1
|
Llansola M, Izquierdo-Altarejos P, Montoliu C, Mincheva G, Palomares-Rodriguez A, Pedrosa MA, Arenas YM, Felipo V. Role of peripheral inflammation in minimal hepatic encephalopathy. Metab Brain Dis 2024; 39:1667-1677. [PMID: 39177864 DOI: 10.1007/s11011-024-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Many patients with liver cirrhosis show minimal hepatic encephalopathy (MHE) with mild cognitive impairment (MCI) and motor alterations that reduce their quality of life. Some patients with steatotic liver disease also suffer MCI. To design treatments to improve MHE/MCI it is necessary to understand the mechanisms by which liver disease induce them. This review summarizes studies showing that appearance of MHE/MCI is associated with a shift in the immunophenotype leading to an "autoimmune-like" form with increased pro-inflammatory monocytes, enhanced CD4 T and B lymphocytes activation and increased plasma levels of pro-inflammatory cytokines, including IL-17, IL-21, TNFα, IL-15 and CCL20. The contribution of peripheral inflammation to trigger MHE is supported by studies in animal models and by the fact that rifaximin treatment reverses MHE in around 60% of patients in parallel with reversal of the changes in peripheral inflammation. MHE does not improve in patients in which peripheral inflammation is not improved by rifaximin. The process by which peripheral inflammation induces MHE involves induction of neuroinflammation in brain, with activation of microglia and astrocytes and increased pro-inflammatory TNFα and IL-1β, which is observed in patients who died with steatotic liver disease (SLD) or liver cirrhosis and in animal models of MHE. Neuroinflammation alters glutamatergic and GABAergic neurotransmission, leading to cognitive and motor impairment. Transmission of peripheral alterations into the brain is mediated by infiltration in brain of extracellular vesicles from plasma and of cells from the peripheral immune system. Acting on any step of the process peripheral inflammation - neuroinflammation - altered neurotransmission may improve MHE.
Collapse
Affiliation(s)
- Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Carmina Montoliu
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
- Fundación de Investigación Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - María A Pedrosa
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Departamento de Patología, Facultad de Medicina, Universidad Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
3
|
Fiorucci S, Urbani G, Di Giorgio C, Biagioli M, Distrutti E. Current Landscape and Evolving Therapies for Primary Biliary Cholangitis. Cells 2024; 13:1580. [PMID: 39329760 PMCID: PMC11429758 DOI: 10.3390/cells13181580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Cristina Di Giorgio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, 06123 Perugia, Italy; (G.U.); (C.D.G.); (M.B.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy;
| |
Collapse
|
4
|
Yang W, Guo G, Sun C. Therapeutic potential of rifaximin in liver diseases. Biomed Pharmacother 2024; 178:117283. [PMID: 39126775 DOI: 10.1016/j.biopha.2024.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Rifaximin, derived from rifamycin, is a broad-spectrum antibiotic by inhibiting bacterial RNA synthesis. Rifaximin has a very low intestinal absorption and exerts its antimicrobial activity primarily in the intestinal tract. It regulates the gut microbiota with limited side effects systemically. Rifaximin has been recommended for the treatment of hepatic encephalopathy but some studies shed light on its medicinal effects in many other diseases. For instance, rifaximin may suppress the progression of liver fibrosis and its related complications, and ameliorate metabolic dysfunction-associated steatotic liver disease and alcohol-associated liver disease, etc. Rifaximin can also mediate anti-inflammation, antiproliferation, and proapoptotic events by activating pregnane X receptor, which is efficious in cancers such as colon cancer. In addition, some investigations have shown rifaximin may play a therapeutic role in various autoimmune and neurological disorders. However, these findings still need more real-world practices and in-depth investigations to obtain more precise indications and fully elucidate the multifaceted potentials of rifaximin.
Collapse
Affiliation(s)
- Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, East Street 6, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
5
|
Redfield R, Latt N, Munoz SJ. Minimal Hepatic Encephalopathy. Clin Liver Dis 2024; 28:237-252. [PMID: 38548436 DOI: 10.1016/j.cld.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Minimal hepatic encephalopathy (MHE) is a pervasive frequent complication of cirrhosis of any etiology. The diagnosis of MHE is difficult as the standard neurologic examination is essentially within normal limits. None of the symptoms and signs of overt HE is present in a patient with MHE, such as confusion, disorientation, or asterixis. Progress has been made in diagnostic tools for detection of attention and cognitive deficits at the point of care of MHE. The development of MHE significantly impacts quality of life and activities of daily life in affected patients including driving motor vehicles and machine operation.
Collapse
Affiliation(s)
- Rachel Redfield
- Thomas Jefferson Hospital, Division of Gastroenterology, 132 S. 10th Street, Suite 480, Philadelphia, PA 19106, USA
| | - Nyan Latt
- Virtua Health System, Center for Liver Disease and Transplant Program, 63 Kresson Road, Suite 101, Cherry Hill, NJ 08034, USA
| | - Santiago J Munoz
- The Johns Hopkins University School of Medicine and Medical Institutions, Division of Gastroenterology and Hepatology, 600 N. Wolfe Street, Blalock Building, Suite 465, Baltimore, MD 21287, USA.
| |
Collapse
|
6
|
Zhao T, Zhong G, Wang Y, Cao R, Song S, Li Y, Wan G, Sun H, Huang M, Bi H, Jiang Y. Pregnane X Receptor Activation in Liver Macrophages Protects against Endotoxin-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308771. [PMID: 38477509 PMCID: PMC11109625 DOI: 10.1002/advs.202308771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.
Collapse
Affiliation(s)
- Tingting Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Guoping Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Ying Wang
- Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510006China
| | - Renjie Cao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Shaofei Song
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Guohui Wan
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Haiyan Sun
- School of Food and DrugShenzhen Polytechnic UniversityShenzhen518055China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510006China
| | - Yiming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationSchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
- Institute of Clinical PharmacologySun Yat‐Sen UniversityGuangzhou510006China
| |
Collapse
|
7
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
8
|
Florke Gee RR, Huber AD, Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin Drug Metab Toxicol 2024; 20:9-23. [PMID: 38251638 PMCID: PMC10939797 DOI: 10.1080/17425255.2024.2309212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.
Collapse
Affiliation(s)
- Rebecca R. Florke Gee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrew D. Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Ponziani FR, Coppola G, Rio P, Caldarelli M, Borriello R, Gambassi G, Gasbarrini A, Cianci R. Factors Influencing Microbiota in Modulating Vaccine Immune Response: A Long Way to Go. Vaccines (Basel) 2023; 11:1609. [PMID: 37897011 PMCID: PMC10611107 DOI: 10.3390/vaccines11101609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Vaccine immunogenicity still represents an unmet need in specific populations, such as people from developing countries and "edge populations". Both intrinsic and extrinsic factors, such as the environment, age, and dietary habits, influence cellular and humoral immune responses. The human microbiota represents a potential key to understanding how these factors impact the immune response to vaccination, with its modulation being a potential step to address vaccine immunogenicity. The aim of this narrative review is to explore the intricate interactions between the microbiota and the immune system in response to vaccines, highlighting the state of the art in gut microbiota modulation as a novel therapeutic approach to enhancing vaccine immunogenicity and laying the foundation for future, more solid data for its translation to the clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy (G.C.); (P.R.); (M.C.); (R.B.); (G.G.); (A.G.)
| |
Collapse
|
10
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
11
|
Cheung KCP, Ma J, Loiola RA, Chen X, Jia W. Bile acid-activated receptors in innate and adaptive immunity: targeted drugs and biological agents. Eur J Immunol 2023; 53:e2250299. [PMID: 37172599 DOI: 10.1002/eji.202250299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Bile acid-activated receptors (BARs) such as a G-protein bile acid receptor 1 and the farnesol X receptor are activated by bile acids (BAs) and have been implicated in the regulation of microbiota-host immunity in the intestine. The mechanistic roles of these receptors in immune signaling suggest that they may also influence the development of metabolic disorders. In this perspective, we provide a summary of recent literature describing the main regulatory pathways and mechanisms of BARs and how they affect both innate and adaptive immune system, cell proliferation, and signaling in the context of inflammatory diseases. We also discuss new approaches for therapy and summarize clinical projects on BAs for the treatment of diseases. In parallel, some drugs that are classically used for other therapeutic purposes and BAR activity have recently been proposed as regulators of immune cells phenotype. Another strategy consists of using specific strains of gut bacteria to regulate BA production in the intestine.
