1
|
Parnham MJ. Of rodents, research and relationships: a pharmacological odyssey. Inflammopharmacology 2024; 32:2253-2283. [PMID: 38878142 DOI: 10.1007/s10787-024-01500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024]
Abstract
This article is an autobiographical account of a research career in inflammatory diseases, mechanisms and pharmacotherapy, drug research and development, in academia and industry in various European countries spanning the last 55 years. The author describes how tenacity and independent thought, learned in formative years, and tempered later by the development of good relationships with colleagues have guided his career. This has spanned research, among other fields, on prostaglandins as pro-and anti-inflammatory mediators, oxidative stress and antioxidants, phospholipid mediators, cytokines, innate and adaptive immune responses and the establishment of various inflammatory and immunological models. The author has helped discover and develop novel therapeutic approaches to pain, arthritic, dermatological, respiratory, and autoimmune disorders and contributed to bringing eight drug candidates to clinical trials. He has helped establish new research labs in four different centres and been involved in teaching undergraduate and mature students in three different universities. With extensive experience in scientific publishing and several international awards, he emphasises that without good teamwork, little can be achieved in scientific research.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, 102 Reykjavik, Iceland.
- Phialogics AG, Basel, Switzerland.
- Goethe University Frankfurt, Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Toriyama K, Okuma T, Abe S, Nakamura H, Aoshiba K. In vitro anticancer effect of azithromycin targeting hypoxic lung cancer cells via the inhibition of mitophagy. Oncol Lett 2024; 27:12. [PMID: 38028184 PMCID: PMC10664065 DOI: 10.3892/ol.2023.14146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Solid tumors are predisposed to hypoxia, which induces tumor progression, and causes resistance to treatment. Hypoxic tumor cells exploit auto- and mitophagy to facilitate metabolism and mitochondrial renewal. Azithromycin (AZM), a widely used macrolide, inhibits autophagy in cancer cells. The aim of the present study was to determine whether AZM targeted hypoxic cancer cells by inhibiting mitophagy. Lung cancer cell lines (A549, H1299 and NCI-H441) were cultured for up to 72 h under normoxic (20% O2) or hypoxic (0.3% O2) conditions in the presence or absence of AZM (≤25 µM), and the cell survival, autophagy flux and mitophagy flux were evaluated. AZM treatment reduced cell survival under hypoxic conditions, caused mitolysosome dysfunction with raised lysosomal pH and impaired the efficient removal of hypoxia-damaged mitochondria, eventually inducing apoptosis in the cancer cells. The cytotoxic effect of AZM under hypoxic conditions was abolished in mitochondria-deficient A549 cells (ρ° cells). The present study demonstrated that AZM reduced lung cancer cell survival under hypoxic conditions by interfering with the efficient removal of damaged mitochondria through mitophagy inhibition. Thus, AZM may be considered as a promising anticancer drug that targets the mitochondrial vulnerability of hypoxic lung cancer cells.
