1
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
2
|
Ngoc KH, Kecskés A, Kepe E, Nabi L, Keeble J, Borbély É, Helyes Z. Expression of the Transient Receptor Potential Vanilloid 1 ion channel in the supramammillary nucleus and the antidepressant effects of its antagonist AMG9810 in mice. Eur Neuropsychopharmacol 2023; 73:96-107. [PMID: 37156112 DOI: 10.1016/j.euroneuro.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.
Collapse
Affiliation(s)
- Khai Huynh Ngoc
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Kepe
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Liza Nabi
- King's College London, Institute of Pharmaceutical Science, London, United Kingdom
| | - Julie Keeble
- King's College London, Centre for Human & Applied Physiological Sciences, London, United Kingdom
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Eötvös Loránd Research Network, Chronic Pain Research Group, University of Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; PharmInVivo Ltd, Pécs, Hungary.
| |
Collapse
|
3
|
Llanos MA, Enrique N, Sbaraglini ML, Garofalo FM, Talevi A, Gavernet L, Martín P. Structure-Based Virtual Screening Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J Chem Inf Model 2022; 62:3008-3022. [PMID: 35696534 DOI: 10.1021/acs.jcim.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel, known to be involved in the regulation of many important physiological and pathological processes. In the last few years, it has been proposed as a promising target to develop novel anticonvulsant compounds. However, thermoregulatory effects associated with the channel inhibition have hampered the path for TRPV1 antagonists to become marketed drugs. In this regard, we conducted a structure-based virtual screening campaign to find potential TRPV1 modulators among approved drugs, which are known to be safe and thermally neutral. To this end, different docking models were developed and validated by assessing their pose and score prediction powers. Novobiocin, montelukast, and cinnarizine were selected from the screening as promising candidates for experimental testing and all of them exhibited nanomolar inhibitory activity. Moreover, the in vivo profiles showed promising results in at least one of the three models of seizures tested.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Federico M Garofalo
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| |
Collapse
|
4
|
Meza RC, Ancatén-González C, Chiu CQ, Chávez AE. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front Cell Neurosci 2022; 16:864828. [PMID: 35518644 PMCID: PMC9062234 DOI: 10.3389/fncel.2022.864828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1), a ligand-gated nonselective cation channel, is well known for mediating heat and pain sensation in the periphery. Increasing evidence suggests that TRPV1 is also expressed at various central synapses, where it plays a role in different types of activity-dependent synaptic changes. Although its precise localizations remain a matter of debate, TRPV1 has been shown to modulate both neurotransmitter release at presynaptic terminals and synaptic efficacy in postsynaptic compartments. In addition to being required in these forms of synaptic plasticity, TRPV1 can also modify the inducibility of other types of plasticity. Here, we highlight current evidence of the potential roles for TRPV1 in regulating synaptic function in various brain regions, with an emphasis on principal mechanisms underlying TRPV1-mediated synaptic plasticity and metaplasticity. Finally, we discuss the putative contributions of TRPV1 in diverse brain disorders in order to expedite the development of next-generation therapeutic treatments.