Collapse
Affiliation(s)
- Kenneth C P Cheung
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jiao Ma
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Xingxuan Chen
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wei Jia
- Hong Kong Phenome Research Center, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Pandico F, Citarella A, Cammarota S, Bernardi FF, Claar E, Coppola C, Cozzolino M, De Rosa F, Di Gennaro M, Fogliasecca M, Giordana R, Pacella D, Russo A, Salerno V, Scafa L, Trama U. Rifaximin Use, Adherence and Persistence in Patients with Hepatic Encephalopathy: A Real-World Study in the South of Italy. J Clin Med 2023; 12:4515. [PMID: 37445550 DOI: 10.3390/jcm12134515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Real-world data on the therapeutic management of hepatic encephalopathy (HE) patients are limited. The aim of this study was to evaluate the HE medications prescribed in an Italian cohort of HE patients post-discharge and to assess the real-world rifaximin adherence and persistence over 1 year. An observation retrospective study was conducted using data retrieved from outpatient pharmaceutical databases and hospital discharge records of the Campania region. For all subjects hospitalized for HE during 2019 (cohort 1), the HE medications prescribed within 60 days after discharge were evaluated. Adherence (proportion of days covered, PDC) and persistence were estimated for rifaximin 550 mg incident users over 1 year (cohort 2). Patients with PDC ≥80% were considered adherents. Persistence was defined as the period of time from the first rifaximin prescription to the date of discontinuation. Discontinuation was assessed using the permissible gap method. In cohort 1, 544 patients were identified; 58.5% received rifaximin while 15.6% only received non-absorbable disaccharides and 25.9% did not receive any HE medications. In cohort 2, 650 users were selected; only 54.5% were adherents and 35% were persistent users at 1 year. This real-world study highlights that quality improvement in therapeutic management is needed to potentially improve the outcomes of HE patients.
Collapse
Affiliation(s)
- Fulvio Pandico
- Department of Territorial Pharmaceuticals, Local Health Authority of Caserta, 81100 Caserta, Italy
| | - Anna Citarella
- LinkHealth Health Economics, Outcomes & Epidemiology S.R.L., 80143 Naples, Italy
| | - Simona Cammarota
- LinkHealth Health Economics, Outcomes & Epidemiology S.R.L., 80143 Naples, Italy
| | | | - Ernesto Claar
- Internal Medicine and Hepatology Unit, Ospedale Evangelico Betania, 80147 Naples, Italy
| | - Carmine Coppola
- Unit of Hepatology and Interventional Ultrasonography, Department of Internal Medicine, OORR Area Stabiese, 80054 Gragnano, Italy
| | - Marianna Cozzolino
- Department of Territorial Pharmaceuticals, Local Health Authority of Caserta, 81100 Caserta, Italy
| | - Federica De Rosa
- Postgraduate School in Clinical Pharmacology and Toxicology, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimo Di Gennaro
- Innovation and Data Analytics (So.Re.Sa), Campania Region, 80143 Naples, Italy
| | - Marianna Fogliasecca
- LinkHealth Health Economics, Outcomes & Epidemiology S.R.L., 80143 Naples, Italy
| | - Roberta Giordana
- Monitoring of Public Healthcare System (So.Re.Sa), Campania Region, 80143 Naples, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Alessandro Russo
- Monitoring of Public Healthcare System (So.Re.Sa), Campania Region, 80143 Naples, Italy
| | - Vito Salerno
- Monitoring of Public Healthcare System (So.Re.Sa), Campania Region, 80143 Naples, Italy
| | - Luca Scafa
- Monitoring of Public Healthcare System (So.Re.Sa), Campania Region, 80143 Naples, Italy
| | - Ugo Trama
- Regional Pharmaceutical Unit, Campania Region, 80143 Naples, Italy
| |
Collapse
|
13
|
Li S. Modulation of immunity by tryptophan microbial metabolites. Front Nutr 2023; 10:1209613. [PMID: 37521424 PMCID: PMC10382180 DOI: 10.3389/fnut.2023.1209613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/01/2023] Open
Abstract
Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the Microbial Trp metabolic pathways in the gut have recently been extensively studied for their production of bioactive molecules. The gut microbiota plays an important role in host metabolism and immunity, and microbial Trp metabolites can influence the development and progression of various diseases, including inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, and cancer, by mediating the body's immunity. This review briefly outlines the crosstalk between gut microorganisms and Trp metabolism in the body, starting from the three metabolic pathways of Trp. The mechanisms by which microbial Trp metabolites act on organism immunity are summarized, and the potential implications for disease prevention and treatment are highlighted.
Collapse
|
14
|
Airola C, Severino A, Porcari S, Fusco W, Mullish BH, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy. Antibiotics (Basel) 2023; 12:antibiotics12050868. [PMID: 37237771 DOI: 10.3390/antibiotics12050868] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Serena Porcari
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - William Fusco
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London W2 1NY, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol 2023; 21:236-247. [PMID: 36253479 DOI: 10.1038/s41579-022-00805-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 253.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Despite decades of bile acid research, diverse biological roles for bile acids have been discovered recently due to developments in understanding the human microbiota. As additional bacterial enzymes are characterized, and the tools used for identifying new bile acids become increasingly more sensitive, the repertoire of bile acids metabolized and/or synthesized by bacteria continues to grow. Additionally, bile acids impact microbiome community structure and function. In this Review, we highlight how the bile acid pool is manipulated by the gut microbiota, how it is dependent on the metabolic capacity of the bacterial community and how external factors, such as antibiotics and diet, shape bile acid composition. It is increasingly important to understand how bile acid signalling networks are affected in distinct organs where the bile acid composition differs, and how these networks impact infectious, metabolic and neoplastic diseases. These advances have enabled the development of therapeutics that target imbalances in microbiota-associated bile acid profiles.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Health Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Patel AH, Li Y, Minacapelli CD, Catalano K, Rustgi V. Reduction in Gastrointestinal Cancers in Cirrhotic Patients Receiving Rifaximin vs Lactulose Only Therapy for Hepatic Encephalopathy. Cureus 2023; 15:e35259. [PMID: 36974238 PMCID: PMC10039763 DOI: 10.7759/cureus.35259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Background Rifaximin and/or lactulose therapy is widely used in cirrhotic patients for the prevention and treatment of hepatic encephalopathy. The incidence of gastrointestinal cancers in these patients on lactulose, rifaximin, and/or combination therapy is unknown. We investigated the possible effect of lactulose and rifaximin on cancer risk in patients with cirrhosis using the MarketScan database. Methods A retrospective cohort study was conducted using the Truven Health MarketScan Commercial Claims databases from 2007-2017. An index date was defined for each participant as the earliest date of cirrhosis diagnosis. A baseline period for each participant was defined as the 12 months prior to the first medication date while the study follow-up period represented the period from the initiation of the medication to its cessation. ANOVA was used to compare all continuous measures of age and duration of medication. Wald Chi-square tests were performed to test the associations between the study groups. Results A total of 12,409 patients were included in our study. The rifaximin only cohort had the greatest reduction in risk of developing colon cancer, esophageal cancer, and stomach cancer compared to the other groups. Rifaximin reduced the risk of colon cancer and esophageal cancer by 59.42% and 70.37%, respectively, compared to patients taking lactulose only. Patients in the lactulose plus rifaximin cohort had the highest rate of development of pancreatic cancer (lactulose plus rifaximin vs rifaximin only vs lactulose only, 0.45% vs 0.24% vs 0.21%; P < 0.0001) and liver and intrahepatic bile duct cancers (11.73% vs 5.84% vs 5.49%; P < 0.0001). Conclusion Colon, esophageal, and gastric cancers had a marked incidence reduction in the rifaximin only cohort compared to the other cohorts studied.
Collapse
|
17
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
18
|
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients 2022; 15:nu15010151. [PMID: 36615808 PMCID: PMC9824871 DOI: 10.3390/nu15010151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host-microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut-organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer's disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Collapse
|
19
|
Min YW, Rezaie A, Pimentel M. Bile Acid and Gut Microbiota in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:549-561. [PMID: 36250362 PMCID: PMC9577585 DOI: 10.5056/jnm22129] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/18/2023] Open
Abstract
Gut microbiota and their metabolites like bile acid (BA) have been investigated as causes of irritable bowel syndrome (IBS) symptoms. Primary BAs are synthesized and conjugated in the liver and released into the duodenum. BA biotransformation by gut microbiota begins in the intestine and results in production of a broad range of secondary BAs. Deconjugation is considered the gateway reaction for further modification and is mediated by bile salt hydrolase, which is widely expressed by the gut microbiota. However, gut bacteria that convert primary BAs to secondary BAs belong to a limited number of species, mainly Clostridiales. Like gut microbiota modify BA profile, BAs can shape gut microbiota via direct and indirect actions. BAs have prosecretory effects and regulates gut motility. BAs can also affect gut sensitivity. Because of the vital role of the gut microbiota and BAs in gut function, their bidirectional relationship may contribute to the pathophysiology of IBS. Individuals with IBS have been reported to have altered microbial profiles and modified BA profiles. A significant increase in fecal primary BA and a corresponding decrease in secondary BA have been observed in IBS with predominant diarrhea. In addition, primary BA was positively correlated with IBS symptoms. In IBS with predominant diarrhea, bacteria with reduced abundance mainly belonged to the genera in Ruminococcaceae and exhibited a negative correlation with primary BAs. Integrating the analysis of the gut microbiota and BAs could better understanding of IBS pathophysiology. The gap in this field needs to be further filled in the future.
