- Zhijie Cui
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhen Sheng
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xinmiao Yan
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Kailin Tang
- Advanced Institute of Translational Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
40
|
Xiong D, Deng Y, Huang B, Yin C, Liu B, Shi J, Gong Q. Icariin attenuates cerebral ischemia-reperfusion injury through inhibition of inflammatory response mediated by NF-κB, PPARα and PPARγ in rats. Int Immunopharmacol 2015; 30:157-162. [PMID: 26679678 DOI: 10.1016/j.intimp.2015.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
Icariin (ICA), an active flavonoid extracted from Chinese medicinal herb Epimedii, has been reported to exhibit many pharmacological effects including alleviating brain injury. However, little is known about the protection of ICA on ischemic stroke. Hence, this study was designed to investigate the neuroprotective effect of ICA and explore its underlying mechanisms on ischemic stroke induced by cerebral ischemia-reperfusion (I/R) injury in rats. The animals were pretreated with ICA at doses of 10, 30mg/kg twice per day for 3 consecutive days followed by cerebral I/R injury induced by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 24h. Neurological function and infarct volume were observed at 24h after reperfusion, the protein expression levels of interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), PPARα and PPARγ, inhibitory κB-α (IκB-α) degradation and nuclear factor κB (NF-κB) p65 phosphorylation were detected by Western blot, respectively. It was found that pretreatment with ICA could decrease neurological deficit score, diminish the infarct volume, and reduce the protein levels of IL-1β and TGF-β1. Moreover, ICA suppressed IκB-α degradation and NF-κB activation induced by I/R. Furthermore, the present study also showed that ICA up-regulated PPARα and PPARγ protein levels. These findings suggest that ICA has neuroprotective effect on ischemic stroke in rats through inhibition of inflammatory responses mediated by NF-κB and PPARα and PPARγ.
Collapse
Affiliation(s)
- Deqing Xiong
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Deng
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bin Huang
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Caixia Yin
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- Department of Pharmacology and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
41
|
Chen YJ, Zheng HY, Huang XX, Han SX, Zhang DS, Ni JZ, He XY. Neuroprotective Effects of Icariin on Brain Metabolism, Mitochondrial Functions, and Cognition in Triple-Transgenic Alzheimer's Disease Mice. CNS Neurosci Ther 2015; 22:63-73. [PMID: 26584824 DOI: 10.1111/cns.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS This study investigated the neuroprotective properties of icariin (an effective component of traditional Chinese herbal medicine Epimedium) on neuronal function and brain energy metabolism maintenance in a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD). METHODS 3 × Tg-AD mice as well as primary neurons were subjected to icariin treatment. Morris water maze assay, magnetic resonance spectroscopy (MRS), Western blotting, ELISA, and immunohistochemistry analysis were used to evaluate the effects of icariin administration. RESULTS Icariin significantly improved spatial learning and memory retention in 3 × Tg-AD mice, promoted neuronal cell activity as identified by the enhancement of brain metabolite N-acetylaspartate level and ATP production in AD mice, preserved the expressions of mitochondrial key enzymes COX IV, PDHE1α, and synaptic protein PSD95, reduced Aβ plaque deposition in the cortex and hippocampus of AD mice, and inhibited β-site APP cleavage enzyme 1 (BACE1) expression. Icariin treatment also decreased the levels of extracellular and intracellular Aβ1-42 in 3 × Tg-AD primary neurons, modulated the distribution of Aβ along the neurites, and protected against mitochondrial fragmentation in 3 × Tg-AD neurons. CONCLUSIONS Icariin shows neuroprotective effects in 3 × Tg-AD mice and may be a promising multitarget drug in the prevention/protection against AD.
