1
|
Sun HJ, Ni ZR, Liu Y, Fu X, Liu SY, Hu JY, Sun QY, Li YC, Hou XH, Zhang JR, Zhu XX, Lu QB. Deficiency of neutral cholesterol ester hydrolase 1 (NCEH1) impairs endothelial function in diet-induced diabetic mice. Cardiovasc Diabetol 2024; 23:138. [PMID: 38664801 PMCID: PMC11046792 DOI: 10.1186/s12933-024-02239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Aorta/enzymology
- Aorta/physiopathology
- Aorta/metabolism
- Aorta/drug effects
- Aorta/pathology
- Caveolin 1/metabolism
- Caveolin 1/deficiency
- Caveolin 1/genetics
- Cells, Cultured
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diet, High-Fat
- Endothelial Cells/enzymology
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/enzymology
- Obesity/physiopathology
- Obesity/metabolism
- Signal Transduction
- Sterol Esterase/metabolism
- Sterol Esterase/genetics
- Ubiquitination
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Zhang-Rong Ni
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Xiao Fu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Shi-Yi Liu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Yi Hu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qing-Yi Sun
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yu-Chao Li
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Hui Hou
- Department of Cardiac Ultrasound, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Ji-Ru Zhang
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xue-Xue Zhu
- Department of Physiology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, China.
| |
Collapse
|
2
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
4
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Wu YN, Liao CH, Chen KC, Chiang HS. Dual effect of chitosan activated platelet rich plasma (cPRP) improved erectile function after cavernous nerve injury. J Formos Med Assoc 2021; 121:14-24. [PMID: 33781654 DOI: 10.1016/j.jfma.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The intracavernosal (IC) injection of chitosan activated platelet rich plasma (cPRP) has shown to improve the erectile dysfunction in cavernous nerve injury rat model. However, the action target of PRP in improving neurogenic erectile dysfunction remains unclear. We aimed to determine the effect of cPRP action at early stage that further mediates its effect on erectile function (EF) recovery in the bilateral cavernous nerve crushing (BCNC) injury rat model. METHODS Fifty-four rats were randomly divided into two equal groups: intracavernosal ( IC) injection of saline after BCNC (group 1) and IC injection of cPRP after BCNC (group 2). Five animals in each group were euthanized at 3, 7 and 14 day (d) post-injection, and the tissues were harvested to conduct transmission electron microscopy and histological assays. Six animals in each group were used to determine the recovery of EF at 14 and 28 d post-injury. RESULTS IC injections of cPRP increased all EF parameters at 28 d and 14 d post-injury (p < 0.05). cPRP injections simultaneously prevented the loss of neuronal nitric oxide synthase-positive neurons (p < 0.05) and nerve fibers (p < 0.05) in the major pelvic ganglion and cavernous nerve (CN), respectively, compared with saline injections. This simultaneous accelerated the regeneration of myelinated axons of the CN, reduced apoptosis, and enhanced the proliferation of the corporal smooth muscle cells at an earlier stage. CONCLUSION These results suggest that the application of cPRP was beneficial to restore EF via neuroprotective and tissue-protective effects at early stage.
Collapse
Affiliation(s)
- Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Chiang Chen
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Urology, Cathay General Hospital, Taipei, Taiwan.
| | - Han-Sun Chiang
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Urology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Taguchi K, Tano I, Kaneko N, Matsumoto T, Kobayashi T. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed Pharmacother 2020; 129:110463. [PMID: 32768953 DOI: 10.1016/j.biopha.2020.110463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic vascular complications are associated with endothelial dysfunction. Various plant-derived polyphenols benefit cardiovascular function by protecting endothelial nitric oxide (NO) production through as yet unclear mechanisms. This study compared the effects of two structurally similar polyphenols, Morin (MO) and Quercetin (QU), on endothelial function in isolated aorta from control and streptozotocin (STZ)-induced diabetic mice. Vascular function under treatment with MO, QU, and various signaling pathway modulators was measured by isometric tension in an organ bath system, NO production by chemical assay and HPLC, and changes in protein signaling factor expression or activity by western blotting (WB). Both polyphenols acted as potent vasodilators and this effect was associated with increased phosphorylation of Akt and endothelial NO synthase (eNOS). An Akt inhibitor blocked MO- and QU-induced vasorelaxation as well as Akt phosphorylation. However, inhibitors of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK) suppressed only QU-induced vasorelaxation, NO production, and AMPK phosphorylation. These results suggested that plant polyphenols MO and QU both promote eNOS-mediated NO production and vasodilation in diabetic aorta, MO via Akt pathway activation and QU via PI3K/Akt and AMPK pathway activation. Elucidation of these pathways may define effective therapeutic targets for diabetic vascular dysfunction.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ikumi Tano