Collapse
Affiliation(s)
- Yang Won Min
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
20
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
21
|
Sun L, Sun Z, Wang Q, Zhang Y, Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front Immunol 2022; 13:969399. [PMID: 36119030 PMCID: PMC9481241 DOI: 10.3389/fimmu.2022.969399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2), a prototypical member of the nuclear receptor superfamily, has been implicated in various processes including metabolism, immune response, and inflammation. The immune system is made up of many interdependent parts, including lymphoid organs, cells, and cytokines, which play important roles in identifying, repelling, and eliminating pathogens and other foreign chemicals. An impaired immune system could contribute to various physical dysfunction, including severe infections, allergic diseases, autoimmune disorders, and other inflammatory diseases. Recent studies revealed the involvement of PXR in the pathogenesis of immune disorders and inflammatory responses. Thus, the aim of this work is to review and discuss the advances in research associated with PXR on immunity and inflammatory diseases and to provide insights into the development of therapeutic interventions of immune disorders and inflammatory diseases by targeting PXR.
Collapse
Affiliation(s)
- Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
22
|
Influence of Gut–Liver Axis on Portal Hypertension in Advanced Chronic Liver Disease: The Gut Microbiome as a New Protagonist in Therapeutic Management. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clinically significant portal hypertension is associated with most complications of advanced chronic liver disease (ACLD), including variceal bleeding, ascites, spontaneous bacterial peritonitis, hepatorenal syndrome, and hepatic encephalopathy. Gut dysbiosis is a hallmark of ACLD with portal hypertension and consists of the overgrowth of potentially pathogenic bacteria and a decrease in autochthonous bacteria; additionally, congestion makes the intestinal barrier more permeable to bacteria and their products, which contributes to the development of complications through inflammatory mechanisms. This review summarizes current knowledge on the role of the gut–liver axis in the pathogenesis of portal hypertension, with a focus on therapies targeting portal hypertension and the gut microbiota. The modulation of the gut microbiota on several levels represents a major challenge in the upcoming years; in-depth characterization of the molecular and microbiological mechanisms linking the gut–liver axis to portal hypertension in a bidirectional relationship could pave the way to the identification of new therapeutic targets for innovative therapies in the management of ACLD.
Collapse
|
23
|
Role of Bile Acids and Nuclear Receptors in Acupuncture in Improving Crohn's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5814048. [PMID: 35600949 PMCID: PMC9122672 DOI: 10.1155/2022/5814048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate the transcription of target genes. Bile acids (BAs) can be used as effector molecules to regulate physiological processes in the gut, and NRs are important receptors for bile acid signaling. Relevant studies have shown that NRs are closely related to the occurrence of Crohn's disease (CD). Although the mechanism of NRs in CD has not been clarified completely, growing evidence shows that NRs play an important role in regulating intestinal immunity, mucosal barrier, and intestinal flora. NRs can participate in the progress of CD by mediating inflammation, immunity, and autophagy. As the important parts of traditional Chinese medicine (TCM) therapy, acupuncture and moxibustion in the treatment of CD curative mechanism can get a lot of research support. At the same time, acupuncture and moxibustion can regulate the changes of related NRs. Therefore, to explore whether acupuncture can regulate BA circulation and NRs expression and then participate in the disease progression of CD, a new theoretical basis for acupuncture treatment of CD is provided.
Collapse
|
24
|
Naphthoquinone derivatives as P-glycoprotein inducers in inflammatory bowel disease: 2D monolayers, 3D spheroids, and in vivo models. Pharmacol Res 2022; 179:106233. [DOI: 10.1016/j.phrs.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022]
|
25
|
Kawaratani H, Kondo Y, Tatsumi R, Kawabe N, Tanabe N, Sakamaki A, Okumoto K, Uchida Y, Endo K, Kawaguchi T, Oikawa T, Ishizu Y, Hige S, Takami T, Terai S, Ueno Y, Mochida S, Takikawa Y, Torimura T, Matsuura T, Ishigami M, Koike K, Yoshiji H. Long-Term Efficacy and Safety of Rifaximin in Japanese Patients with Hepatic Encephalopathy: A Multicenter Retrospective Study. J Clin Med 2022; 11:jcm11061571. [PMID: 35329897 PMCID: PMC8948903 DOI: 10.3390/jcm11061571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Rifaximin is commonly used for hepatic encephalopathy (HE). However, the effects of long-term treatment for Japanese people are limited. Therefore, this study aimed to investigate the effects and safety of long-term treatment with rifaximin on HE. Methods: A total of 215 patients with cirrhosis administered with rifaximin developed overt or covert HE, which was diagnosed by an attending physician for >12 months. Laboratory data were extracted at pretreatment and 3, 6, and 12 months after rifaximin administration. The long-term effect of rifaximin was evaluated, and the incidence of overt HE during 12 months and adverse events was extracted. Results: Ammonia levels were significantly improved after 3 months of rifaximin administration and were continued until 12 months. There were no serious adverse events after rifaximin administration. The number of overt HE incidents was 9, 14, and 27 patients within 3, 6, and 12 months, respectively. Liver enzymes, renal function, and electrolytes did not change after rifaximin administration. Prothrombin activity is a significant risk factor for the occurrence of overt HE. The serum albumin, prothrombin activity, and albumin−bilirubin (ALBI) scores were statistically improved after 3 and 6 months of rifaximin administration. Moreover, the same results were obtained in patients with Child−Pugh C. Conclusions: The long-term rifaximin treatment was effective and safe for patients with HE, including Child−Pugh C.
Collapse
Affiliation(s)
- Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan;
- Correspondence: ; Tel.: +81-744-22-3051 (ext. 3514)
| | - Yasuteru Kondo
- Department of Hepatology, Sendai Kousei Hospital, Sendai 980-0873, Japan;
| | - Ryoji Tatsumi
- Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo 060-0033, Japan; (R.T.); (S.H.)
| | - Naoto Kawabe
- Department of Gastroenterology and Hepatology, Fujita Health University School of Medicine, Aichi 470-1192, Japan;
| | - Norikazu Tanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (N.T.); (T.T.)
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (A.S.); (S.T.)
| | - Kazuo Okumoto
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.O.); (Y.U.)
| | - Yoshihito Uchida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan; (Y.U.); (S.M.)
| | - Kei Endo
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka 028-3694, Japan; (K.E.); (Y.T.)
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.K.); (T.T.)
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (T.O.); (T.M.)
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan; (Y.I.); (M.I.)
| | - Shuhei Hige
- Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo 060-0033, Japan; (R.T.); (S.H.)
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan; (N.T.); (T.T.)
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (A.S.); (S.T.)
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.O.); (Y.U.)
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan; (Y.U.); (S.M.)
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka 028-3694, Japan; (K.E.); (Y.T.)
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.K.); (T.T.)
| | - Tomokazu Matsuura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (T.O.); (T.M.)
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan; (Y.I.); (M.I.)
| | | | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8521, Japan;
| |
Collapse
|
26
|
Kong L, An X, Hu L, Zhang S, Liu L, Zhao S, Wang R, Nan Y. Resveratrol ameliorates nutritional steatohepatitis through the mmu‑miR‑599/PXR pathway. Int J Mol Med 2022; 49:47. [PMID: 35137921 PMCID: PMC8846938 DOI: 10.3892/ijmm.2022.5102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to elucidate the effect of resveratrol on non-alcoholic steatohepatitis (NASH), and the molecular basis in mice and Hepa1-6 cells, in order to verify its therapeutic effect. C57BL/6J mice were fed a methionine-choline-deficient (MCD) diet to induce steatohepatitis and were treated with resveratrol. Mouse sera were collected for biochemical analysis and enzyme-linked immunosorbent assay, and livers were obtained for histological observation, and mmu-microRNA (miR)-599 and inflammation-related gene expression analysis. Hepa1-6 cells were treated with palmitic acid to establish a NASH cell model, and were then treated with resveratrol, or transfected with mmu-miR-599 mimic, mmu-miR-599 inhibitor or recombinant pregnane X receptor (PXR) plasmid. Subsequently, the cells were collected for mmu-miR-599 and inflammation-related gene expression analysis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to assess mmu-miR-599 expression levels, and the mRNA and protein expression levels of PXR and inflammation-related genes. The binding site of mmu-miR-599 in the PXR mRNA was verified by the luciferase activity assay. Mice fed an MCD diet for 4 weeks exhibited steatosis, focal necrosis and inflammatory infiltration in the liver. Resveratrol significantly reduced serum aminotransferase and malondialdehyde levels, and ameliorated hepatic injury. These effects were associated with reduced mmu-miR-599 expression, enhanced PXR expression, and downregulated levels of nuclear factor-κB, tumour necrosis factor-α, interleukin (IL)-1β, IL-6, NOD-like receptor family pyrin domain-containing protein 3 and signal transducer and activator of transcription 3. Administration of the mmu-miR-599 mimic inhibited PXR expression in Hepa1-6 cells, whereas the mmu-miR-599 inhibitor exerted the opposite effect. A binding site for mmu-miR-599 was identified in the PXR mRNA sequence. Furthermore, overexpression of PXR inhibited the expression of inflammatory factors in Hepa1-6 cells. The present study provided evidence for the protective role of resveratrol in ameliorating steatohepatitis through regulating the mmu-miR-599/PXR pathway and the consequent suppression of related inflammatory factors. Resveratrol may serve as a potential candidate for steatohepatitis management.