Collapse
Affiliation(s)
- Kazutoshi Toriyama
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Okuma
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
| |
Collapse
|
3
|
Kovačević T, Nujić K, Cindrić M, Dragojević S, Vinter A, Hozić A, Mesić M. Different chemical proteomic approaches to identify the targets of lapatinib. J Enzyme Inhib Med Chem 2023; 38:2183809. [PMID: 36856014 PMCID: PMC9980154 DOI: 10.1080/14756366.2023.2183809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The process of identifying the protein targets and off-targets of a biologically active compound is of great importance in modern drug discovery. Various chemical proteomics approaches have been established for this purpose. To compare the different approaches, and to understand which method would provide the best results, we have chosen the EGFR inhibitor lapatinib as an example molecule. Lapatinib derivatives were designed using linkers with motifs, including amino (amidation), alkyne (click chemistry) and the diazirine group (photo-affinity). These modified lapatinib analogues were validated for their ability to inhibit EGFR activity in vitro and were shown to pull down purified recombinant EGFR protein. In all of the approaches evaluated here, we identified EGFR as the main protein target from the lysate of immortalised cell line expressing EGFR, thus validating its potential use to identify unknown protein targets. Taken together, the results reported here give insight into the cellular activities of lapatinib.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Milan Mesić
- Selvita Ltd., Zagreb, Croatia,CONTACT Milan Mesić Selvita Ltd., Zagreb, Croatia
| |
Collapse
|
4
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Takano N, Hiramoto M, Yamada Y, Kokuba H, Tokuhisa M, Hino H, Miyazawa K. Azithromycin, a potent autophagy inhibitor for cancer therapy, perturbs cytoskeletal protein dynamics. Br J Cancer 2023; 128:1838-1849. [PMID: 36871041 PMCID: PMC10147625 DOI: 10.1038/s41416-023-02210-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in tumour cell growth and survival and also promotes resistance to chemotherapy. Hence, autophagy has been targeted for cancer therapy. We previously reported that macrolide antibiotics including azithromycin (AZM) inhibit autophagy in various types of cancer cells in vitro. However, the underlying molecular mechanism for autophagy inhibition remains unclear. Here, we aimed to identify the molecular target of AZM for inhibiting autophagy. METHODS We identified the AZM-binding proteins using AZM-conjugated magnetic nanobeads for high-throughput affinity purification. Autophagy inhibitory mechanism of AZM was analysed by confocal microscopic and transmission electron microscopic observation. The anti-tumour effect with autophagy inhibition by oral AZM administration was assessed in the xenografted mice model. RESULTS We elucidated that keratin-18 (KRT18) and α/β-tubulin specifically bind to AZM. Treatment of the cells with AZM disrupts intracellular KRT18 dynamics, and KRT18 knockdown resulted in autophagy inhibition. Additionally, AZM treatment suppresses intracellular lysosomal trafficking along the microtubules for blocking autophagic flux. Oral AZM administration suppressed tumour growth while inhibiting autophagy in tumour tissue. CONCLUSIONS As drug-repurposing, our results indicate that AZM is a potent autophagy inhibitor for cancer treatment, which acts by directly interacting with cytoskeletal proteins and perturbing their dynamics.
Collapse
Affiliation(s)
- Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan.
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Yumiko Yamada
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
6
|
Amantea D, Petrelli F, Greco R, Tassorelli C, Corasaniti MT, Tonin P, Bagetta G. Azithromycin Affords Neuroprotection in Rat Undergone Transient Focal Cerebral Ischemia. Front Neurosci 2019; 13:1256. [PMID: 31849581 PMCID: PMC6902046 DOI: 10.3389/fnins.2019.01256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
Repurposing existing drugs represents a promising approach for successful development of acute stroke therapies. In this context, the macrolide antibiotic azithromycin has been shown to exert neuroprotection in mice due to its immunomodulatory properties. Here, we have demonstrated that acute administration of a single dose of azithromycin upon reperfusion produces a dose-dependent (ED50 = 1.40 mg/kg; 95% CI = 0.48-4.03) reduction of ischemic brain damage measured 22 h after transient (2 h) middle cerebral artery occlusion (MCAo) in adult male rats. Neuroprotection by azithromycin (150 mg/kg, i.p., upon reperfusion) was associated with a significant elevation of signal transducer and activator of transcription 3 (STAT3) phosphorylation in astrocytes and neurons of the peri-ischemic motor cortex as detected after 2 and 22 h of reperfusion. By contrast, in the core region of the striatum, drug administration resulted in a dramatic elevation of STAT3 phosphorylation only after 22 h of reperfusion, being the signal mainly ascribed to infiltrating leukocytes displaying an M2 phenotype. These early molecular events were associated with a long-lasting neuroprotection, since a single dose of azithromycin reduced brain infarct damage and neurological deficit measured up to 7 days of reperfusion. These data, together with the evidence that azithromycin was effective in a clinically relevant time-window (i.e., when administered after 4.5 h of MCAo), provide robust preclinical evidence to support the importance of developing azithromycin as an effective acute therapy for ischemic stroke.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Petrelli
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosaria Greco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
7
|
