1
|
Valitova J, Renkova A, Beckett R, Minibayeva F. Stigmasterol: An Enigmatic Plant Stress Sterol with Versatile Functions. Int J Mol Sci 2024; 25:8122. [PMID: 39125690 PMCID: PMC11311414 DOI: 10.3390/ijms25158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Sterols play important structural and regulatory roles in numerous intracellular processes. Unlike animals, plants contain a distinctive and diverse variety of sterols. Recently, information has emerged showing that stigmasterol is a "stress sterol". Stigmasterol is synthesized via the mevalonate biosynthesis pathway and has structural similarity to β-sitosterol but differs in the presence of a trans-oriented double bond in the side chain. In plants, the accumulation of stigmasterol has been observed in response to various stresses. However, the precise ways that stigmasterol is involved in the stress responses of plants remain unclear. This comprehensive review provides an update on the biology of stigmasterol, particularly the physicochemical properties of this ethylsterol, its biosynthesis, and its occurrence in higher plants and extremophilic organisms, e.g., mosses and lichens. Special emphasis is given to the evolutionary aspects of stigmasterol biosynthesis, particularly the variations in the gene structure of C22-sterol desaturase, which catalyzes the formation of stigmasterol from β-sitosterol, in a diversity of evolutionarily distant organisms. The roles of stigmasterol in the tolerance of plants to hostile environments and the prospects for its biomedical applications are also discussed. Taken together, the available data suggest that stigmasterol plays important roles in plant metabolism, although in some aspects, it remains an enigmatic compound.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Albina Renkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| | - Richard Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, Kazan 420111, Russia; (J.V.); (A.R.)
| |
Collapse
|
2
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
4
|
Watanabe K, Maruyama Y, Iwashita H, Kato H, Hirayama J, Hattori A. N1-Acetyl-5-methoxykynuramine, which decreases in the hippocampus with aging, improves long-term memory via CaMKII/CREB phosphorylation. J Pineal Res 2024; 76:e12934. [PMID: 38241676 DOI: 10.1111/jpi.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Yusuke Maruyama
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Haruyasu Kato
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
- Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| |
Collapse
|
5
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Tao Q, Zhang ZD, Lu XR, Qin Z, Liu XW, Li SH, Bai LX, Ge BW, Li JY, Yang YJ. Multi-omics reveals aspirin eugenol ester alleviates neurological disease. Biomed Pharmacother 2023; 166:115311. [PMID: 37572635 DOI: 10.1016/j.biopha.2023.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS In conclusion, AEE could play positive effects on neurological-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Bo-Wen Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
7
|
Timalsina B, Haque MN, Dash R, Choi HJ, Ghimire N, Moon IS. Neuronal Differentiation and Outgrowth Effect of Thymol in Trachyspermum ammi Seed Extract via BDNF/TrkB Signaling Pathway in Prenatal Maternal Supplementation and Primary Hippocampal Culture. Int J Mol Sci 2023; 24:ijms24108565. [PMID: 37239909 DOI: 10.3390/ijms24108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
8
|
Effects of Scrophularia buergeriana Extract (Brainon ®) on Aging-Induced Memory Impairment in SAMP8 Mice. Curr Issues Mol Biol 2023; 45:1287-1305. [PMID: 36826029 PMCID: PMC9955813 DOI: 10.3390/cimb45020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aβ1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aβ1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.
Collapse
|
9
|
Ma R, Yang P, Jing C, Fu B, Teng X, Zhao D, Sun L. Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:288-299. [PMID: 36652850 DOI: 10.1016/j.plaphy.2023.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Wild ginseng is thought to be superior in its medicinal quality to cultivated ginseng, potentially owing to the differences in active components. This study was designed accordingly to assess the differences in secondary metabolite components and their synthesis in wild and cultivated ginseng by using quantitative proteomics combined with secondary metabolomics approaches. A total of 72 secondary metabolites were found to be differentially abundant, of which dominant abundant in wild ginseng primarily included triterpenoid saponins (ginsenosides) and phytosterols. Ginsenoside diversity was increased in wild ginseng, particularly with respect to rare ginsenosides. Ginsenoside Rk1, F1, Rg5, Rh1, PPT, Rh2, and CK enriched in wild ginseng were validated by HPLC. In addition to ginsenosides, stigmasterol and β-sitosterol were accumulated in wild ginseng. 102 differentially expressed proteins between wild and cultivated ginseng were identified using iTRAQ labeling technique. Among them, 25 were related to secondary metabolism, mainly involved in sesquiterpene and triterpene biosynthesis, which was consistent with metabolomics results. Consistently, the activity levels of HMGR, FDPS, SS, SE, DS, CYP450, GT and CAS, which are key enzymes related to ginsenoside and phytosterol biosynthesis, were confirmed to be elevated in wild ginseng.The biosynthesis of ginsenosides and phytosterols in wild ginseng is higher than that in cultivated ginseng, which may be related to natural growth without artificial domestication. To some extent, this study explained the accumulation of pharmacodynamic components and overall quality of ginseng, which could provide reference for the germplasm improvement and planting of ginseng.
Collapse
Affiliation(s)
- Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Pengdi Yang
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Xiaoyu Teng
- Jilin Technology Innovation Center for Chinese Medicine Biotechnology, Beihua University, 15 Jilin Street, Jilin, Jilin Province, 132013, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, China.
| |
Collapse
|
10
|
Mei H, Li X. Cerebroprotective Role of Stigmasterol Against the Progression of Experimentally Induced Intracranial Aneurysms in Rats. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.25.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Kim JH, Ra JH, Kang H, Park SD, Shim JJ, Lee JL. Lactobacillus paracasei HP7 with Portulaca oleracea Linn. Alleviates Scopolamine-Induced Cognitive Decline via Regulation of Neurotrophic Factor and Inflammation Signals in Mice. Prev Nutr Food Sci 2022; 27:414-422. [PMID: 36721752 PMCID: PMC9843713 DOI: 10.3746/pnf.2022.27.4.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 01/03/2023] Open
Abstract
People often experience cognitive deterioration of various degrees, from early-stage mild cognitive impairment to severe cognitive decline. Cognitive deterioration is related to many diseases and studied to alleviated inflammation reaction or oxidative stress. In the present study, the levels of various memory-related proteins: brain-derived neurotrophic factor (BDNF), amyloid beta (Aβ) 42, Aβ40, interleukin-6 and tumor necrosis factor-alpha were measured. Among Lactobacillus paracasei HP7 (HP7), Portulaca oleracea Linn. (PO) and HP7 together with PO (HP7A), the HP7A group had the best effect on increasing BDNF expression and suppressing Aβ40 expression. Also, we measured the protective effect on scopolamine-induced cognitive decline in mice. In the acquisition test, the HP7A group most reliably relieved cognitive decline from days 2 to 5 of scopolamine injection. When the probe test was performed on the day 6 of scopolamine injection, the HP7A group had the shortest escape latency. Based on the results of the Morris water maze tasks, we suggest that HP7A is most useful for ameliorating cognitive decline. It is suggested that the HP7A ameliorating scopolamine-induced cognitive decline via the increase of BDNF expression and the suppression of Aβ40 expression.