Collapse
Affiliation(s)
- Lingbo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinyu An
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Lingxi Hu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Siyu Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Lingdi Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Suxian Zhao
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
27
|
Thibaut MM, Bindels LB. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med 2022; 28:223-236. [DOI: 10.1016/j.molmed.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
|
28
|
Fujimoto Y, Kaji K, Nishimura N, Enomoto M, Murata K, Takeda S, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Dual therapy with zinc acetate and rifaximin prevents from ethanol-induced liver fibrosis by maintaining intestinal barrier integrity. World J Gastroenterol 2021; 27:8323-8342. [PMID: 35068872 PMCID: PMC8717023 DOI: 10.3748/wjg.v27.i48.8323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/27/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic overload of gut-derived lipopolysaccharide dictates the progression of alcoholic liver disease (ALD) by inducing oxidative stress and activating Kupffer cells and hepatic stellate cells through toll-like receptor 4 signaling. Therefore, targeting the maintenance of intestinal barrier integrity has attracted attention for the treatment of ALD. Zinc acetate and rifaximin, which is a nonabsorbable antibiotic, had been clinically used for patients with cirrhosis, particularly those with hepatic encephalopathy, and had been known to improve intestinal barrier dysfunction. However, only few studies focused on their efficacies in preventing the ALD-related fibrosis development.
AIM To investigate the effects of a combined zinc acetate with rifaximin on liver fibrosis in a mouse ALD model.
METHODS To induce ALD-related liver fibrosis, female C57BL/6J mice were fed a 2.5% (v/v) ethanol-containing Lieber-DeCarli liquid diet and received intraperitoneal carbon tetrachloride (CCl4) injection twice weekly (1 mL/kg) for 8 wk. Zinc acetate (100 mg/L) and/or rifaximin (100 mg/L) were orally administered during experimental period. Hepatic steatosis, inflammation and fibrosis as well as intestinal barrier function were evaluated by histological and molecular analyses. Moreover, the direct effects of both agents on Caco-2 barrier function were assessed by in vitro assays.
RESULTS In the ethanol plus CCl4-treated mice, combination of zinc acetate and rifaximin attenuated oxidative lipid peroxidation with downregulation of Nox2 and Nox4. This combination significantly inhibited the Kupffer cells expansion and the proinflammatory response with blunted hepatic exposure of lipopolysaccharide and the toll-like receptor 4/nuclear factor kB pathway. Consequently, liver fibrosis and hepatic stellate cells activation were efficiently suppressed with downregulation of Mmp-2, -9, -13, and Timp1. Both agents improved the atrophic changes and permeability in the ileum, with restoration of tight junction proteins (TJPs) by decreasing the expressions of tumor necrosis factor α and myosin light chain kinase. In the in vitro assay, both agents directly reinforced ethanol or lipopolysaccharide-stimulated paracellular permeability and upregulated TJPs in Caco-2 cells.
CONCLUSION Dual therapy with zinc acetate and rifaximin may serve as a strategy to prevent ALD-related fibrosis by maintaining intestinal barrier integrity.
Collapse
Affiliation(s)
- Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara 6348521, Nara, Japan
| |
Collapse
|
29
|
Du L, Qi R, Wang J, Liu Z, Wu Z. Indole-3-Propionic Acid, a Functional Metabolite of Clostridium sporogenes, Promotes Muscle Tissue Development and Reduces Muscle Cell Inflammation. Int J Mol Sci 2021; 22:ijms222212435. [PMID: 34830317 PMCID: PMC8619491 DOI: 10.3390/ijms222212435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridium sporogenes (C. sporogenes), as a potential probiotic, metabolizes tryptophan and produces an anti-inflammatory metabolite, indole-3-propionic acid (IPA). Herein, we studied the effects of C. sporogenes and its bioactive metabolite, IPA, on skeletal muscle development and chronic inflammation in mice. In the in vivo study, the muscle tissues and serum samples of mice with C. sporogenes supplementation were used to analyze the effects of C. sporogenes on muscle metabolism; the IPA content was determined by metabonomics and ELISA. In an in vitro study, C2C12 cells were exposed to lipopolysaccharide (LPS) alone or LPS + IPA to verify the effect of IPA on muscle cell inflammation by transcriptome, and the involved mechanism was revealed by different functional assays. We observed that C. sporogenes colonization significantly increased the body weight and muscle weight gain, as well as the myogenic regulatory factors' (MRFs) expression. In addition, C. sporogenes significantly improved host IPA content and decreased pro-inflammatory cytokine levels in the muscle tissue of mice. Subsequently, we confirmed that IPA promoted C2C12 cells' proliferation by activating MRF signaling. IPA also effectively protected against LPS-induced C2C12 cells inflammation by activating Pregnane X Receptor and restoring the inhibited miR-26a-2-3p expression. miR-26a-2-3p serves as a novel muscle inflammation regulatory factor that could directly bind to the 3'-UTR of IL-1β, a key initiator factor in inflammation. The results suggested that C. sporogenes with its functional metabolite IPA not only helps muscle growth development, but also protects against inflammation, partly by the IPA/ miR-26a-2-3p /IL-1β cascade.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
| | - Renli Qi
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
| | - Jing Wang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
| | - Zuohua Liu
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (R.Q.); (J.W.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-23-4679–2097 (Z.L.); +86-10-6273–1003 (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.L.); (Z.W.); Tel.: +86-23-4679–2097 (Z.L.); +86-10-6273–1003 (Z.W.)
| |
Collapse
|
30
|
Amaldoss MJN, Najar IA, Kumar J, Sharma A. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother 2021; 26:712-729. [PMID: 34760306 DOI: 10.5603/rpor.a2021.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Rifaximin is a non-systemic antibiotic used in the treatment of inflammatory bowel disease (IBD). Antibiotics are demonstrating a significant role in the treatment of IBD by altering the dysbiotic colonic microbiota and decreases the immunogenic and inflammatory response in the patient population. Mucoadhesive colon targeted nanoparticles provide the site-specific delivery and extended stay in the colon. Since the bacteria occupy the lumen, spread over the surface of epithelial cells, and adhere to the mucosa, delivering the rifaximin as a nanoparticles with the mucoadhesive polymer enhances the therapeutic efficacy in IBD. The objective was to fabricate and characterize the rifaximin loaded tamarind gum nanoparticles and study the therapeutic efficacy in the TNBS-induced IBD model rats. Materials and methods The experimentation includes fabrication and characterization of drug excipient compatibility by FTIR. The fabricated nanoparticles were characterized for the hydrodynamic size and zeta potential by photon correlation spectroscopy and also analyzed by TEM. Selected best formulation was subjected to the therapeutic efficacy study in TNBS-induced IBD rats, and the macroscopic, microscopic and biochemical parameters were reported. Results The study demonstrated that the formulation TGN1 is best formulation in terms of nanoparticle characterization and hydrodynamic size which showed the hydrodynamic size of 171.4 nm and the zeta potential of -26.44 mV and other parameters such as TEM and drug release studies were also reported. Conclusions The therapeutic efficacy study revealed that TGN1 is efficiently reduced the IBD inflammatory conditions as compared to the TNBS control group and reference drug mesalamine group.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Swift School of Pharmacy Rajpura, Punjab, India
| | | | | | | |
Collapse
|
31
|
Zhao GP, Wang XY, Li JW, Wang R, Ren FZ, Pang GF, Li YX. Imidacloprid increases intestinal permeability by disrupting tight junctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112476. [PMID: 34214772 DOI: 10.1016/j.ecoenv.2021.112476] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The neonicotinoid pesticide, imidacloprid (IMI), is frequently detected in the environment and in foods. It is absorbed and metabolized by the intestine; however, its effects on intestinal barrier integrity are not well studied. We investigated whether IMI disrupts the permeability of the intestinal epithelial barrier via in vivo tests on male Wistar rats, in vitro assays using the human intestinal epithelial cell line, Caco-2, and in silico analyses. A repeated oral dose 90-day toxicity study was performed (0.06 mg/kg body weight/day). IMI exposure significantly increased intestinal permeability, which led to significantly elevated serum levels of endotoxin and inflammatory biomarkers (tumor necrosis factor-alpha and interleukin-1 beta) without any variation in body weight. Decreased transepithelial electrical resistance with increased permeability was also observed in 100 nM and 100 μM IMI-treated Caco-2 cell monolayers. Amounts of tight junction proteins in IMI-treated colon tissues and between IMI-treated Caco-2 cells were significantly lower than those of controls. Increased levels of myosin light chain phosphorylation, myosin light chain kinase (MLCK), and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) phosphorylation were found in IMI-exposed cells compared with control cells. Furthermore, the barrier loss caused by IMI was rescued by the MLCK inhibitor, ML-7, and cycloheximide. Pregnane X receptor (PXR, NR1I2) was inhibited by low-dose IMI treatment. In silico analysis indicated potent binding sites between PXR and IMI. Together, these data illustrate that IMI induces intestinal epithelial barrier disruption and produces an inflammatory response, involving the down-regulation of tight junctions and disturbance of the PXR-NF-κB p65-MLCK signaling pathway. The intestinal barrier disruption caused by IMI deserves attention in assessing the safety of this neonicotinoid pesticide.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiao-Yu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jin-Wang Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