Zhang B, Kopper TJ, Liu X, Cui Z, Van Lanen SG, Gensel JC. Macrolide derivatives reduce proinflammatory macrophage activation and macrophage-mediated neurotoxicity. CNS Neurosci Ther 2019; 25:591-600. [PMID: 30677254 PMCID: PMC6488883 DOI: 10.1111/cns.13092] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims To improve the efficacy and reduce antibiotic resistance risk of AZM‐based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow‐derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF‐gamma) with and without derivative costimulation. Pro‐ and anti‐inflammatory cytokine production, IL‐12 and IL‐10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results Azithromycin and some derivatives increased IL‐10 and reduced IL‐12 production of M1 macrophages. IL‐10/IL‐12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL‐10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Timothy J Kopper
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Xiaodong Liu
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Zheng Cui
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Steven G Van Lanen
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Kagebeck P, Nikiforova V, Brunken L, Easwaranathan A, Ruegg J, Cotgreave I, Munic Kos V. Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy. Eur J Pharmacol 2018; 829:44-53. [PMID: 29627311 DOI: 10.1016/j.ejphar.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Some cationic amphiphilic drugs (CADs) have been individually reported to interfere with the differentiation of immune system cells, such as macrophages and dendritic cells. To investigate the possible generic nature of this process, in this study we aimed to see whether these drugs are capable of interfering with the differentiation of adipocytes. Further, we investigated whether this feature might be connected to the lysosomotropic character of these drugs, and their disturbance of intracellular membrane trafficking rather than to the individual pharmacologic properties of each drug. Thus, for the selected set of compounds consisting of seven structurally and pharmacologically diverse CADs and three non-CAD controls we have measured the impact on differentiation of 3T3-L1K murine preadipocytes to adipocytes. We conclude that CADs indeed inhibit adipocyte differentiation, as shown morphologically, at the level of lipid droplet formation and on the expression of genetic markers of adipocytes. Furthermore, the intensity of this inhibitory effect was found to strongly positively correlate with the extent of drug accumulation in adipocytes, with their affinity for phospholipid membranes, as well as with their ability to induce phospholipidosis and inhibit autophagy.
Collapse
Affiliation(s)
- Patrik Kagebeck
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Violetta Nikiforova
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Lars Brunken
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Arrabi Easwaranathan
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Joelle Ruegg
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Ian Cotgreave
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Vesna Munic Kos
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, SE-151 36 Södertälje, Sweden.
| |
Collapse
|
9
|
Hirasawa K, Moriya S, Miyahara K, Kazama H, Hirota A, Takemura J, Abe A, Inazu M, Hiramoto M, Tsukahara K, Miyazawa K. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines. PLoS One 2016; 11:e0164529. [PMID: 27977675 PMCID: PMC5158196 DOI: 10.1371/journal.pone.0164529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for "tumor-starving therapy".
Collapse
Affiliation(s)
- Kazuhiro Hirasawa
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kana Miyahara
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Ayako Hirota
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Akihisa Abe
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Mukai S, Moriya S, Hiramoto M, Kazama H, Kokuba H, Che XF, Yokoyama T, Sakamoto S, Sugawara A, Sunazuka T, Ōmura S, Handa H, Itoi T, Miyazawa K. Macrolides sensitize EGFR-TKI-induced non-apoptotic cell death via blocking autophagy flux in pancreatic cancer cell lines. Int J Oncol 2015; 48:45-54. [PMID: 26718641 PMCID: PMC4734605 DOI: 10.3892/ijo.2015.3237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most difficult types of cancer to treat because of its high mortality rate due to chemotherapy resistance. We previously reported that combined treatment with gefitinib (GEF) and clarithromycin (CAM) results in enhanced cytotoxicity of GEF along with endoplasmic reticulum (ER) stress loading in non-small cell lung cancer cell lines. An epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) such as GEF induces autophagy in a pro-survival role, whereas CAM inhibits autophagy flux in various cell lines. Pronounced GEF-induced cytotoxicity therefore appears to depend on the efficacy of autophagy inhibition. In the present study, we compared the effect on autophagy inhibition among such macrolides as CAM, azithromycin (AZM), and EM900, a novel 12-membered non-antibiotic macrolide. We then assessed the enhanced GEF-induced cytotoxic effect on pancreatic cancer cell lines BxPC-3 and PANC-1. Autophagy flux analysis indicated that AZM is the most effective autophagy inhibitor of the three macrolides. CAM exhibits an inhibitory effect but less than AZM and EM900. Notably, the enhancing effect of GEF-induced cytotoxicity by combining macrolides correlated well with their efficient autophagy inhibition. However, this pronounced cytotoxicity was not due to upregulation of apoptosis induction, but was at least partially mediated through necroptosis. Our data suggest the possibility of using macrolides as ‘chemosensitizers’ for EGFR-TKI therapy in pancreatic cancer patients to enhance non-apoptotic tumor cell death induction.