Collapse
Affiliation(s)
- Yi-Jing Chen
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Hai-Yang Zheng
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiu-Xian Huang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shuang-Xue Han
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Dong-Sheng Zhang
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Jia-Zuan Ni
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Xiao-Yang He
- College of Life Science, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
42
|
Icariin, a natural flavonol glycoside, extends healthspan in mice. Exp Gerontol 2015; 69:226-35. [DOI: 10.1016/j.exger.2015.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
|
43
|
Zhang Y, Lin C, Zhang L, Cui Y, Gu Y, Guo J, Wu D, Li Q, Song W. Cognitive Improvement during Treatment for Mild Alzheimer's Disease with a Chinese Herbal Formula: A Randomized Controlled Trial. PLoS One 2015; 10:e0130353. [PMID: 26076022 PMCID: PMC4468068 DOI: 10.1371/journal.pone.0130353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES To explore the efficacy of Chinese herbal formula compared with donepezil 5 mg/day in patients with mild Alzheimer's disease (AD). METHODS Patients with mild AD meeting the criteria were randomized into Chinese herbal formula Yishen Huazhuo decoction (YHD) group and donepezil hydrochloride (DH) group during the 24-week trial. The outcomes were measured by ADAS-cog, MMSE, ADL, and NPI with linear mixed-effect models. RESULTS 144 patients were randomized. The mean scores of ADAS-cog and MMSE in both YHD group and DH group both improved at the end of the 24-week treatment period. The results also revealed that YHD was better at improving the mean scores of ADAS-cog and MMSE than DH. Linear mixed-effect models with repeated measures showed statistical significance in time × group interaction effect of ADAS-cog and also in time × group interaction effect of MMSE. The data showed YHD was superior to DH in improving the scores and long term efficacy. CONCLUSIONS Our study suggests that Chinese herbal formula YHD is beneficial and effective for cognitive improvement in patients with mild AD and the mechanism might be through reducing amyloid-β (Aβ) plaque deposition in the hippocampus. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-TRC-12002846.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cuiru Lin
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linlin Zhang
- Department of Geriatric, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanwu Cui
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Gu
- Department of Geriatric, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Tianjin, China
| | - Jiakui Guo
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Wu
- Department of Traditional Chinese Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiang Li
- Graduate Institutes, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanshan Song
- Department of Acupuncture and Cerebropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Li F, Dong HX, Gong QH, Wu Q, Jin F, Shi JS. Icariin decreases both APP and Aβ levels and increases neurogenesis in the brain of Tg2576 mice. Neuroscience 2015; 304:29-35. [PMID: 26079110 DOI: 10.1016/j.neuroscience.2015.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/30/2015] [Accepted: 06/06/2015] [Indexed: 01/13/2023]
Abstract
Icariin is derived most commonly from the traditional Chinese herb Epimedium brevicornum Maxim. Our previous studies have shown that icariin protects neurons from neurotoxic and ischemic conditions. This study aims to investigate the effect of icariin on the expression of amyloid precursor protein (APP) and the level of amyloid-β peptide (Aβ), as well as neurogenesis in the brain of Tg2576 mice, an animal model of Alzheimer's disease (AD). Tg2576 mice and wild-type littermates (WT) were randomized into the following three groups: Tg2576, Tg2576+icariin, and WT groups. All 9-month-old mice were treated with icariin (60mg/kg/d) or distilled water for 3months. Following this, the spatial working memory of Tg2576+icariin mice, as examined in the Y-maze task, was found to improve. Furthermore, reduced levels of insoluble Aβ1-40 (69%) and Aβ1-42 (50%) after icariin treatment were determined in the brain by enzyme-linked immunosorbent assay (ELISA). Western blot analysis indicated the downregulation of APP expression after icariin treatment, and double staining showed an increased number of 5-bromo-2-deoxyuridine (BrdU)/Neuron-specific nuclear protein (NeuN) double-positive cells in the dentate gyrus region of the hippocampus in Tg2576+icariin mice compared with the Tg2576 mice. The current study demonstrated that icariin improved memory function, decreased the levels of Aβ and APP in the brain, and enhanced neurogenesis in the hippocampus of Tg2576 mice. Collectively, these results suggest the potential therapeutic value of icariin in AD.
Collapse
Affiliation(s)
- F Li
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - H X Dong
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Q H Gong
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Q Wu
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - F Jin
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - J S Shi
- Department of Pharmacology and Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
45
|
Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60810-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Gordon RY, Shubina LV, Kapralova MV, Pershina EV, Khutsyan SS, Arkhipov VI. Peculiarities of neurodegeneration of hippocampus fields after the action of kainic acid in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15020066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Li F, Gao B, Dong H, Shi J, Fang D. Icariin induces synoviolin expression through NFE2L1 to protect neurons from ER stress-induced apoptosis. PLoS One 2015; 10:e0119955. [PMID: 25806530 PMCID: PMC4373914 DOI: 10.1371/journal.pone.0119955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/26/2014] [Indexed: 11/19/2022] Open
Abstract
By suppressing neuronal apoptosis, Icariin is a potential therapeutic drug for neuronal degenerative diseases. The molecular mechanisms of Icariin anti-apoptotic functions are still largely unclear. In this report, we found that Icariin induces the expression of Synoviolin, an endoplasmic reticulum (ER)-anchoring E3 ubiquitin ligase that functions as a suppressor of ER stress-induced apoptosis. The nuclear factor erythroid 2-related factor 1 (NFE2L1) is responsible for Icariin-mediated Synoviolin gene expression. Mutation of the NFE2L1-binding sites in a distal region of the Synoviolin promoter abolished Icariin-induced Synoviolin promoter activity, and knockdown of NFE2L1 expression prevented Icariin-stimulated Synoviolin expression. More importantly, Icariin protected ER stress-induced apoptosis of PC12 cells in a Synoviolin-dependent manner. Therefore, our study reveals Icariin-induced Synoviolin expression through NFE2L1 as a previously unappreciated molecular mechanism underlying the neuronal protective function of Icariin.