32
|
Caraceni P, Vargas V, Solà E, Alessandria C, de Wit K, Trebicka J, Angeli P, Mookerjee RP, Durand F, Pose E, Krag A, Bajaj JS, Beuers U, Ginès P, Napoleone L, Carol M, Avitabile E, Thu AM, Cervera M, Pérez M, Belén Rubio‐Garcia A, Ardiaca A, Vives A, Pich J, Fabrellas N, Zaccherini G, Chiappa MT, Jiménez C, Palacio E, Campion D, Lanzillotti T, Piano S, Nicolao G, Uschner F, Graf_Dirmeier S, Francoz C, Roux O, Esnault V, Helder J, Aban M, Kazankov K, Korenjak M, Kamath P, Abraldes JG, Watson H. The Use of Rifaximin in Patients With Cirrhosis. Hepatology 2021; 74:1660-1673. [PMID: 33421158 PMCID: PMC8518409 DOI: 10.1002/hep.31708] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Rifaximin is an oral nonsystemic antibiotic with minimal gastrointestinal absorption and broad-spectrum antibacterial activity covering both gram-positive and gram-negative organisms. Rifaximin is currently used worldwide in patients with cirrhosis for preventing recurrent HE because its efficacy and safety have been proven by large randomized clinical trials. In the last decade, experimental and clinical evidence suggest that rifaximin could have other beneficial effects on the course of cirrhosis by modulating the gut microbiome and affecting the gut-liver axis, which in turn can interfere with major events of the pathophysiological cascade underlying decompensated cirrhosis, such as systemic inflammatory syndrome, portal hypertension, and bacterial infections. However, the use of rifaximin for prevention or treatment of other complications, including spontaneous bacterial peritonitis or other bacterial infections, is not accepted because evidence by clinical trials is still very weak. The present review deals in the first part with the potential impact of rifaximin on pathogenic mechanisms in liver diseases, whereas in the second part, its clinical effects are critically discussed. It clearly emerges that, because of its potential activity on multiple pathogenic events, the efficacy of rifaximin in the prevention or management of complications other than HE deserves to be investigated extensively. The results of double-blinded, adequately powered randomized clinical trials assessing the effect of rifaximin, alone or in combination with other drugs, on hard clinical endpoints, such as decompensation of cirrhosis, acute-on-chronic liver failure, and mortality, are therefore eagerly awaited.
Collapse
Affiliation(s)
- Paolo Caraceni
- University of BolognaUniversity Hospital S. Orsola‐Malpighi di BolognaBolognaItaly
| | - Victor Vargas
- Hospital Vall d’HebronUniversitat Autònoma de BarcelonaCIEREHDBarcelonaCataloniaSpain
| | - Elsa Solà
- Hospital Clinic of BarcelonaUniversity of BarcelonaIDIBAPSCIBEReHDBarcelonaCataloniaSpain
| | - Carlo Alessandria
- Division of Gastroenterology and HepatologyCittà della Salute e della Scienza HospitalUniversity of TorinoTurinItaly
| | - Koos de Wit
- Amsterdam University Medical CentersAmsterdamthe Netherlands
| | - Jonel Trebicka
- Goethe‐University ‐ Frankfurt am MainFrankfurt am MainGermany,EF‐CLIFBarcelonaCataloniaSpain
| | | | | | | | - Elisa Pose
- Hospital Clinic of BarcelonaUniversity of BarcelonaIDIBAPSCIBEReHDBarcelonaCataloniaSpain
| | - Aleksander Krag
- Department of Gastroenterology and HepatologyOdense University HospitalOdenseDenmark,Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | | | - Ulrich Beuers
- Amsterdam University Medical CentersAmsterdamthe Netherlands
| | - Pere Ginès
- Hospital Clinic of BarcelonaUniversity of BarcelonaIDIBAPSCIBEReHDBarcelonaCataloniaSpain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bromke MA, Krzystek-Korpacka M. Bile Acid Signaling in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:9096. [PMID: 34445800 PMCID: PMC8396648 DOI: 10.3390/ijms22169096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a chronic, idiopathic and complex condition, which most often manifests itself in the form of ulcerative colitis or Crohn's disease. Both forms are associated with dysregulation of the mucosal immune system, compromised intestinal epithelial barrier, and dysbiosis of the gut microbiome. It has been observed for a long time that bile acids are involved in inflammatory disorders, and recent studies show their significant physiological role, reaching far beyond being emulsifiers helping in digestion of lipids. Bile acids are also signaling molecules, which act, among other things, on lipid metabolism and immune responses, through several nuclear and membrane receptors in hepatocytes, enterocytes and cells of the immune system. Gut microbiota homeostasis also seems to be affected, directly and indirectly, by bile acid metabolism and signaling. This review summarizes recent advances in the field of bile acid signaling, studies of inflamed gut microbiome, and the therapeutic potential of bile acids in the context of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | | |
Collapse
|
34
|
Stewart C, Jang T, Mo G, Mohamed N, Poplawska M, Egini O, Dutta D, Lim SH. Antibiotics to modify sickle cell disease vaso-occlusive crisis? Blood Rev 2021; 50:100867. [PMID: 34304939 DOI: 10.1016/j.blre.2021.100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Despite the availability of hydroxyurea, the clinical use of the medication among patients with sickle cell disease (SCD) remains low in the United States. Given the high healthcare utilization cost, SCD requires new therapeutic approaches. Recent studies demonstrated bacterial overgrowth and dysbiosis-related intestinal pathophysiological changes in SCD. Intestinal microbes regulate neutrophil ageing. Aged and activated neutrophils contribute to the pathogenesis of vaso-occlusive crisis (VOC) in SCD. In this paper, we will review the pre-clinical and clinical data on how antibiotics might reduce the intestinal microbial density and influence the course of VOC. Based on these observations, we will discuss rationales for and potential challenges to antibiotic-based therapeutic approaches that may modify the clinical course of VOC in SCD.
Collapse
Affiliation(s)
- Connor Stewart
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Tim Jang
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - George Mo
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Nader Mohamed
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Ogechukwu Egini
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| |
Collapse
|
35
|
Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021; 14:17562848211018098. [PMID: 34104213 PMCID: PMC8165529 DOI: 10.1177/17562848211018098] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Xiang Gao
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | | |
Collapse
|
36
|
Marafini I, Salvatori S, Rocchetti I, Alfieri N, Scarozza P, Calabrese E, Biancone L, Monteleone G. Natural History of Ulcerative Colitis with Coexistent Colonic Diverticulosis. J Clin Med 2021; 10:jcm10061192. [PMID: 33809208 PMCID: PMC8001479 DOI: 10.3390/jcm10061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ulcerative colitis (UC) and colonic diverticulosis can co-exist in some patients. However, the natural history of UC associated with colonic diverticulosis is not well known. We here compared the disease characteristics and outcome of UC patients with and without concomitant colonic diverticulosis. Medical records of 347 UC patients were included in an observational, retrospective, nested-matched case-control study. Cases were 92 patients with UC and concomitant colonic diverticulosis, while controls were 255 UC patients without concomitant colonic diverticulosis. A propensity score matching (PSM) was used to homogenate cases (n = 92) and controls (n = 153) for age. UC patients with concomitant colonic diverticulosis were less likely to have an extensive disease (25/92, 27.1%) and to experience steroid dependence (8/92, 8.6%) compared to patients without concomitant colonic diverticulosis (70/153, 45.7% and 48/153, 31.3%, respectively; p < 0.001). The use of immunosuppressants (9/92, 9.7% vs. 37/153, 24.1%; p = 0.007) or biologics (3/92, 3.2% vs. 26/153, 16.9%, p < 0.001) was significantly lower in UC patients with concomitant diverticulosis compared to the control group. On multivariate analysis, steroid dependence and extensive colitis were significantly less frequent in UC patients with concomitant colonic diverticulosis compared to UC patients without diverticula. UC patients with coexisting colonic diverticulosis are less likely to have an extensive disease and to be steroid-dependent.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Silvia Salvatori
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Irene Rocchetti
- Statistical Office, Superior Council of Judiciary, 00185 Rome, Italy;
| | - Norma Alfieri
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Patrizio Scarozza
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Emma Calabrese
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Livia Biancone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
| | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (I.M.); (S.S.); (N.A.); (P.S.); (E.C.); (L.B.)