Collapse
Affiliation(s)
- Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
6
|
Baudat M, de Kort AR, van den Hove DLA, Joosten EA. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur J Neurosci 2021; 55:295-317. [PMID: 34841582 PMCID: PMC9299880 DOI: 10.1111/ejn.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indicates that early‐life exposure to selective serotonin reuptake inhibitor has long‐term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities. Thus, the aim of this review is to understand how early‐life selective serotonin reuptake inhibitor exposure alters the developing prefrontal cortex and amygdala and thereby underlies the long‐term changes in pain and its affective comorbidities in later life. While there is still limited data on the effects of early‐life selective serotonin reuptake inhibitor exposure on pain, there is a substantial body of evidence on its affective comorbidities. From this perspective paper, four conclusions emerged. First, early‐life selective serotonin reuptake inhibitor exposure results in long‐term nociceptive effects, which needs to be consistently studied to clarify. Second, it results in enhanced depressive‐like behaviour and diminished exploratory behaviour in adult rodents. Third, early‐life selective serotonin reuptake inhibitor exposure alters serotonergic levels, transcription factors expression, and brain‐derived neurotrophic factor levels, resulting in hyperconnectivity within the amygdala and the prefrontal cortex. Finally, it affects antinociceptive inputs of the prefrontal cortex and the amygdala in the spinal cord. We conclude that early‐life selective serotonin reuptake inhibitor exposure affects the maturation of prefrontal cortex and amygdala circuits and thereby enhances their antinociceptive inputs in the spinal cord.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne R de Kort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Elbert A Joosten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Shichiri M, Ishida N, Aoki Y, Koike T, Hagihara Y. Stress-activated leukocyte 12/15-lipoxygenase metabolite enhances struggle behaviour and tocotrienols relieve stress-induced behaviour alteration. Free Radic Biol Med 2021; 175:171-183. [PMID: 34474105 DOI: 10.1016/j.freeradbiomed.2021.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Stress induces emotional arousal causing anxiety, irritability, exaggerated startle behaviour, and hypervigilance observed in patients with trauma and stress-related mental disorders, including acute stress disorder and post-traumatic stress disorder. Central norepinephrine release promotes stress-induced emotional arousal. However, the regulator of emotional arousal remains unknown. Here, we show that the arachidonate-derived metabolite produced by stress-activated leukocyte 12/15-lipoxygenase is remarkably elevated in the plasma and upregulates the central norepinephrine release, resulting in the enhancement of the struggle behaviour (= escape behaviour) in the tail suspension test. Struggle behaviour is mimicking a symptom of emotional arousal. This stress-induced struggle behaviour was absent in 12/15-lipoxygenase deficient mice; however, intravenous administration of a 12/15-lipoxygenase metabolite to these mice after stress exposure rekindled the struggle behaviour. Furthermore, tocotrienols and geranylgeraniol reduced stress-induced 12/15-lipoxygenase metabolite production and suppressed the struggle behaviour. Our findings indicate that arachidonate-derived 12/15-lipoxygenase metabolite is involved in the regulation of stress-enhanced central norepinephrine release and struggle behaviour. In addition, we propose 12/15-lipoxygenase as a potential therapeutic target for the treatment of emotional arousal observed in stress-related mental disorders.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8562, Japan.
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Yoshinori Aoki
- Healthcare Solutions Unit, Life Solutions Sector, Amenity Life Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Taisuke Koike
- Strategy Department, Advanced Solutions Planning Division, Advanced Solutions Domain, Mitsubishi Chemical Corporation, 1-1-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8251, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
8
|
Topuz RD, Cetinkaya MZ, Erumit D, Duvan Aydemir K, Gunduz O, Karadag CH, Ulugol A. The role of endocannabinoid system and TRPV1 receptors in the antidepressant and anxiolytic effects of dipyrone in chronic unpredictable mild stress in mice. Eur J Pharmacol 2021; 908:174315. [PMID: 34270988 DOI: 10.1016/j.ejphar.2021.174315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Although dipyrone is a widely used analgesic and antipyretic, its mechanism of action is not fully clarified. Recent studies have drawn attention to its central effects and its relationship with the endocannabinoid system. The endocannabinoid system plays important roles in processes such as anxiety, depression, fear, and learning-memory. In this study, we aimed to investigate whether endocannabinoid levels change in the amygdala in chronic unpredictable mild stress model in mice and whether cannabinoid and TRPV1 receptors mediate antidepressant and anxiolytic effects of dipyrone. Mice were submitted to chronic unpredictable mild stress protocol of 6-weeks, then behavioral test were performed. In the first part of the study, dipyrone was injected at doses of 150, 300, and 600 mg/kg (i.p.) during behavioral tests. In the second part, the CB1 antagonist AM 251 (1 mg/kg, i.p.), the CB2 antagonist AM630 (1 mg/kg, i.p.), and the TRPV1 antagonist capsazepine (3 mg/kg, i.p.) were administered alone or in combination with 300 mg/kg dipyrone to observe if these receptors mediate dipyrone effects. Endocannabinoid and N-acylethanolamines levels were measured by LC-MS/MS in amygdala. Our results showed that there were no changes in AEA, 2-AG, PEA, OAE levels in the amygdala in mice exposed to chronic unpredictable mild stress model; dipyrone exerted antidepressant and anxiolytic effects at doses of 300 and 600 mg/kg; its anxiolytic effect appears to be mediated via CB1 receptors, whereas TRPV1 receptors seems to mediate its antidepressant action.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey.