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
7
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
8
|
Spontaneous Regeneration of Nerve Fiber and Irreversibility of Corporal Smooth Muscle Fibrosis After Cavernous Nerve Crush Injury: Evidence From Serial Transmission Electron Microscopy and Intracavernous Pressure. Urology 2018; 118:98-106. [DOI: 10.1016/j.urology.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022]
|
9
|
Shamsaldeen YA, Ugur R, Benham CD, Lione LA. Diabetic dyslipidaemia is associated with alterations in eNOS, caveolin-1, and endothelial dysfunction in streptozotocin treated rats. Diabetes Metab Res Rev 2018; 34:e2995. [PMID: 29471582 DOI: 10.1002/dmrr.2995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Diabetes is a complex progressive disease characterized by chronic hyperglycaemia and dyslipidaemia associated with endothelial dysfunction. Oxidized LDL (Ox-LDL) is elevated in diabetes and may contribute to endothelial dysfunction. The aim of this study was to relate the serum levels of Ox-LDL with endothelial dysfunction in streptozotocin (STZ)-diabetic rats and to further explore the changes in endothelial nitric oxide synthase (eNOS) and caveolin-1 (CAV-1) expression in primary aortic endothelial cells. METHODS Diabetes was induced with a single intraperitoneal injection of STZ in male Wistar rats. During the hyperglycaemic diabetes state serum lipid markers, aortic relaxation and aortic endothelial cell eNOS and CAV-1 protein expressions were measured. RESULTS Elevated serum Ox-LDL (STZ 1486 ± 78.1 pg/mL vs control 732.6 ± 160.6 pg/mL, P < .05) was associated with hyperglycaemia (STZ 29 ± 0.9 mmol/L vs control: 7.2 ± 0.2 mmol/L, P < .001) and hypertriglyceridaemia (STZ 9.0 ± 1.5 mmol/L vs control: 3.0 ± 0.3 mmol/L, P < .01) in diabetic rats. A significant reduction was observed in STZ-diabetic aortic endothelial cell eNOS and CAV-1 of 40% and 30%, respectively, accompanied by a compromised STZ-diabetic carbachol-induced vasodilation (STZ 29.6 ± 9.3% vs control 77.2 ± 2.5%, P < .001). CONCLUSIONS The elevated serum Ox-LDL in hyperglycaemic STZ-diabetic rats may contribute to diabetic endothelial dysfunction, possibly through downregulation of endothelial CAV-1 and eNOS.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Rosemary Ugur
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Christopher D Benham
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Lisa A Lione
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| |
Collapse
|
10
|
Effect of Andrographolide on Gene Expression Profile and Intracellular Calcium in Primary Rat Myocardium Microvascular Endothelial Cells. J Cardiovasc Pharmacol 2017; 70:369-381. [DOI: 10.1097/fjc.0000000000000528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Musicki B, Bella AJ, Bivalacqua TJ, Davies KP, DiSanto ME, Gonzalez-Cadavid NF, Hannan JL, Kim NN, Podlasek CA, Wingard CJ, Burnett AL. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction. J Sex Med 2015; 12:2233-55. [PMID: 26646025 DOI: 10.1111/jsm.13069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. AIM This study aims to provide scientific evidence for the link between CVMD and ED. METHODS In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. RESULTS A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). CONCLUSION Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony J Bella
- Division of Urology, Department of Surgery and Department of Neuroscience, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael E DiSanto
- Department of Surgery/Division of Urology, Cooper University Hospital, Camden, NJ, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Peng XL, Qu W, Wang LZ, Huang BQ, Ying CJ, Sun XF, Hao LP. Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation. PLoS One 2014; 9:e113716. [PMID: 25419974 PMCID: PMC4242725 DOI: 10.1371/journal.pone.0113716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation.
Collapse
Affiliation(s)
- Xiao lin Peng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Nanshan Centre for Chronic Disease Control, Shenzhen, PR China
| | - Wei Qu
- Department of Hygiene, College of Basic Sciences, Binzhou Medical University, Yantai, PR China
| | - Lin zhi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bin qing Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chen jiang Ying
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiu fa Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li ping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- * E-mail:
| |
Collapse
|
13
|
Yetik-Anacak G, Sorrentino R, Linder AE, Murat N. Gas what: NO is not the only answer to sexual function. Br J Pharmacol 2014; 172:1434-54. [PMID: 24661203 DOI: 10.1111/bph.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2 S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
Collapse
Affiliation(s)
- G Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | | | | | | |
Collapse
|
14
|
Kubasov IV, Arutyunyan RS, Dobretsov MG, Shpakov AO, Matrosova EV. Effect of insulin on characteristics of contractile responses of fast and slow skeletal muscles of rats with acute streptozotocin-induced diabetes. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BIOMED RESEARCH INTERNATIONAL 2014; 2014:801896. [PMID: 24719887 PMCID: PMC3955677 DOI: 10.1155/2014/801896] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/11/2014] [Indexed: 01/07/2023]
Abstract
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions.