- Correspondence: ; Tel.: +39-06-20903702
| |
Collapse
|
37
|
Bioinformatis analysis reveals possible molecular mechanism of PXR on regulating ulcerative colitis. Sci Rep 2021; 11:5428. [PMID: 33686088 PMCID: PMC7940411 DOI: 10.1038/s41598-021-83742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease of the gastrointestinal (GI) tract. Ulcerative colitis (UC) is a type of IBD. Pregnane X Receptor (PXR) is a member of the nuclear receptor superfamily. In order to deepen understanding and exploration of the molecular mechanism of regulation roles of PXR on UC, biological informatics analysis was performed. First, 878 overlapping differentially expressed genes (DEGs) between UC and normal samples were obtained from the Gene Expression Omnibus (GEO) database (GSE59071 and GSE38713) by using the "limma" R language package. Then WGCNA analysis was performed by 878 DEGs to obtain co-expression modules that were positively and negatively correlated with clinical traits. GSEA analysis of PXR results obtained the signal pathways enriched in the PXR high and low expression group and the active genes of each signal pathway. Then the association of PXR with genes that are both active in high expression group and negatively related to diseases (gene set 1), or both active in low expression group and negatively related to diseases (gene set 2) was analyzed by String database. Finally, carboxylesterase 2 (CES2), ATP binding cassette subfamily G member 2 (ABCG2), phosphoenolpyruvate carboxykinase (PCK1), PPARG coactivator 1 alpha (PPARGC1A), cytochrome P450 family 2 subfamily B member 6 (CYP2B6) from gene set 1 and C-X-C motif chemokine ligand 8 (CXCL8) from gene set 2 were screened out. After the above analysis and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) verification, we speculated that PXR may exert a protective role on UC by promoting CES2, ABCG2, PCK1, PPARGC1A, CYP2B6 expression and inhibiting CXCL8 expression in their corresponding signal pathway in intestinal tissue.
Collapse
|
38
|
Abstract
Bile acids are a group of chemically different steroids generated at the host/microbial interface. Indeed, while primary bile acids are the end-product of cholesterol breakdown in the host liver, secondary bile acids are the products of microbial metabolism. Primary and secondary bile acids along with their oxo derivatives have been identified as signaling molecules acting on a family of cell membrane and nuclear receptors collectively known as "bile acid-activated receptors." Members of this group of receptors are highly expressed throughout the gastrointestinal tract and mediate the bilateral communications of the intestinal microbiota with the host immune system. The expression and function of bile acid-activated receptors FXR, GPBAR1, PXR, VDR, and RORγt are highly dependent on the structure of the intestinal microbiota and negatively regulated by intestinal inflammation. Studies from gene ablated mice have demonstrated that FXR and GPBAR1 are essential to maintain a tolerogenic phenotype in the intestine, and their ablation promotes the polarization of intestinal T cells and macrophages toward a pro-inflammatory phenotype. RORγt inhibition by oxo-bile acids is essential to constrain Th17 polarization of intestinal lymphocytes. Gene-wide association studies and functional characterizations suggest a potential role for impaired bile acid signaling in development inflammatory bowel diseases (IBD). In this review, we will focus on how bile acids and their receptors mediate communications of intestinal microbiota with the intestinal immune system, describing dynamic changes of bile acid metabolism in IBD and the potential therapeutic application of targeting bile acid signaling in these disorders.
Collapse
|
39
|
de Wit K, Schaapman JJ, Nevens F, Verbeek J, Coenen S, Cuperus FJC, Kramer M, Tjwa ETTL, Mostafavi N, Dijkgraaf MGW, van Delden OM, Beuers UHW, Coenraad MJ, Takkenberg RB. Prevention of hepatic encephalopathy by administration of rifaximin and lactulose in patients with liver cirrhosis undergoing placement of a transjugular intrahepatic portosystemic shunt (TIPS): a multicentre randomised, double blind, placebo controlled trial (PEARL trial). BMJ Open Gastroenterol 2020; 7:e000531. [PMID: 33372103 PMCID: PMC7783616 DOI: 10.1136/bmjgast-2020-000531] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cirrhotic patients with portal hypertension can suffer from variceal bleeding or refractory ascites and can benefit from a transjugular intrahepatic portosystemic shunt (TIPS). Post-TIPS hepatic encephalopathy (HE) is a common (20%-54%) and often severe complication. A prophylactic strategy is lacking. METHODS AND ANALYSIS The Prevention of hepatic Encephalopathy by Administration of Rifaximin and Lactulose in patients with liver cirrhosis undergoing placement of a TIPS (PEARL) trial, is a multicentre randomised, double blind, placebo controlled trial. Patients undergoing covered TIPS placement are prescribed either rifaximin 550 mg two times per day and lactulose 25 mL two times per day (starting dose) or placebo 550 mg two times per day and lactulose 25 mL two times per day from 72 hours before and until 3 months after TIPS placement. Primary endpoint is the development of overt HE (OHE) within 3 months (according to West Haven criteria). Secondary endpoints include 90-day mortality; development of a second episode of OHE; time to development of episode(s) of OHE; development of minimal HE; molecular changes in peripheral and portal blood samples; quality of life and cost-effectiveness. The total sample size is 238 patients and recruitment period is 3 years in six hospitals in the Netherlands and one in Belgium. ETHICS AND DISSEMINATION This study protocol was approved in the Netherlands by the Medical Research Ethics Committee of the Academic Medical Centre, Amsterdam (2018-332), in Belgium by the Ethics Committee Research UZ/KU Leuven (S62577) and competent authorities. This study will be conducted in accordance with Good Clinical Practice guidelines and the principles of the Declaration of Helsinki. Study results will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBERS ClinicalTrials.gov (NCT04073290) and EudraCT database (2018-004323-37).
Collapse
Affiliation(s)
- K de Wit
- Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - J J Schaapman
- Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - F Nevens
- Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - J Verbeek
- Gastroenterology and Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - S Coenen
- Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - F J C Cuperus
- Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - M Kramer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E T T L Tjwa
- Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N Mostafavi
- Biostatistics Unit, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - M G W Dijkgraaf
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - O M van Delden
- Interventional Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - U H W Beuers
- Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - M J Coenraad
- Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R B Takkenberg
- Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Gu Z, Duan M, Sun Y, Leng T, Xu T, Gu Y, Gu Z, Lin Z, Yang L, Ji M. Effects of Vitamin D3 on Intestinal Flora in a Mouse Model of Inflammatory Bowel Disease Treated with Rifaximin. Med Sci Monit 2020; 26:e925068. [PMID: 33177483 PMCID: PMC7670830 DOI: 10.12659/msm.925068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rifaximin is an antimicrobial agent used to treat inflammatory bowel disease (IBD). Vitamin D3 can control IBD due to its effects on inflammatory cytokines. The purpose of this study was to assess the effect of vitamin D3 on the intestinal flora of a dextran sulfate sodium (DSS)-induced mouse model treated with rifaximin. MATERIAL AND METHODS The mouse model of IBD was developed using DSS (4%) administered via the drinking water. Twenty-four male C57BL6 mice were divided into the control group with a normal diet (N=6), the DSS group with a normal diet (N=6), the DSS group with a normal diet treated with rifaximin (N=6), and the DSS group with a normal diet treated with rifaximin and vitamin D3 (N=6). After 14 days, the colonic tissue was studied histologically. Serum levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1ß (IL-1ß) and enzyme-linked immunosorbent assay (ELISA) were used to measure the level of IL-6 and P65, and phospho-p65 was measured by western blot. 16S rRNA gene sequencing was used to analyze fecal samples. RESULTS In the DSS mouse model of IBD, rifaximin reduced the inflammation severity of the colon and reduced the expression of phospho-p65, p65, TNF-alpha, and IL-6. In the DSS+rifaximin+vitamin D3 group, the therapeutic influences of rifaximin, in terms of weight loss and colonic disease activity, were significantly reduced, and the gut microbiota of the mice were completely changed in composition and diversity. CONCLUSIONS In a mouse model of IBD, treatment with vitamin D3 significantly increased the metabolism of rifaximin and reduced its therapeutic effects.