Collapse
Affiliation(s)
- Ji Hyun Kim
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | - Je Hyeon Ra
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | - Heerim Kang
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | | | | | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea,
Correspondence to Jung-Lyoul Lee, E-mail:
| |
Collapse
|
12
|
Zhang X, Wang J, Zhu L, Wang X, Meng F, Xia L, Zhang H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front Oncol 2022; 12:1101289. [PMID: 36578938 PMCID: PMC9791061 DOI: 10.3389/fonc.2022.1101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Stigmasterol is a phytosterol derived from multiple herbaceous plants such as herbs, soybean and tobacco, and it has received much attention for its various pharmacological effects including anti-inflammation, anti-diabetes, anti-oxidization, and lowering blood cholesterol. Multiple studies have revealed that stigmasterol holds promise as a potentially beneficial therapeutic agent for malignant tumors because of its significant anti-tumor bioactivity. It is reported that stigmasterol has anti-tumor effect in a variety of malignancies (e.g., breast, lung, liver and ovarian cancers) by promoting apoptosis, inhibiting proliferation, metastasis and invasion, and inducing autophagy in tumor cells. Mechanistic study shows that stigmasterol triggers apoptosis in tumor cells by regulating the PI3K/Akt signaling pathway and the generation of mitochondrial reactive oxygen species, while its anti-proliferative activity is mainly dependent on its modulatory effect on cyclin proteins and cyclin-dependent kinase (CDK). There have been multiple mechanisms underlying the anti-tumor effect of stigmasterol, which make stigmasterol promising as a new anti-tumor agent and provide insights into research on its anti-tumor role. Presently, stigmasterol has been poorly understood, and there is a paucity of systemic review on the mechanism underlying its anti-tumor effect. The current study attempts to conduct a literature review on stigmasterol for its anti-tumor effect to provide reference for researchers and clinical workers.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayun Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuezhen Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feifei Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Hairong Zhang, ; Lei Xia,
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, China,*Correspondence: Hairong Zhang, ; Lei Xia,
| |
Collapse
|
13
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
14
|
Huang ZH, Fang Y, Wang XL, Wang Q, Wang T. Screening Traditional Chinese Medicine Combination for Co-Treatment of Alzheimer's Disease and Major Depressive Disorder by Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Due to their close relationship, the efficacy of major depressive disorder (MDD) drugs in the treatment of Alzheimer's disease (AD) has received widespread attention in recent years. Methods: In this study, we explored the potential therapeutic value of traditional Chinese medicine (TCM) and multitarget components on both MDD and AD by using a comprehensive strategy with network pharmacology and molecular docking technology. Results: In total, 234 MDD-related TCM prescriptions were analyzed and the 10 most commonly used Chinese herbs, correlating to 198 active ingredients, were identified. Through a comparative analysis of 144 prospective ingredient targets, 1095 MDD-related targets, and 1684 AD-related targets, network pharmacology identified 30 common targets, 9 key targets, and 7 representative compounds. The results of GO and KEGG enrichment analysis revealed that common targets were required to regulate multiple pathways related to MDD and AD. In addition, network analysis demonstrated that the combination of Xiangfu (Cyperi Rhizoma)-Gancao (Licorice)-Chaihu (Radix Bupleuri) constituted the major part of the representative ingredients and could be used to treat both diseases. Moreover, ALB, AKT1, ESR1, CASP3, and NOS3 were also chosen as prospective targets for synthetic multitarget ingredient screening. Further docking studies revealed that various natural chemicals exhibited binding affinity with the 5 targets, including quercetin, kaempferol, β-sitosterol, stigmasterol, isorhamnetin, naringenin, and 8-isopentenyl-kaempferol. Conclusion: Taken as a whole, the current study indicates a TCM combination with positive advantages in the combined treatment of AD and MDD.
Collapse
Affiliation(s)
- Zhao-han Huang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yuan Fang
- Shanghai Center for Women and Children’s Health, Shanghai, People’s Republic of China
| | - Xiao-lu Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qi Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tong Wang
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Katiyar P, Singh Rathore A, Banerjee S, Nathani S, Zahra W, Singh SP, Sircar D, Roy P. Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food Funct 2022; 13:8474-8488. [PMID: 35861716 DOI: 10.1039/d2fo00423b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rich and diverse phytoconstituents of wheatgrass have established it as a natural antioxidant and detoxifying agent. The anti-inflammatory potential of wheatgrass has been studied extensively. However, the neuroprotective potential of wheatgrass has not been studied in depth. In this study, we investigated the neuroprotective response of wheatgrass against age-related scopolamine-induced amnesia in mice. Scopolamine is an established anticholinergic drug that demonstrates the behavioural and molecular characteristics of Alzheimer's disease. In the current study, wheatgrass extracts (prepared from 5 and 7 day old plantlets) were administered to scopolamine-induced memory deficit mice. The Morris water maze (MWM) and Y-maze tests demonstrated that wheatgrass treatment improves the behavior and simultaneously enhances the memory of amnesic mice. We further evaluated the expression of neuroinflammation related genes and proteins in the hippocampal region of mice. Wheatgrass significantly upregulated the mRNA and protein expression of neuroprotective markers such as BDNF and CREB in scopolamine-induced mice. Simultaneously, wheatgrass also downregulated the expression of inflammatory markers such as TNF-α and tau genes in these mice. The treatment of scopolamine-induced memory impaired mice with wheatgrass resulted in an elevation in the level of the phosphorylated form of ERK and Akt proteins. Wheatgrass treatment of mice also regulated the phosphorylation of tau protein and simultaneously prevented its aggregation in the hippocampal region of the brain. Overall, this study suggests the therapeutic potential of wheatgrass in the treatment of age-related memory impairment, possibly through the involvement of ERK/Akt-CREB-BDNF pathway and concomitantly ameliorating the tau-related pathogenesis.