| | - Mehmet Zahid Cetinkaya
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Dilsat Erumit
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Kubra Duvan Aydemir
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Cetin Hakan Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ahmet Ulugol
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|
9
|
Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. URB597 abrogates anxiogenic and depressive behaviors in the methamphetamine-withdrawal mice: Role of the cannabinoid receptor type 1, cannabinoid receptor type 2, and transient receptor potential vanilloid 1 channels. J Psychopharmacol 2021; 35:875-884. [PMID: 33155516 DOI: 10.1177/0269881120965934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Methamphetamine is an addictive stimulant that possesses toxicity in the brain when taken repeatedly or at higher doses. Methamphetamine neurotoxicity is associated with numerous forms of mental impairment, including depression and anxiety. Evidence has also demonstrated that the endocannabinoid system is involved in the regulation of anxiety and depression. AIMS This study was designed to determine the involvement of the endocannabinoid system in anxiety- and depression-related behaviors in methamphetamine-withdrawal male NMRI mice. METHODS The elevated plus maze and forced swim test were used to assess the level of anxiety and depression. RESULTS We found that methamphetamine (30 mg/kg, intraperitoneal) evoked depressive- and anxiogenic-like effects at 3 days post-administration. Injection of URB597 (5-10 ng/mouse, intracerebroventricular), 10 min before the test, prevented the emotional deficits induced by methamphetamine withdrawal. Moreover, the cannabinoid receptor type 1 antagonist AM251 (1 μg/mouse) or cannabinoid receptor type 2 antagonist AM630 (5 and 10 μg/mouse) suppressed the antidepressant activity in the methamphetamine-withdrawal mice treated with URB597. The transient receptor potential vanilloid 1 antagonist capsazepine (25 μg/mouse) prevented while capsazepine (100 μg/mouse) potentiated the antidepressant efficacy in the methamphetamine-withdrawal mice treated with URB597. The higher dose of AM630 and two higher doses of capsazepine had antidepressant efficacy, by themselves. Furthermore, capsazepine (50 μg/mouse) increased locomotion in the methamphetamine-withdrawal mice treated with URB597. CONCLUSIONS The results suggest that URB597 has a potential for preventing methamphetamine withdrawal-evoked anxiety and depression. Cannabinoid type 1 receptors, cannabinoid type 2 receptors and transient receptor potential vanilloid 1 differently affect depression-related behaviors in methamphetamine-withdrawal mice treated with URB597.
Collapse
Affiliation(s)
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav Brain Res 2020; 393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
11
|
Synergistic antidepressant-like effect of capsaicin and citalopram reduces the side effects of citalopram on anxiety and working memory in rats. Psychopharmacology (Berl) 2020; 237:2173-2185. [PMID: 32388621 DOI: 10.1007/s00213-020-05528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE We have previously shown that in rats, capsaicin (Cap) has antidepressant-like properties when assessed using the forced swimming test (FST) and that a sub-threshold dose of amitriptyline potentiates the effects of Cap. However, synergistic antidepressant-like effects of the joint administration of Cap and the selective serotonin reuptake inhibitor citalopram (Cit) have not been reported. OBJECTIVES To assess whether combined administration of Cap and Cit has synergistic effects in the FST and to determine whether this combination prevents the side effects of Cit. METHODS Cap, Cit, and the co-administration of both substances were evaluated in a modified version of the FST (30-cm water depth) conducted in rats, as well as in the open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM). RESULTS In line with previous studies, independent administration of Cap and Cit displayed antidepressant-like properties in the FST, while the combined injection had synergistic effects. In the OFT, neither treatment caused significant increments in locomotion. In the EPM, the time spent in the closed arms was lower in groups administered either only Cap or a combination of Cap and Cit than in groups treated with Cit alone. In the MWM, both Cap and the joint treatment (Cap and Cit) improved the working memory of rats in comparison with animals treated only with Cit. CONCLUSION Combined administration of Cap and Cit produces a synergistic antidepressant-like effect in the FST and reduces the detrimental effects of Cit on anxiety and working memory.