Collapse
Affiliation(s)
- Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo, Japan
| | - Xiao-Fang Che
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Tomohisa Yokoyama
- Department of Clinical Oncology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Sakamoto
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihiro Sugawara
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Toshiaki Sunazuka
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Čikoš A, Ćaleta I, Žiher D, Vine MB, Elenkov IJ, Dukši M, Gembarovski D, Ilijaš M, Dragojević S, Malnar I, Alihodžić S. Structure and conformational analysis of spiroketals from 6-O-methyl-9(E)-hydroxyiminoerythronolide A. Beilstein J Org Chem 2015; 11:1447-57. [PMID: 26425201 PMCID: PMC4578343 DOI: 10.3762/bjoc.11.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/23/2015] [Indexed: 11/23/2022] Open
Abstract
Three novel spiroketals were prepared by a one-pot transformation of 6-O-methyl-9(E)-hydroxyiminoerythronolide A. We present the formation of a [4.5]spiroketal moiety within the macrolide lactone ring, but also the unexpected formation of a 10-C=11-C double bond and spontaneous change of stereochemistry at position 8-C. As a result, a thermodynamically stable structure was obtained. The structures of two new diastereomeric, unsaturated spiroketals, their configurations and conformations, were determined by means of NMR spectroscopy and molecular modelling. The reaction kinetics and mechanistic aspects of this transformation are discussed. These rearrangements provide a facile synthesis of novel macrolide scaffolds.
Collapse
Affiliation(s)
- Ana Čikoš
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Irena Ćaleta
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dinko Žiher
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Mark B Vine
- GlaxoSmithKline, New Frontiers Science Park, Harlow, CM19 5AW, United Kingdom
| | - Ivaylo J Elenkov
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Marko Dukši
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dubravka Gembarovski
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Marina Ilijaš
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Snježana Dragojević
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Ivica Malnar
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Sulejman Alihodžić
- GlaxoSmithKline Research Centre Zagreb Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
The design of novel classes of macrolides for neutrophil-dominated inflammatory diseases. Future Med Chem 2015; 6:657-74. [PMID: 24895894 DOI: 10.4155/fmc.14.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neutrophil-dominated inflammatory diseases, like chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, bronchiolitis obliteras syndrome and non-eosinophilic asthma, present a significant medical problem lacking adequate therapy. Macrolide antibiotics have been reported to be effective in the treatment of the aforementioned diseases, for reasons unrelated to their antibacterial action. This has resulted in research activities aimed at gaining a better understanding of the immunomodulatory actions of macrolides and the synthesis of various novel anti-inflammatory macrolides without antimicrobial activity. Despite the difficult chemistry and lack of an extensive knowledge for their mechanism of action, several interesting molecules from this class, including potential clinical candidates, are on the horizon.
Collapse
|
13
|
Wong EHC, Porter JD, Edwards MR, Johnston SL. The role of macrolides in asthma: current evidence and future directions. THE LANCET RESPIRATORY MEDICINE 2014; 2:657-70. [PMID: 24948430 DOI: 10.1016/s2213-2600(14)70107-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Macrolides, such as clarithromycin and azithromycin, possess antimicrobial, immunomodulatory, and potential antiviral properties. They represent a potential therapeutic option for asthma, a chronic inflammatory disorder characterised by airway hyper-responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing. Results from clinical trials, however, have been contentious. The findings could be confounded by many factors, including the heterogeneity of asthma, treatment duration, dose, and differing outcome measures. Recent evidence suggests improved effectiveness of macrolides in patients with sub-optimally controlled severe neutrophilic asthma and in asthma exacerbations. We examine the evidence from clinical trials and discuss macrolide properties and their relevance to the pathophysiology of asthma. At present, the use of macrolides in chronic asthma or acute exacerbations is not justified. Further work, including proteomic, genomic, and microbiome studies, will advance our knowledge of asthma phenotypes, and help to identify a macrolide-responsive subgroup. Future clinical trials should target this subgroup and place emphasis on clinically relevant outcomes such as asthma exacerbations.