Collapse
Affiliation(s)
- Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Somesh Banerjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Medication Rules in Herbal Medicine for Mild Cognitive Impairment: A Network Pharmacology and Data Mining Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2478940. [PMID: 35646138 PMCID: PMC9132671 DOI: 10.1155/2022/2478940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Background Although traditional Chinese medicine (TCM) has good efficacy in the treatment of mild cognitive impairment (MCI), especially memory improvement and safety, its substance basis and intervention mechanism are particularly complex and unknown. Therefore, based on network pharmacology and data mining, this study aims to explore the rules, active ingredients and mechanism of TCM in the treatment of MCI. Methods By searching the GeneCard, OMIM, DisGeNET and DrugBank databases, we obtained the critical targets associated with MCI. We matched the components and herbs corresponding to the important targets in the TCMSP platform. Using Cytoscape 3.7.2 software, we constructed a target-component-herb network and conducted a network topology analysis to obtain the core components and herbs. Molecular docking was used to preliminarily analyze and predict the binding activities and main binding combinations of the core targets and components. Based on the analysis of the properties, flavor and meridian distribution of herbs, the rules of herbal therapy for MCI were summarized. Results Twenty-eight critical targets were obtained after the screening. Using the TCMSP platform, 492 components were obtained. After standardization, we obtained 387 herbs. Based on the target-composition-herb network analysis, the core targets were ADRB2, ADRA1B, DPP4, ACHE and ADRA1D. According to the screening, the core ingredients were beta-sitosterol, quercetin, kaempferol, stigmasterol and luteolin. The core herbs were matched to Danshen, Yanhusuo, Gancao, Gouteng and Jiangxiang. It was found that the herbs were mainly warm in nature, pungent in taste and liver and lung in meridian. The molecular docking results showed that most core components exhibited strong binding activity to the target combination regardless of the in or out of network combination. Conclusion The results of this study indicate that herbs have great potential in the treatment of MCI. This study provides a reference and basis for clinical application, experimental research and new drug development of herbal therapy for MCI.
Collapse
|
17
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
18
|
Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030762. [PMID: 35164026 PMCID: PMC8840168 DOI: 10.3390/molecules27030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-β-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.
Collapse
|
19
|
Calycosin Alleviates Paraquat-Induced Neurodegeneration by Improving Mitochondrial Functions and Regulating Autophagy in a Drosophila Model of Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11020222. [PMID: 35204105 PMCID: PMC8868496 DOI: 10.3390/antiox11020222] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder with limited clinical treatments. The occurrence of PD includes both genetic and environmental toxins, such as the pesticides paraquat (PQ), as major contributors to PD pathology in both invertebrate and mammalian models. Calycosin, an isoflavone phytoestrogen, has multiple pharmacological properties, including neuroprotective activity. However, the paucity of information regarding the neuroprotective potential of calycosin on PQ-induced neurodegeneration led us to explore whether calycosin can mitigate PD-like phenotypes and the underlying molecular mechanisms. We used a PQ-induced PD model in Drosophila as a cost-effective in vivo screening platform to investigate the neuroprotective efficacy of natural compounds on PD. We reported that calycosin shows a protective role in preventing dopaminergic (DA) neuronal cell death in PQ-exposed Canton S flies. Calycosin-fed PQ-exposed flies exhibit significant resistance against PQ-induced mortality and locomotor deficits in terms of reduced oxidative stress, loss of DA neurons, the depletion of dopamine content, and phosphorylated JNK-caspase-3 levels. Additionally, mechanistic studies show that calycosin administration improves PQ-induced mitochondrial dysfunction and stimulates mitophagy and general autophagy with reduced pS6K and p4EBP1 levels, suggestive of a maintained energy balance between anabolic and catabolic processes, resulting in the inhibition of neuronal cell death. Collectively, this study substantiates the protective effect of calycosin against PQ-induced neurodegeneration by improving DA neurons' survival and reducing apoptosis, likely via autophagy induction, and it is implicated as a novel therapeutic application against toxin-induced PD pathogenesis.