Collapse
Affiliation(s)
- Gaia Favero
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Corrado Paganelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi Fabrizio Rodella
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Rita Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
16
|
Yilmaz D, Bayatli N, Un O, Kadowitz PJ, Sikka SC, Gur S. The Effect of Intracavernosal Avanafil, a Newer Phosphodiesterase-5 Inhibitor, on Neonatal Type 2 Diabetic Rats With Erectile Dysfunction. Urology 2014; 83:508.e7-12. [DOI: 10.1016/j.urology.2013.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
|
17
|
Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013; 62:2318-28. [PMID: 23474486 PMCID: PMC3712061 DOI: 10.2337/db12-1391] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC)β2 is preferably overexpressed in the diabetic myocardium, which induces cardiomyocyte hypertrophy and contributes to diabetic cardiomyopathy, but the underlying mechanisms are incompletely understood. Caveolae are critical in signal transduction of PKC isoforms in cardiomyocytes. Caveolin (Cav)-3, the cardiomyocyte-specific caveolar structural protein isoform, is decreased in the diabetic heart. The current study determined whether PKCβ2 activation affects caveolae and Cav-3 expression. Immunoprecipitation and immunofluorescence analysis revealed that high glucose (HG) increased the association and colocalization of PKCβ2 and Cav-3 in isolated cardiomyocytes. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 small interfering (si)RNA transfection prevented HG-induced PKCβ2 phosphorylation. Inhibition of PKCβ2 activation by compound CGP53353 or knockdown of PKCβ2 expression via siRNA attenuated the reductions of Cav-3 expression and Akt/endothelial nitric oxide synthase (eNOS) phosphorylation in cardiomyocytes exposed to HG. LY333531 treatment (for a duration of 4 weeks) prevented excessive PKCβ2 activation and attenuated cardiac diastolic dysfunction in rats with streptozotocin-induced diabetes. LY333531 suppressed the decreased expression of myocardial NO, Cav-3, phosphorylated (p)-Akt, and p-eNOS and also mitigated the augmentation of O2(-), nitrotyrosine, Cav-1, and iNOS expression. In conclusion, hyperglycemia-induced PKCβ2 activation requires caveolae and is associated with reduced Cav-3 expression in the diabetic heart. Prevention of excessive PKCβ2 activation attenuated cardiac diastolic dysfunction by restoring Cav-3 expression and subsequently rescuing Akt/eNOS/NO signaling.
Collapse
Affiliation(s)
- Shaoqing Lei
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Jinjin Xu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Yanan Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Xia Gao
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Junwen Wang
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Kwok F.J. Ng
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G. Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
- Corresponding author: Zhengyuan Xia,
| |
Collapse
|
18
|
Tian C, Zhang R, Ye X, Zhang C, Jin X, Yamori Y, Hao L, Sun X, Ying C. Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway. GENES AND NUTRITION 2012; 8:231-9. [PMID: 22983702 DOI: 10.1007/s12263-012-0319-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/28/2012] [Indexed: 12/31/2022]
Abstract
Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.
Collapse
Affiliation(s)
- Chong Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kietadisorn R, Juni RP, Moens AL. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 2012; 302:E481-95. [PMID: 22167522 DOI: 10.1152/ajpendo.00540.2011] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury. Therefore, modulating eNOS uncoupling by stabilizing eNOS activity, enhancing its substrate, cofactors, and transcription, and reversing uncoupled eNOS are attractive therapeutic approaches to improve endothelial function. This review provides an extensive overview of the important role of eNOS uncoupling in the pathogenesis of endothelial dysfunction and the potential therapeutic interventions to modulate eNOS for tackling endothelial dysfunction.
Collapse
Affiliation(s)
- Rinrada Kietadisorn
- Maastricht Univ. Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | |
Collapse
|
20
|
Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2011; 2012:750126. [PMID: 22013533 PMCID: PMC3195347 DOI: 10.1155/2012/750126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular complications associated with diabetes remain a significant health issue in westernized societies. Overwhelming evidence from clinical and laboratory investigations have demonstrated that these cardiovascular complications are initiated by a dysfunctional vascular endothelium. Indeed, endothelial dysfunction is one of the key events that occur during diabetes, leading to the acceleration of cardiovascular mortality and morbidity. In a diabetic milieu, endothelial dysfunction occurs as a result of attenuated production of endothelial derived nitric oxide (EDNO) and augmented levels of reactive oxygen species (ROS). Thus, in this review, we discuss novel therapeutic targets that either upregulate EDNO production or increase antioxidant enzyme capacity in an effort to limit oxidative stress and restore endothelial function. In particular, endogenous signaling molecules that positively modulate EDNO synthesis and mimetics of endogenous antioxidant enzymes will be highlighted. Consequently, manipulation of these unique targets, either alone or in combination, may represent a novel strategy to confer vascular protection, with the ultimate goal of improved outcomes for diabetes-associated vascular complications.
Collapse
|
21
|
Elçioğlu HK, Kabasakal L, Özkan N, Çelikel Ç, Ayanoğlu-Dülger G. A study comparing the effects of rosiglitazone and/or insulin treatments on streptozotocin induced diabetic (type I diabetes) rat aorta and cavernous tissues. Eur J Pharmacol 2011; 660:476-84. [DOI: 10.1016/j.ejphar.2011.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/25/2011] [Accepted: 03/21/2011] [Indexed: 12/17/2022]
|
22
|
Doxycycline Ameliorates Vascular Endothelial and Contractile Dysfunction in the Thoracic Aorta of Diabetic Rats. Cardiovasc Toxicol 2011; 11:134-47. [DOI: 10.1007/s12012-011-9107-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|