Collapse
Affiliation(s)
- Zijun Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Mingxiu Duan
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yan Sun
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Tian Leng
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yang Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zejuan Gu
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zheng Lin
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lu Yang
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
41
|
Okamura M, Shizu R, Abe T, Kodama S, Hosaka T, Sasaki T, Yoshinari K. PXR Functionally Interacts with NF-κB and AP-1 to Downregulate the Inflammation-Induced Expression of Chemokine CXCL2 in Mice. Cells 2020; 9:cells9102296. [PMID: 33076328 PMCID: PMC7602528 DOI: 10.3390/cells9102296] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a liver-enriched xenobiotic-responsive transcription factor. Although recent studies suggest that PXR shows anti-inflammatory effects by suppressing nuclear factor kappa B (NF-κB), the detailed mechanism remains unclear. In this study, we aimed to elucidate this mechanism. Mice were treated intraperitoneally with the PXR agonist pregnenolone 16α-carbonitrile (PCN) and/or carbon tetrachloride (CCl4). Liver injury was evaluated, and hepatic mRNA levels were determined via quantitative reverse transcription polymerase chain reaction. Reporter assays with wild-type and mutated mouse Cxcl2 promoter-containing reporter plasmids were conducted in 293T cells. Results showed that the hepatic expression of inflammation-related genes was upregulated in CCl4-treated mice, and PCN treatment repressed the induced expression of chemokine-encoding Ccl2 and Cxcl2 among the genes investigated. Consistently, PCN treatment suppressed the increased plasma transaminase activity and neutrophil infiltration in the liver. In reporter assays, tumor necrosis factor-α-induced Cxcl2 expression was suppressed by PXR. Although an NF-κB inhibitor or the mutation of an NF-κB-binding motif partly reduced PXR-dependent suppression, the mutation of both NF-κB and activator protein 1 (AP-1) sites abolished it. Consistently, AP-1-dependent gene transcription was suppressed by PXR with a construct containing AP-1 binding motifs. In conclusion, the present results suggest that PXR exerts anti-inflammatory effects by suppressing both NF-κB- and AP-1-dependent chemokine expression in mouse liver.
Collapse
Affiliation(s)
- Maya Okamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taiki Abe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
42
|
Fujinaga Y, Kawaratani H, Kaya D, Tsuji Y, Ozutsumi T, Furukawa M, Kitagawa K, Sato S, Nishimura N, Sawada Y, Takaya H, Kaji K, Shimozato N, Moriya K, Namisaki T, Akahane T, Mitoro A, Yoshiji H. Effective Combination Therapy of Angiotensin-II Receptor Blocker and Rifaximin for Hepatic Fibrosis in Rat Model of Nonalcoholic Steatohepatitis. Int J Mol Sci 2020; 21:ijms21155589. [PMID: 32759852 PMCID: PMC7432739 DOI: 10.3390/ijms21155589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
The progression of nonalcoholic steatohepatitis (NASH) is complicated. The multiple parallel-hits theory is advocated, which includes adipocytokines, insulin resistance, endotoxins, and oxidative stress. Pathways involving the gut–liver axis also mediate the progression of NASH. Angiotensin-II receptor blockers (ARB) suppress hepatic fibrosis via the activation of hepatic stellate cells (HSCs). Rifaximin, a nonabsorbable antibacterial agent, is used for the treatment of hepatic encephalopathy and has been recently reported to improve intestinal permeability. We examined the inhibitory effects on and mechanism of hepatic fibrogenesis by combining ARB and rifaximin administration. Fischer 344 rats were fed a choline-deficient/l-amino acid-defined (CDAA) diet for 8 weeks to generate the NASH model. The therapeutic effect of combining an ARB and rifaximin was evaluated along with hepatic fibrogenesis, the lipopolysaccharide–Toll-like receptor 4 (TLR4) regulatory cascade, and intestinal barrier function. ARBs had a potent inhibitory effect on hepatic fibrogenesis by suppressing HSC activation and hepatic expression of transforming growth factor-β and TLR4. Rifaximin reduced intestinal permeability by rescuing zonula occludens-1 (ZO-1) disruption induced by the CDAA diet and reduced portal endotoxin. Rifaximin directly affect to ZO-1 expression on intestinal epithelial cells. The combination of an ARB and rifaximin showed a stronger inhibitory effect compared to that conferred by a single agent. ARBs improve hepatic fibrosis by inhibiting HSCs, whereas rifaximin improves hepatic fibrosis by improving intestinal permeability through improving intestinal tight junction proteins (ZO-1). Therefore, the combination of ARBs and rifaximin may be a promising therapy for NASH fibrosis.
Collapse
|
43
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
44
|
The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments. Int J Mol Sci 2020; 21:ijms21082773. [PMID: 32316313 PMCID: PMC7215415 DOI: 10.3390/ijms21082773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological treatment of colorectal carcinoma currently proceeds through the administration of a combination of different chemotherapeutic agents. In the case of rectal carcinoma, radiation therapy also represents a therapeutic strategy. In an attempt at translating much-needed new targeted therapy to the clinics, p38 mitogen activated protein kinase (MAPK) inhibitors have been tested in clinical trials involving colorectal carcinoma patients, especially in combination with chemotherapy; however, despite the high expectations raised by a clear involvement of the p38 MAPK pathway in the response to therapeutic treatments, poor results have been obtained so far. In this work, we review recent insights into the exact role of the p38 MAPK pathway in response to currently available therapies for colorectal carcinoma, depicting an intricate scenario in which the p38 MAPK node presents many opportunities, as well as many challenges, for its perspective exploitation for clinical purposes.
Collapse
|
45
|
Chey WD, Shah ED, DuPont HL. Mechanism of action and therapeutic benefit of rifaximin in patients with irritable bowel syndrome: a narrative review. Therap Adv Gastroenterol 2020; 13:1756284819897531. [PMID: 32047534 PMCID: PMC6984424 DOI: 10.1177/1756284819897531] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a multifactorial pathophysiology. The gut microbiota differs between patients with IBS and healthy individuals. After a bout of acute gastroenteritis, postinfection IBS may result in up to approximately 10% of those affected. Small intestinal bacterial overgrowth (SIBO) is more common in patients with IBS than in healthy individuals, and eradication of SIBO with systemic antibiotics has decreased symptoms of IBS in some patients with IBS and SIBO. The nonsystemic (i.e. low oral bioavailability) antibiotic rifaximin is indicated in the United States and Canada for the treatment of adults with IBS with diarrhea (IBS-D). The efficacy and safety of 2-week single and repeat courses of rifaximin have been demonstrated in randomized, placebo-controlled studies of adults with IBS. Rifaximin is widely thought to exert its beneficial clinical effects in IBS-D through manipulation of the gut microbiota. However, current studies indicate that rifaximin induces only modest effects on the gut microbiota of patients with IBS-D, suggesting that the efficacy of rifaximin may involve other mechanisms. Indeed, preclinical data reveal a potential role for rifaximin in the modulation of inflammatory cytokines and intestinal permeability, but these two findings have not yet been examined in the context of clinical studies. The mechanism of action of rifaximin in IBS is likely multifactorial, and further study is needed.
Collapse
Affiliation(s)
- William D. Chey
- Department of Nutrition Sciences, Division of Gastroenterology, Michigan Medicine, 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA
| | - Eric D. Shah
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences and Center for Infectious Diseases, University of Texas School of Public Health, Houston, TX, USA
- Mary W. Kelsey Chair in Medical Sciences, Division of Internal Medicine, University of Texas McGovern Medical School Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
| |
Collapse
|
46
|
Lv XY, Ding HG, Zheng JF, Fan CL, Li L. Rifaximin improves survival in cirrhotic patients with refractory ascites: A real-world study. World J Gastroenterol 2020; 26:199-218. [PMID: 31988585 PMCID: PMC6962437 DOI: 10.3748/wjg.v26.i2.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rifaximin has been shown to reduce the incidence of hepatic encephalopathy and other complications in patients with cirrhosis. However, few studies have investigated the effect of rifaximin in cirrhotic patients with refractory ascites.
AIM To evaluate the effects of rifaximin in the treatment of refractory ascites and to preliminarily explore its possible mechanism.
METHODS A total of 75 cirrhotic patients with refractory ascites were enrolled in the study (50 in a rifaximin and 25 in a control group). Patients in the rifaximin group were divided into two subgroups according to the presence of spontaneous bacterial peritonitis and treatment with or without other antibiotics (19 patients treated with rifaximin and 31 patients treated with rifaximin plus intravenous antibiotics). All patients received conventional treatment for refractory ascites, while patients in the rifaximin group received oral rifaximin-α 200 mg four times daily for at least 2 wk. The ascites grade, fasting weight, liver and kidney function, and inflammatory factors in the plasma were evaluated before and after treatment. In addition, the gut microbiota was determined by metagenomics sequencing to analyse the changes in the characteristics of the gut microbiota before and after rifaximin treatment. The patients were followed for 6 mo.