Collapse
|
20
|
Zhao Y, Lu Z, Xu X, Sun N, Lin S. Sea Cucumber-Derived Peptide Attenuates Scopolamine-Induced Cognitive Impairment by Preventing Hippocampal Cholinergic Dysfunction and Neuronal Cell Death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:567-576. [PMID: 34989228 DOI: 10.1021/acs.jafc.1c07232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The incidence of neurodegenerative diseases related to cognitive decline and memory loss is on the rise as the global elderly population increases. In this study, we evaluated the effect of the sea cucumber-derived peptide Phe-Tyr-Asp-Trp-Pro-Lys (FYDWPK) on scopolamine-induced neurotoxicity in an animal model. The Morris water maze, passive avoidance apparatus, and shuttle box test were used to assess learning and memory abilities. In behavioral tests, FYDWPK effectively alleviated learning and memory impairment. FYDWPK also alleviated cholinergic dysfunction in mice with dementia. Furthermore, FYDWPK significantly improved oxidative imbalance by increasing superoxide dismutase activity and decreasing malondialdehyde levels (P < 0.05). The pathological results showed that FYDWPK alleviated neuronal loss, blurred caryotheca, and pyknotic nuclei in the hippocampus, and a high dose of FYDWPK had the best effect. In conclusion, FYDWPK alleviated cognitive and memory impairments by regulating oxidative imbalance, reducing cholinergic dysfunction, and relieving pathological alterations.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
21
|
So SY, Savidge TC. Gut feelings: the microbiota-gut-brain axis on steroids. Am J Physiol Gastrointest Liver Physiol 2022; 322:G1-G20. [PMID: 34730020 PMCID: PMC8698538 DOI: 10.1152/ajpgi.00294.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/31/2023]
Abstract
The intricate connection between central and enteric nervous systems is well established with emerging evidence linking gut microbiota function as a significant new contributor to gut-brain axis signaling. Several microbial signals contribute to altered gut-brain communications, with steroids representing an important biological class that impacts central and enteric nervous system function. Neuroactive steroids contribute pathologically to neurological disorders, including dementia and depression, by modulating the activity of neuroreceptors. However, limited information is available on the influence of neuroactive steroids on the enteric nervous system and gastrointestinal function. In this review, we outline how steroids can modulate enteric nervous system function by focusing on their influence on different receptors that are present in the intestine in health and disease. We also highlight the potential role of the gut microbiota in modulating neuroactive steroid signaling along the gut-brain axis.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
22
|
Sirichaiwetchakoon K, Suksuphew S, Srisawat R, Eumkeb G. Butea superba Roxb. Extract Ameliorates Scopolamine-Induced Cognitive and Memory Impairment in Aged Male Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2703138. [PMID: 34671404 PMCID: PMC8523236 DOI: 10.1155/2021/2703138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Butea superba Roxb. (B. superba) is a herb that has been used for rejuvenation, to improve sexual performance, or to prevent erectile dysfunction function. Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is the main cause of progressive dementia. This study aimed to investigate the amelioration for cognitive and memory dysfunction of B. superba ethanolic extract (BSE), a possible mechanism of action, and its toxicity. The results from the Y-maze test, novel object recognition test, and passive avoidance test exhibited that the administration of BSE at 50 mg/kg (BSL) and 200 mg/kg (BSH) could ameliorate scopolamine-induced cognitive impairment in all behavior testing. Moreover, BSE could prevent the cognitive deficit in a dose-dependent manner in a passive avoidance test. Furthermore, BSE inhibited acetylcholinesterase's (AChE) ex vivo activity in the cerebral cortex and hippocampus. Also, the in vitro and ex vivo antioxidative effects of BSE revealed that BSE had free radical scavenging activities in both DPPH and FRAP assay. Furthermore, male rats treated with BSE at 200 mg/kg/day for two weeks could significantly increase serum testosterone compared with control (P < 0.05). The GC-MS analysis and previous studies revealed that BSE contained propanoic acid, 3,3'-thiobis-, didodecyl ester, oleic acid, gamma-sitosterol, and stigmasterol which may play an important role in cognitive and memory impairment prevention. The toxicity test of BSE in rats at 50 and 200 mg/kg/day for two weeks showed that relative organ weight, serum creatinine, ALT, ALP, and CBC levels of both treated groups were not significantly different compared to the CON (P > 0.05). These results suggest that BSE may not be toxic to the vital organ and blood. In conclusion, BSE has the potential to be developed as a health supplement product or medicine for AD prevention and treatment.
Collapse
Affiliation(s)
- Kittipot Sirichaiwetchakoon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Sarawut Suksuphew
- Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Rungrudee Srisawat
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
23
|
Khosravi A, Razavi SH. Therapeutic effects of polyphenols in fermented soybean and black soybean products. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
24
|
Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
26
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
27
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
28
|
Jie F, Yang X, Wu L, Wang M, Lu B. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 2021; 62:3613-3630. [PMID: 33397124 DOI: 10.1080/10408398.2020.1867819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytosterols and their oxidation products, namely oxyphytosterols, are natural compounds present in plant foods. With increased intake of phytosterol-enriched functional food products, the exposure of both phytosterols and oxyphytosterols is rising. Over the past ten years, researches have been focused on their absorption and metabolism in human body, as well as their biological effects. More importantly, recent studies showed that phytosterols and oxyphytosterols can traverse the blood-brain barrier and accumulate in the brain. As brain health problems resulting from ageing being more serious, attenuating central nervous system (CNS) disorders with active compounds in food are becoming a hot topic. Phytosterols and oxyphytosterols have been shown to implicated in cognition altering and the pathologies of several CNS disorders, including Alzheimer's disease and multiple sclerosis. We will overview these findings with a focus on the contents of phytosterols and oxyphytosterols in food and their dietary intake, as well as their origins in the brain, and illustrate molecular pathways through which they affect brain health, in terms of inflammation, cholesterol homeostasis, oxidative stress, and mitochondria function. The existing scientific gaps of phytosterols and oxyphytosterols to brain health in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
29
|
Haque MN, Hannan MA, Dash R, Choi SM, Moon IS. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153415. [PMID: 33285471 DOI: 10.1016/j.phymed.2020.153415] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST. RESULT Pre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
30
|
Bastola T, Pariyar R, Jeon BM, Baek JI, Chang BY, Kim SC, Kim SY, Seo J. Protective effects of SGB121, ginsenoside F1-enriched ginseng extract, on scopolamine-induced cytotoxicity and memory impairments. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
31
|
Meden A, Knez D, Malikowska-Racia N, Brazzolotto X, Nachon F, Svete J, Sałat K, Grošelj U, Gobec S. Structure-activity relationship study of tryptophan-based butyrylcholinesterase inhibitors. Eur J Med Chem 2020; 208:112766. [PMID: 32919297 DOI: 10.1016/j.ejmech.2020.112766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Anže Meden
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Jurij Svete
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Uroš Grošelj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna Pot 113, SI-1000, Ljubljana, Slovenia.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Mirshekar MA, Lakzaei H, Shabani S. Therapeutic effects of levothyroxine in a rat model of scopolamine-induced cognitive impairment: An electrophysiological, behavioral, and biochemical study. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Wu R, Wang H, Lv X, Shen X, Ye G. Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112827. [PMID: 32276008 DOI: 10.1016/j.jep.2020.112827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yixin Ningshen tablet is a CFDA-approved TCM formula for treating depression clinically. However, little is known about its active compounds and related potential target proteins, so far, no researches have been performed to investigate its mechanism of action for the treatment of depression. AIM OF THE STUDY Here we develop an original bioinformatics pipeline composed of text mining tools, database querying and systems biology combinatorial analysis, which is applied to rapidly explore the mechanism of action of Yixin Ningshen tablet in treating depression. MATERIALS AND METHODS Text mining and database query were applied to identify active compounds in Yixin Ningshen tablet for the treatment of depression. Then SwissTargetPrediction was used to predict their potential target proteins. PubMed was retrieved to summarize known depression related systems biology results. Ingenuity Pathway Analysis (IPA) tools and STRING were applied to construct a compound-target protein-gene protein-differential protein-differential metabolite network with the integration of compound-target interaction and systems biology results, as well as enrich the target proteins related pathways. ChEMBL and CDOCKER were used to validate the compound-target interactions. RESULTS 62 active compounds and their 286 potential target proteins were identified in Yixin Ningshen tablet for the treatment of depression. The construction of compound-target protein-gene protein-differential protein-differential metabolite network shrinked the number of potential target proteins from 286 to 133. Pathway enrichment analysis of target proteins indicated that Neuroactive ligand-receptor interaction, Calcium signaling pathway, Serotonergic synapse, cAMP signaling pathway and Gap junction were the common primary pathways regulated by both Yixin Ningshen Tablet and anti-depressant drugs, and MAPK, Relaxin, AGE-RAGE, Estrogen, HIF-1, Jak-STAT signaling pathway, Endocrine resistance, Arachidonic acid metabolism and Regulation of actin cytoskeleton were the specifically main pathways regulated by Yixin Ningshen tablet for the treatment of depression. Further validations based on references and molecular docking results demonstrated that Yixin Ningshen tablet could primarily target MAPT, CHRM1 and DRD1, thus regulating serotonergic neurons, cholinergic transmission, norepinephrine and dopamine reuptake for the treatment of depression. CONCLUSIONS This study displays the power of extensive mining of public data and bioinformatical repositories to provide answers for a specific pharmacological question. It furthermore demonstrates how the usage of such a combinatorial approach is advantageous for the biologist in terms of experimentation time and costs.