Collapse
Affiliation(s)
- Ernie H C Wong
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - James D Porter
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, London, UK
| | - Michael R Edwards
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, London, UK
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, London, UK; Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
14
|
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143:225-45. [PMID: 24631273 DOI: 10.1016/j.pharmthera.2014.03.003] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/02/2023]
Abstract
Azithromycin is a macrolide antibiotic which inhibits bacterial protein synthesis, quorum-sensing and reduces the formation of biofilm. Accumulating effectively in cells, particularly phagocytes, it is delivered in high concentrations to sites of infection, as reflected in rapid plasma clearance and extensive tissue distribution. Azithromycin is indicated for respiratory, urogenital, dermal and other bacterial infections, and exerts immunomodulatory effects in chronic inflammatory disorders, including diffuse panbronchiolitis, post-transplant bronchiolitis and rosacea. Modulation of host responses facilitates its long-term therapeutic benefit in cystic fibrosis, non-cystic fibrosis bronchiectasis, exacerbations of chronic obstructive pulmonary disease (COPD) and non-eosinophilic asthma. Initial, stimulatory effects of azithromycin on immune and epithelial cells, involving interactions with phospholipids and Erk1/2, are followed by later modulation of transcription factors AP-1, NFκB, inflammatory cytokine and mucin release. Delayed inhibitory effects on cell function and high lysosomal accumulation accompany disruption of protein and intracellular lipid transport, regulation of surface receptor expression, of macrophage phenotype and autophagy. These later changes underlie many immunomodulatory effects of azithromycin, contributing to resolution of acute infections and reduction of exacerbations in chronic airway diseases. A sub-group of post-transplant bronchiolitis patients appears to be sensitive to azithromycin, as may be patients with severe sepsis. Other promising indications include chronic prostatitis and periodontitis, but weak activity in malaria is unlikely to prove crucial. Long-term administration of azithromycin must be balanced against the potential for increased bacterial resistance. Azithromycin has a very good record of safety, but recent reports indicate rare cases of cardiac torsades des pointes in patients at risk.
Collapse
Affiliation(s)
- Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Institute of Pharmacology for Life Scientists, Goethe University Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, University of Athens, Medical School, Athens, Greece; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Gianpaolo Perletti
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto A., Varese, Italy; Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - Geert M Verleden
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| | - Robin Vos
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| |
Collapse
|
15
|
Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype. Cell Immunol 2012; 279:78-86. [PMID: 23099154 DOI: 10.1016/j.cellimm.2012.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Azithromycin and chloroquine have been shown to exhibit anti-inflammatory activities in a number of cellular systems, but the mechanisms of these activities have still not been clarified unequivocally. Since both drugs are cationic, accumulate in acidic cellular compartments and bind to phospholipids with a consequent increase in lysosomal pH and induce phospholipidosis, we examined the relevance of these common properties to their anti-inflammatory activities. We compared also these effects with effects of concanamycin A, compound which inhibits acidification of lysosomes. All three compounds increased lysosomal pH, accumulation of autophagic vacuoles and ubiquitinated proteins and impaired recycling of TLR4 receptor with consequences in downstream signaling in LPS-stimulated J774A.1 cells. Azithromycin and chloroquine additionally inhibited arachidonic acid release and prostaglandin E2 synthesis. Therefore, impairment of lysosomal functions by azithromycin and chloroquine deregulate TLR4 recycling and signaling and phospholipases activation and lead to anti-inflammatory phenotype in LPS-stimulated J774A.1 cells.
Collapse
|