RESULTS Compared with the control group, the fasting weight of patients significantly decreased and the ascites significantly subsided after treatment with rifaximin (P = 0.011 and 0.009, respectively). The 6-mo survival rate of patients in the rifaximin group was significantly higher than that in the control group (P = 0.048). The concentration of interferon-inducible protein 10 decreased significantly in the rifaximin group compared with that in the control group (P = 0.024). The abundance of Roseburia, Haemophilus, and Prevotella was significantly reduced after rifaximin treatment, while the abundance of Lachnospiraceae_noname, Subdoligranulum, and Dorea decreased and the abundance of Coprobacillus increased after treatment with rifaximin plus intravenous antibiotics. The gene expression of virulence factors was significantly reduced after treatment in both subgroups treated with rifaximin or rifaximin plus intravenous antibiotics.
CONCLUSION Rifaximin mitigates ascites and improves survival of cirrhotic patients with refractory ascites. A possible mechanism is that rifaximin regulates the structure and function of intestinal bacteria, thus improving the systemic inflammatory state.
Collapse
Affiliation(s)
- Xin-Yue Lv
- Department of Gastroenterology and Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Hui-Guo Ding
- Department of Gastroenterology and Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Jun-Fu Zheng
- Department of Gastroenterology and Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Chun-Lei Fan
- Department of Gastroenterology and Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Lei Li
- Department of Gastroenterology and Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
47
|
Current US Food and Drug Administration-Approved Pharmacologic Therapies for the Treatment of Irritable Bowel Syndrome with Diarrhea. Adv Ther 2020; 37:83-96. [PMID: 31707713 DOI: 10.1007/s12325-019-01116-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by abdominal pain and alterations in stool form and/or frequency, leading to reduced quality of life. Pharmacologic agents currently approved by the US Food and Drug Administration for treatment of IBS with diarrhea (IBS-D) in adults are the nonsystemic antibiotic rifaximin, the mixed µ- and κ-opioid receptor agonist/δ-opioid antagonist eluxadoline, and the selective serotonin 5-HT3 antagonist alosetron (the last of which is indicated only in women with severe IBS-D refractory to conventional therapy). Both eluxadoline and alosetron are administered as chronic daily therapies; rifaximin is given as a 2-week course of treatment with repeat courses administered as needed for symptom recurrence. Presumed mechanisms of action of rifaximin include modulation of the gut microbiota, anti-inflammatory activity, normalization of visceral hypersensitivity, and reduction in intestinal permeability. Eluxadoline targets opioid receptors in the gastrointestinal (GI) tract, resulting in decreased GI motility, fluid secretion, and visceral pain perception. Alosetron antagonizes serotonergic afferent neural signals and also slows GI motility. The efficacy and safety of these agents have been investigated in several rigorous clinical trials, and it has been demonstrated that they improve global and individual IBS symptoms. This review highlights the pivotal efficacy and safety data of the three pharmacologic agents currently indicated in the USA for the management of IBS-D in adults.Funding: Salix Pharmaceuticals.
Collapse
|
48
|
Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand Ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis. Chem Biol Interact 2019; 315:108891. [PMID: 31697926 DOI: 10.1016/j.cbi.2019.108891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor expressed ubiquitously along gut-liver-axis. Inflammatory bowel disorders have been reported to implicate PXR in maintaining tight junction (TJ) integrity and countering inflammation. However, the hepatoprotective role of PXR activation in soothing bacterial translocation in liver cirrhosis has not been explored. Ginkgolide A (GA), a terpene trilactone from Ginkgo Biloba extract, is a natural ligand of rodent and human PXR. This study aims to investigate the effect of GA in activating PXR and improving associated tight junction integrity and reducing bacterial translocation in gut-liver axis of CCl4 induced cirrhosis model. METHODS Swiss albino mice were administered with CCl4 (0.5 ml/kg body weight, i.p) in corn oil for 12 weeks at an interval of two times a week. Following ascites induction, mice were randomized & administered 100 mg/kg body weight of GA through oral gavage for 2 weeks. At termination, blood, gut and liver tissues were collected for biochemical and molecular studies. RESULTS When compared to naïve mice, protein expression of hepatic and small intestinal PXR, CYP3A, ZO-1 and occludin were found to be significantly (p < 0.01) decreased in CCl4 induced cirrhotic mice. Treatment with GA to cirrhotic mice significantly (p < 0.05) induced the expression of both hepatic and small intestinal PXR, CYP3A, ZO-1 and Occludin. Furthermore, increased (p < 0.01) hepatic and small intestinal NFκB was observed in CCl4 induced cirrhotic mice that was significantly (p < 0.05) lowered following GA treatment. Over expression of TLR4/MyD88/NFκB axis and its downstream pro-inflammatory mediators TNF-α, IL6 and IFN-γ were observed in CCl4 induced mice, and these indices were abrogated significantly after GA treatment. Furthermore, significantly increased plasma levels of bacterial translocation markers LBP and procalcitonin were found in CCl4 mice, which were reduced significantly (p < 0.05 & p < 0.0001) after GA treatment. CONCLUSION In conclusion, our data supports the hypothesis that, GA treatment to CCl4 induced cirrhotic mice, activated hepatic and small intestinal PXR and diminished inflammation, thereby improving tight junction integrity and attenuating bacterial translocation.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|
49
|
Mangas-Losada A, García-García R, Leone P, Ballester MP, Cabrera-Pastor A, Urios A, Gallego JJ, Martínez-Pretel JJ, Giménez-Garzó C, Revert F, Escudero-García D, Tosca J, Ríos MP, Montón C, Durbán L, Aparicio L, Montoliu C, Felipo V. Selective improvement by rifaximin of changes in the immunophenotype in patients who improve minimal hepatic encephalopathy. J Transl Med 2019; 17:293. [PMID: 31462286 PMCID: PMC6714107 DOI: 10.1186/s12967-019-2046-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Minimal hepatic encephalopathy (MHE) in cirrhotic patients is associated with specific changes in parameters of the immune system reflecting a more pro-inflammatory environment than in patients without MHE. The aims of this work were to assess the effects of rifaximin treatment of cirrhotic patients with MHE on: (1) MHE; (2) intermediate (CD14++CD16+) pro-inflammatory monocytes; (3) expression of early activation marker CD69 in T lymphocytes; (4) autoreactive CD4+CD28− T lymphocytes; (5) differentiation of CD4+ T lymphocytes to Th follicular and Th22; (6) serum IgG levels; and (7) levels of some pro-inflammatory cytokines. Methods These parameters were measured by immunophenotyping and cytokine profile analysis in 30 controls without liver disease, 30 cirrhotic patients without MHE and 22 patients with MHE. Patients with MHE were treated with rifaximin and the same parameters were measured at 3 and 6 months of treatment. We assessed if changes in these parameters are different in patients who improve MHE (responders) and those who remain in MHE (non-responders). Results Rifaximin improved MHE in 59% of patients with MHE. In these responder patients rifaximin normalized all alterations in the immune system measured while in non-responders it normalizes only IL-6, CCL20, and differentiation of T lymphocytes to Th22. Non-responder patients do not show increased expression of CD69 before treatment. Conclusions Rifaximin normalizes changes in the immune system in patients who improve MHE but not in non-responders. Some alterations before treatment are different in responders and non-responders. Understanding these differences may identify predictors of the response of MHE to rifaximin.
Collapse
Affiliation(s)
- Alba Mangas-Losada
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Raquel García-García
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Paola Leone
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - María Pilar Ballester
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Amparo Urios
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Juan-José Gallego
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Juan-José Martínez-Pretel
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | - Carla Giménez-Garzó
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Fernando Revert
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain
| | | | - Joan Tosca
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - María Pilar Ríos
- Servicio de Digestivo, Hospital Arnau de Vilanova, Valencia, Spain
| | - Cristina Montón
- Unidad de Digestivo, Departamento Medicina, Hospital Clínico Valencia, Universidad Valencia, Valencia, Spain
| | - Lucia Durbán
- Servicio de Digestivo, Hospital Arnau de Vilanova, Valencia, Spain
| | - Luis Aparicio
- Departamento de Anatomía Y Embriología, Universidad Valencia, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Avda Menéndez Pelayo, 4acc, 46010, Valencia, Spain. .,Departamento de Patología, Universidad Valencia, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
50
|
Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019; 12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Bile acids are cholesterol-derived surfactants that circulate actively between the liver and ileum and that are classically recognized for emulsifying dietary lipids to facilitate absorption. More recent studies, however, have revealed new functions of bile acids; as pleotropic signaling metabolites that regulate diverse metabolic and inflammatory pathways in multiple cell types and tissues through dynamic interactions with both germline-encoded host receptors and the microbiota. Accordingly, perturbed bile acid circulation and/or metabolism is now implicated in the pathogenesis of cholestatic liver diseases, metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). Here, we discuss the three-dimensional interplay between bile acids, the microbiota, and the mucosal immune system, focusing on the mechanisms that regulate intestinal homeostasis and inflammation. Although the functions of bile acids in mucosal immune regulation are only beginning to be appreciated, targeting bile acids and their cellular receptors has already proven an important area of new drug discovery.
Collapse
|