Collapse
Affiliation(s)
- Ruoming Wu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Huijun Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xing Lv
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 310000, China.
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
34
|
Deepa P, Bae HJ, Park HB, Kim SY, Choi JW, Kim DH, Liu XQ, Ryu JH, Park SJ. Dracocephalum moldavica attenuates scopolamine-induced cognitive impairment through activation of hippocampal ERK-CREB signaling in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112651. [PMID: 32035879 DOI: 10.1016/j.jep.2020.112651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dracocephalum moldavica (Moldavian balm) has been traditionally used for the treatment of intellectual disabilities, migraines and cardiovascular problems in East Asia. Recent scientific studies have demonstrated the usefulness of this plant to treat neurodegenerative disorders, including Alzheimer's disease. AIM OF THE STUDY This study aimed to investigate the effects of the ethanolic extract of D. moldavica leaves (EEDM) on scopolamine-induced cognitive impairment in mice and the underlying mechanisms of action. MATERIALS AND METHODS The behavioral effects of EEDM were examined using the step-through passive avoidance and Morris water maze tasks. To elucidate the underlying mechanism, we tested whether EEDM affects acetylcholinesterase activity and the expression of memory-related signaling molecules including extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus. RESULTS EEDM (25, 50 or 100 mg/kg) significantly ameliorated the scopolamine-induced step-through latency reduction in the passive avoidance task in mice. In the Morris water maze task, EEDM (50 mg/kg) significantly attenuated scopolamine-induced memory impairment. Furthermore, the administration of EEDM increased the phosphorylation levels of ERK and CREB in the hippocampus but did not alter acetylcholinesterase activity. CONCLUSIONS These findings suggest that EEDM significantly attenuates scopolamine-induced memory impairment in mice and may be a promising therapeutic agent for improving memory impairment.
Collapse
Affiliation(s)
- Ponnuvel Deepa
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Hyeon-Bae Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - So-Yeon Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| | - Xiang-Qian Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
35
|
Bae HJ, Kim J, Kim J, Goo N, Cai M, Cho K, Jung SY, Kwon H, Kim DH, Jang DS, Ryu JH. The effect of maslinic acid on cognitive dysfunction induced by cholinergic blockade in mice. Br J Pharmacol 2020; 177:3197-3209. [PMID: 32133639 DOI: 10.1111/bph.15042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is the most prevalent disease associated with cognitive dysfunction. Current AD therapeutic agents have several gastrointestinal or psychological adverse effects and therefore, novel therapeutic agents with fewer adverse effects must be developed. Previously, we demonstrated that oleanolic acid, which is similar in chemical structure to maslinic acid, ameliorates cognitive impairment through the activation of tropomyosin receptor kinase (TrkB)-ERK-cAMP response element-binding protein (CREB) phosphorylation and increased levels of brain-derived neurotrophic factor (BDNF). In the present study, we investigate the effect of maslinic acid on cholinergic blockade-induced memory impairment in mice. METHODS AND KEY RESULTS Maslinic acid reversed scopolamine-induced memory impairment, as determined by the Y-maze, passive avoidance and Morris water maze tests. In addition, we also observed that ERK-CREB, PI3K and PKB (Akt) phosphorylation levels were increased by maslinic acid administration in the mouse hippocampus. Moreover, we determined that the effects of maslinic acid on scopolamine-induced memory impairment in the passive avoidance test were abolished by a specific TrkB receptor antagonist (ANA-12). Additionally, we observed similar temporal changes in the expression levels between BDNF and tissue plasminogen activator in the hippocampus. CONCLUSION AND IMPLICATIONS These findings suggest that maslinic acid enhances cognitive function through the activation of BDNF and its downstream pathway signalling in the hippocampus and that it might be a potential therapeutic agent for cognitive decline, such as that observed in AD.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehoon Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Nayeon Goo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungnam Cho
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Seo Yun Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Liao Y, Bae HJ, Park JH, Zhang J, Koo B, Lim MK, Han EH, Lee SH, Jung SY, Lew JH, Ryu JH. Aster glehni Extract Ameliorates Scopolamine-Induced Cognitive Impairment in Mice. J Med Food 2019; 22:685-695. [PMID: 31225769 DOI: 10.1089/jmf.2018.4302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The leaves of Aster glehni Fr. Schm. (Asteraceae) have been used to treat insomnia in Korea. Insomnia is a common adverse effect of therapeutic agents for Alzheimer's disease (AD), and the control of sleep disturbance may prevent dementia. We hypothesized that the leaves of A. glehni can attenuate cognitive dysfunctions observed in AD. We observed the ameliorating effects of the ethanolic extract of leaves of A. glehni (AG-D) on memory dysfunction through the Morris water maze test, the passive avoidance test, and the Y-maze test. We performed acetylcholinesterase (AChE) activity assay and Western blotting to determine the mechanism of action of AG-D. AG-D significantly attenuated memory dysfunction observed in the above behavior studies and inhibited the activity of AChE. AG-D also increased the levels of phosphorylation extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK-3β) and the expression levels of brain-derived neurotrophic factor (BDNF) in the hippocampi. These results suggest that AG-D ameliorates memory impairments by AChE inhibition and activation of ERK-CREB-BDNF and PI3K-Akt-GSK-3β signaling pathways. Taken together, this study suggests that AG-D could be used as a potential treatment for cognitive dysfunction.