Collapse
Affiliation(s)
- Fei Li
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
- * E-mail: (FL); (DF)
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical College, Zunyi, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, United States of America
| |
Collapse
|
48
|
Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:235265. [PMID: 25705234 PMCID: PMC4326344 DOI: 10.1155/2015/235265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023]
Abstract
Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer's disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35) induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer's disease.
Collapse
|
49
|
Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 2015; 126:57-68. [PMID: 25634110 DOI: 10.1016/j.lfs.2015.01.006] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/22/2014] [Accepted: 01/10/2015] [Indexed: 12/22/2022]
Abstract
Herba Epimedii is an important medicinal plant which has been used in various traditional Chinese formulations for thousands of years as well as in modern proprietary traditional Chinese medicine products. It has extensive clinical indications, especially for the treatment of sexual dysfunction and osteoporosis. There have been more than 260 chemical moieties identified in the genus Epimedium most of which belong to flavonoids. Icariin is the most abundant constituent in Herba Epimedii. Icariin is pharmacologically bioactive and demonstrates extensive therapeutic capacities such as osteoprotective effect, neuroprotective effect, cardiovascular protective effect, anti-cancer effect, anti-inflammation effect, immunoprotective effect and reproductive function. Particularly, the significant osteogenic effect of icariin made it a promising drug candidate in bone tissue engineering. The current review paper aims to summarize the literatures reporting the pharmacological effects of icariin. The pharmacokinetic properties of bioactive ingredients in Herba Epimedii have also been discussed.
Collapse
Affiliation(s)
- Chenrui Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qibing Mei
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Tingli Lu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
50
|
Lu YF, Xu YY, Jin F, Wu Q, Shi JS, Liu J. Icariin is a PPARα activator inducing lipid metabolic gene expression in mice. Molecules 2014; 19:18179-91. [PMID: 25383754 PMCID: PMC6270773 DOI: 10.3390/molecules191118179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023] Open
Abstract
Icariin is effective in the treatment of hyperlipidemia. To understand the effect of icariin on lipid metabolism, effects of icariin on PPARα and its target genes were investigated. Mice were treated orally with icariin at doses of 0, 100, 200, and 400 mg/kg, or clofibrate (500 mg/kg) for five days. Liver total RNA was isolated and the expressions of PPARα and lipid metabolism genes were examined. PPARα and its marker genes Cyp4a10 and Cyp4a14 were induced 2-4 fold by icariin, and 4-8 fold by clofibrate. The fatty acid (FA) binding and co-activator proteins Fabp1, Fabp4 and Acsl1 were increased 2-fold. The mRNAs of mitochondrial FA β-oxidation enzymes (Cpt1a, Acat1, Acad1 and Hmgcs2) were increased 2-3 fold. The mRNAs of proximal β-oxidation enzymes (Acox1, Ech1, and Ehhadh) were also increased by icariin and clofibrate. The expression of mRNAs for sterol regulatory element-binding factor-1 (Srebf1) and FA synthetase (Fasn) were unaltered by icariin. The lipid lysis genes Lipe and Pnpla2 were increased by icariin and clofibrate. These results indicate that icariin is a novel PPARα agonist, activates lipid metabolism gene expressions in liver, which could be a basis for its lipid-lowering effects and its beneficial effects against diabetes.
Collapse
Affiliation(s)
- Yuan-Fu Lu
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| | - Yun-Yan Xu
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| | - Feng Jin
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| | - Qin Wu
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| | - Jing-Shan Shi
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical College, Zunyi 563003, China.
| |
Collapse
|