Collapse
Affiliation(s)
- Yulan Liao
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Ho Jung Bae
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jong Hun Park
- 2 Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Jiabao Zhang
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Bokyung Koo
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Mi Kyung Lim
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Eun Hye Han
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Sang Ho Lee
- 3 Department of R&D Center, Koreaeundan, Seongnam, Korea
| | - Seo Yun Jung
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jae Hwan Lew
- 2 Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Korea
| | - Jong Hoon Ryu
- 1 Department of Life and Nanopharmaceutical Science and College of Pharmacy, Kyung Hee University, Seoul, Korea.,4 Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
37
|
Tian JS, Meng Y, Wu YF, Zhao L, Xiang H, Jia JP, Qin XM. A novel insight into the underlying mechanism of Baihe Dihuang Tang improving the state of psychological suboptimal health subjects obtained from plasma metabolic profiles and network analysis. J Pharm Biomed Anal 2019; 169:99-110. [DOI: 10.1016/j.jpba.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
|
38
|
Liao Y, Bae HJ, Zhang J, Kwon Y, Koo B, Jung IH, Kim HM, Park JH, Lew JH, Ryu JH. The Ameliorating Effects of Bee Pollen on Scopolamine-Induced Cognitive Impairment in Mice. Biol Pharm Bull 2019; 42:379-388. [DOI: 10.1248/bpb.b18-00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yulan Liao
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Bokyung Koo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | | | - Jong Hun Park
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jae Hwan Lew
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
- Department of Oriental Pharmaceutical Science, Kyung Hee University
| |
Collapse
|
39
|
Haque MN, Mohibbullah M, Hong YK, Moon IS. Calotropis gigantea Promotes Neuritogenesis and Synaptogenesis through Activation of NGF-TrkA-Erk1/2 Signaling in Rat Hippocampal Neurons. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1861-1877. [DOI: 10.1142/s0192415x18500933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calotropis gigantea (L.) R. Br (Apocynaceae) (commonly known as milkweed or crown flower) is a large shrub native to temperate regions of Asia, including China, Bangladesh and India and has a long history of use in traditional medicines. In this study, we investigated the neuromodulatory effects of the ethanol extracts of C. gigantea leaves (CGE) during synaptogenesis in the late stage of neuronal development and during early stage neuritogenesis in cultured rat hippocampal neurons. Maximum neuritogenic activity was achieved at a CGE concentration of 7.5[Formula: see text][Formula: see text]g/ml. At this concentration, CGE facilitated the early development of cytoarchitecture, as evidenced by increases in morphometric parameters, such as, the numbers, lengths, and number of branches of initial neurites, axon and dendrites. During the synaptogenic stage (DIV 14), immunocytochemistry (ICC) showed that CGE upregulated synaptic vesicle 2 (SV2, a marker of axon terminals) and postsynaptic density-95 (PSD-95, a postsynaptic marker) and their colocalization. CGE upregulated nerve growth factor (NGF) and activated extracellular signal-regulated kinase 1/2 (Erk1/2), which is blocked by a TrkA-specific inhibitor suggesting the neuritogenic and synaptogenic potential of CGE was due to the activation of NGF-TrkA-Erk1/2 signaling. Moreover, UPLC of CGE did not detect stigmasterol, an active component of C. gigantea. However, the chloroform-methanol and ethyl acetate subfractions of CGE exhibited initial neuritogenic activity, suggesting that multiple active components were responsible for the neurotrophic-mimetic properties of CGE. Our data prove the neuromodulatory ability of CGE and provide a means of identifying new active phytochemicals with potential nootropic, preventative or therapeutic effects on the human brain.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj-8100, Bangladesh
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
40
|
Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL. Chemical evaluation and cytotoxic mechanism investigation of Clinacanthus nutans extract in lymphoma SUP-T1 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1229-1236. [PMID: 30188005 DOI: 10.1002/tox.22629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Clinacanthus nutans has been used as herbal medicine with antidiabetic, blood pressure lowering, and diuretic properties in Singapore, Thailand, and Malaysia. The in vitro cellular study showed the chloroform extract possessed significant cytotoxicity against leukemia K562 and lymphoma Raji cells. The clinical study reported that administration of plant could treat or prevent relapse in 12 cancer patients. However, detailed mechanism of the anticancer effects and chemical profiles are not thoroughly studied. The chemical study did show that the acetone extract (MHA) exerted the highest antiproliferative effect on human leukemia MOLT-4 cells and lymphoma SUP-T1 cells in dose-dependent cytotoxicity. We found that the use of MHA increased apoptosis by 4.28%-43.65% and caused disruption of mitochondrial membrane potential (MMP) by 11.79%-26.93%, increased reactive oxygen species (ROS) by 19.54% and increased calcium ion by 233.83%, as demonstrated by annexin-V/PI, JC-1, H2 DCFDA, and Flou-3 staining assays, respectively. MHA-induced ER stress was confirmed by increase expression of CHOP and IRE-1α with western blotting assay. In conclusion, we identified good bioactivity in Clinacanthus nutans and recognize its potential effect on cancer therapy, but further research is needed to determine the use of the plant.
Collapse
Affiliation(s)
- Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
| | - Tsung-Yuan Li
- Department of Food Science, Agricultural College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Yu-Chun Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pao-Chuan Hsieh
- Department of Food Science, Agricultural College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| |
Collapse
|
41
|
Melatonin Rescue Oxidative Stress-Mediated Neuroinflammation/ Neurodegeneration and Memory Impairment in Scopolamine-Induced Amnesia Mice Model. J Neuroimmune Pharmacol 2018; 14:278-294. [DOI: 10.1007/s11481-018-9824-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
|
42
|
Haque MN, Moon IS. Stigmasterol promotes neuronal migration via reelin signaling in neurosphere migration assays. Nutr Neurosci 2018; 23:679-687. [PMID: 30433855 DOI: 10.1080/1028415x.2018.1544970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stigmasterol (ST) is a multifunctional phytosterol and is found in diverse food. In our previous transcriptomics study, we found ST upregulated migration-related genes. In the present study, we carried out in vitro neurosphere migration assays to investigate the effects of ST on neuronal migration. For this purpose, neurospheres were produced by culturing rat (Sprague-Dawley) E14 cortical neurons. The addition of ST (75 μM) to culture medium increased not only the numbers of migratory neurons by 15% but the distance of movement up to 120 μm from the centers of neurospheres as compared to vehicle cultures. Immunocytochemistry and immunoblotting showed ST upregulated the expressions of Reelin (Reln) and its downstream signaling molecules like phospho-JNK (c-Jun N-terminal kinase), doublecortin (DCX) and dynein heavy chain (DHC) in migratory neurons. Furthermore, in silico molecular docking simulation indicated that ST interacts with Relin receptor ApoER2 by forming a hydrogen bond with Lys2467 and other van der Waals interactions. Taken together, our study shows that ST upregulates Reln signaling and promotes neuronal migration and suggests that ST supplementation is considered as a potential means of treating migration-related CNS disorders.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
43
|
Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, Kim SY, Lee SY, Jang CG. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull 2018; 142:197-206. [DOI: 10.1016/j.brainresbull.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
|
44
|
Stigmasterol activates Cdc42-Arp2 and Erk1/2-Creb pathways to enrich glutamatergic synapses in cultures of brain neurons. Nutr Res 2018; 56:71-78. [DOI: 10.1016/j.nutres.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/30/2022]
|
45
|
Kwon Y, Liao Y, Koo B, Bae H, Zhang J, Han EH, Yun SM, Lim MK, Lee SH, Jung SY, Ryu JH. Ethanolic Extract of Opuntia ficus-indica var. saboten Ameliorates Cognitive Dysfunction Induced by Cholinergic Blockade in Mice. J Med Food 2018; 21:971-978. [PMID: 30044674 DOI: 10.1089/jmf.2017.4131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The stem of Opuntia ficus-indica var. saboten is edible and has been used as a medicinal herb on Jeju Island in Korea. We previously reported that the butanolic extract of O. ficus-indica var. saboten exerts the enhancement of long-term memory in mice. However, the antiamnesic effects of O. ficus-indica var. saboten and its mode of action has not been clearly elucidated. In the present study, we explored the effects of the ethanolic extract of stems of O. ficus-indica var. saboten (EOFS) on cognitive performance in mouse and attempted to delineate its mechanism of action. We used the passive avoidance, Y-maze, and novel object recognition tests to assess its effects on cognitive functions in scopolamine-induced memory-impaired mice. We observed that EOFS (100, 200, and 400 mg/kg) ameliorated scopolamine-induced cognitive dysfunction. We also explored its mechanism of action by conducting an acetylcholinesterase (AChE) activity assay using the mouse whole brain and Western blot using the mouse hippocampal tissue. Western blot analysis and the ex vivo study revealed that EOFS increased the levels of phosphorylated extracellular signal-regulated kinase and cAMP response element-binding protein (CREB) and the levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus. It also inhibited AChE activity in the brain. Our findings suggest that EOFS would be useful for the treatment of cholinergic blockade-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Yubeen Kwon
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Yulan Liao
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Bokyung Koo
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Hojung Bae
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Jiabao Zhang
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| | - Eun Hye Han
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Su Min Yun
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Mi Kyung Lim
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Sang Ho Lee
- 3 R&D Center, Koreaeundan Co. LTD. , Seongnam-si, Gyeonggi-do, Korea
| | - Seo Yun Jung
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| | - Jong Hoon Ryu
- 1 Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea.,2 Department of Oriental Pharmaceutical Science, Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University , Seoul, Korea
| |
Collapse
|
46
|
Haque MN, Moon IS. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:164-175. [PMID: 30097115 DOI: 10.1016/j.phymed.2018.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The hippocampus is a vulnerable brain region that is implicated in learning and memory impairment by two pathophysiological features, that is, neurite regression and synaptic dysfunction, and stigmasterol (ST), a cholesterol-equivalent phytosterol, is known to facilitate neuromodulatory effects. PURPOSE To investigate the neuromodulatory effects of ST on the development of central nervous system neurons and the molecular bases of these effects in primary hippocampal neurons. METHODS Rat embryonic (E18-19) brain neurons were cultured in the absence or presence of ST (75 µM). Neuritogenic activities of ST were evident by increases in various morphometric parameters. To identify underlying affected genes, total RNA was isolated on day in vitro 12 (DIV 12) and mRNA high throughput sequencing (mRNA-Seq) was performed. Affected key genes for neuronal development were identified using bioinformatics tools and their upregulations were confirmed by immunocytochemistry. RESULTS Among the differentially expressed 17,337 RefSeq genes, 445 genes (up/down 293/157) passed the p-value < 0.05 criterion, 52 genes (up/down; 37/13) had a p-value < 0.05 and a false discovery rate (FDR) q-value of < 0.2, and 24 genes (up/down; 20/4) passed the more stringent criterion of both p < 0.05 and q < 0.05. After applying a stringent FDR q-value cutoff of < 0.2, it was found ST induced many immediate early genes (IEGs), and that a major proportion of upregulated genes were related to central nervous system (CNS) development (neurite outgrowth or synaptic transmission). In a Venn diagram for CNS development Gene Ontologies (GOs) (i.e., axon development, dendrite development, modulation of synaptic transmission), Reln emerged as a central player in these processes, and highly interconnected 'hub' genes, including Dcx, Egr1, Ntrk2, and Slc24a2, were revealed by gene co-expression networks. Finally, transcriptomic data was confirmed by immunocytochemistry of primary hippocampal neurons. CONCLUSION The study indicates that ST upregulates genes for neuritogenesis and synaptogenesis, and suggests ST be viewed as a potential resource for improving brain functions.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
47
|
Adebiyi OE, Olopade JO, Olayemi FO. Sodium metavanadate induced cognitive decline, behavioral impairments, oxidative stress and down regulation of myelin basic protein in mice hippocampus: Ameliorative roles of β-spinasterol, and stigmasterol. Brain Behav 2018; 8:e01014. [PMID: 29856129 PMCID: PMC6043703 DOI: 10.1002/brb3.1014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Exposures to toxic levels of vanadium and soluble vanadium compounds cause behavioral impairments and neurodegeneration via free radical production. Consequently, natural antioxidant sources have been explored for effective and cheap remedy following toxicity. Grewia carpinifolia has been shown to improve behavioral impairments in vanadium-induced neurotoxicity, however, the active compounds implicated remains unknown. Therefore, this study was conducted to investigate ameliorative effects of bioactive compounds from G. carpinifolia on memory and behavioral impairments in vanadium-induced neurotoxicity. METHODS Sixty BALB/c mice were equally divided into five groups (A-E). A (control); administered distilled water, B (standard); administered α-tocopherol (500 mg/kg) every 72 hr orally with daily dose of sodium metavanadate (3 mg/kg) intraperitoneally, test groups C, and D; received single oral dose of 100 μg β-spinasterol or stigmasterol (bioactive compounds from G. carpinifolia), respectively, along with sodium metavanadate and the model group E, received sodium metavanadate only for seven consecutive days. Memory, locomotion and muscular strength were accessed using Morris water maze, Open field and hanging wire tests. In vivo antioxidant and neuroprotective activities were evaluated by measuring catalase, superoxide dismutase, MDA, H2 O2 , and myelin basic protein (MBP) expression in the hippocampus. RESULTS In Morris water maze, stigmasterol significantly (p ≤ 0.05) decreased escape latency and increased swimming time in target quadrant (28.01 ± 0.02; 98.24 ± 17.38 s), respectively, better than α-tocopherol (52.43 ± 13.25; 80.32 ± 15.21) and β-spinasterol (42.09 ± 14.27; 70.91 ± 19.24) in sodium metavanadate-induced memory loss (112.31 ± 9.35; 42.35 ± 11.05). β-Spinasterol and stigmasterol significantly increased exploration and latency in open field and hanging wire tests respectively. Stigmasterol also increased activities of antioxidant enzymes, decreased oxidative stress markers and lipid peroxidation in mice hippocampal homogenates, and increased MBP expression. CONCLUSIONS The findings of this study indicate a potential for stigmasterol, a bioactive compound from G. carpinifolia in improving cognitive decline, motor coordination, and ameliorating oxidative stress in vanadium-induced neurotoxicity.
Collapse
|
48
|
Horton A, Nash K, Tackie-Yarboi E, Kostrevski A, Novak A, Raghavan A, Tulsulkar J, Alhadidi Q, Wamer N, Langenderfer B, Royster K, Ducharme M, Hagood K, Post M, Shah ZA, Schiefer IT. Furoxans (Oxadiazole-4 N-oxides) with Attenuated Reactivity are Neuroprotective, Cross the Blood Brain Barrier, and Improve Passive Avoidance Memory. J Med Chem 2018; 61:4593-4607. [PMID: 29683322 DOI: 10.1021/acs.jmedchem.8b00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.
Collapse
|
49
|
Yadav M, Parle M, Jindal DK, Dhingra S. Protective effects of stigmasterol against ketamine-induced psychotic symptoms: Possible behavioral, biochemical and histopathological changes in mice. Pharmacol Rep 2018; 70:591-599. [PMID: 29679883 DOI: 10.1016/j.pharep.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stigmasterol, a naturally occurring phytoestrogen has been reported to possess many pharmacological activities. The aim of the present study was to screen the effect of stigmasterol against ketamine-induced mice model of psychosis. METHODS The behavioural studies included an assessment of locomotor activity, stereotypic behaviours, immobility duration, step down latency and effects on catalepsy. Biochemical estimations involved the estimations of GABA, dopamine, GSH, MDA, TNF-α, total protein content and AChE activity. Histopathological changes and effect on androgenic parameters were also evaluated. RESULTS Stigmasterol treated animals showed significant decrease in locomotor activity, stereotypic behaviours, immobility duration and increased step down latency. Biochemical estimations revealed increased GABA, GSH levels and decreased dopamine, MDA, TNF-α levels and AChE activity. These findings were confirmed by histopathological changes in the cortex part of the brain. Further, stigmasterol was not found to cause catalepsy and any adverse effect on the reproductive system. CONCLUSION This study concluded that stigmasterol could ameliorate ketamine-induced behavioral, biochemical and histopathological alterations in mice showing its potential effects in the management of psychotic symptoms.
Collapse
Affiliation(s)
- Monu Yadav
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Milind Parle
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Deepak Kumar Jindal
- Faculty of Medical Sciences, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
50
|
Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer's disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res 2017; 129:115-127. [PMID: 29208493 DOI: 10.1016/j.phrs.2017.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
An increase in the prevalence of Alzheimer's disease (AD) as a multifactorial neurodegenerative disorder is an almost obvious issue in the world. Researches on natural products for finding effective drugs to prevent the disease are in progress. There is special attention to the three types of nuts including almond, hazelnut and walnut in manuscripts of traditional Persian medicine (PM) as the preventive agents against brainatrophy and memory loss. The purpose of this study is a pharmacological review of their bioactive constituents and introducing the value of these nuts as the effective supplements and natural medicinal foods in AD patients. Databases including PubMed and ScienceDirect were searched in title, abstract and keywords from year 2000 to present for AD-related researches on these tree nuts, their major phytochemicals and their mechanisms of action. As result, almond, hazelnut and walnut provide macronutrients, micronutrients, and phytochemicals which affect several pathways in AD pathogenesis such as amyloidogenesis, tau phosphorylation, oxidative stress, cholinergic pathways, and some non-target mechanisms including cholesterol lowering and anti-inflammatory properties, as well as effect on neurogenesis. These nuts are recommended in PM for their brain-protective activity and particularly reversing brain atrophy in case of hazelnut. The therapeutical statements of PM scholars mentioned in their books are based on their clinical observations with support of a long history of experiences. Beyond the molecular activities attributed to the phytochemicals, the use of these tree nuts could be more considered in scientific researches as the effective nutrients for prevention or even management of AD.
Collapse
Affiliation(s)
- Narjes Gorji
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Zahra Memariani
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|