Collapse
|
12
|
Gray RA, Stott CG, Jones NA, Di Marzo V, Whalley BJ. Anticonvulsive Properties of Cannabidiol in a Model of Generalized Seizure Are Transient Receptor Potential Vanilloid 1 Dependent. Cannabis Cannabinoid Res 2020; 5:145-149. [PMID: 32656346 PMCID: PMC7347071 DOI: 10.1089/can.2019.0028] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States) has demonstrated efficacy with an acceptable safety profile in patients with Lennox–Gastaut or Dravet syndrome in four randomized controlled trials. CBD possesses affinity for many target classes with functional effects relevant to the pathophysiology of many disease types, including epilepsy. Although the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, transient receptor potential vanilloid 1 (TRPV1) represents a plausible target because (1) CBD activates and then desensitizes TRPV1, (2) TRPV1 is overexpressed in models of temporal lobe epilepsy and patients with epilepsy, (3) and TRPV1 modulates neuronal excitability. Methods: To investigate a potential role of TRPV1 in the anticonvulsive effects of CBD, the effect of CBD on seizure threshold was assessed using a mouse maximal electroshock threshold model of generalized seizure in TRPV1 knockout and wildtype mice. The dose dependence of the CBD effect was determined and compared with that of the positive comparator diazepam and vehicle. Results: At 50 and 100 mg/kg, CBD significantly (p<0.0001) increased seizure threshold in wildtype mice compared with TRPV1 knockout and vehicle controls. This effect was observed only at 100 mg/kg in TRPV1 knockout mice compared with knockout vehicle mice, in which gene deletion partially attenuated the CBD-increased seizure threshold. The effect of high-dose CBD in wildtype mice was nevertheless significantly different from vehicle-treated TRPV1 knockout mice (p<0.0001). Bioanalysis confirmed that genotype-specific differential brain exposure to CBD was not responsible for the observed effect on seizure threshold. Conclusion: These data strongly implicate TRPV1 in the potential mechanisms of action for the anticonvulsive effects of CBD. The partial inhibition of the anticonvulsive effect of high-dose CBD in TRPV1 knockout mice may indicate the involvement of targets other than TRPV1. Further characterization of TRPV1 in the anticonvulsive effect of CBD in validated models of seizure is warranted, as is pharmacological investigation of the molecular interaction between CBD and TRPV1.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Université Laval, Québec City, Canada
| | - Benjamin J Whalley
- GW Research Ltd., Cambridge, United Kingdom.,School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Reading, Berkshire, United Kingdom
| |
Collapse
|
13
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Fischer SPM, Brusco I, Brum ES, Fialho MFP, Camponogara C, Scussel R, Machado-de-Ávila RA, Trevisan G, Oliveira SM. Involvement of TRPV1 and the efficacy of α-spinasterol on experimental fibromyalgia symptoms in mice. Neurochem Int 2020; 134:104673. [PMID: 31926196 DOI: 10.1016/j.neuint.2020.104673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Fibromyalgia is characterised mainly by symptoms of chronic widespread pain and comorbidities like depression. Although these symptoms cause a notable impact on the patient's quality of life, the underlying aetiology and pathophysiology of this disease remain incompletely elucidated. The transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor that is involved in the development of nociceptive and depressive behaviours, while α-spinasterol, a multitarget TRPV1 antagonist and cyclooxygenase inhibitor, presents antinociceptive and antidepressant effects. The present study investigated the involvement of the TRPV1 channel and the possible effects of α-spinasterol on nociceptive and depressive-like behaviours in an experimental fibromyalgia model. The fibromyalgia model was induced with a subcutaneous (s.c.) injection of reserpine (1 mg/kg) once daily for 3 consecutive days in male Swiss mice. Reserpine administration depleted monoamines and caused mechanical allodynia. This dysfunction was inhibited by SB-366791 (1 mg/kg, oral route [p.o.]), a selective TRPV1 antagonist, with a maximum inhibition (Imax) of 73.4 ± 15.5%, or by the single or 3-day-repeated administration of α-spinasterol (0.3 mg/kg, p.o.), with an Imax of 72.8 ± 17.8% and 78.9 ± 32.9%, respectively. SB-366791 also inhibited the increase of the reserpine-induced immobility time, with an Imax of 100%, while α-spinasterol inhibited this parameter with an Imax of 98.2 ± 21.5% and 100%, by single or repeated administration, respectively. The reserpine-induced mechanical allodynia and the thermal hyperalgesia were abolished by TRPV1-positive fibers desensitization induced by previous resiniferatoxin (RTX) administration. In summary, the TRPV1 channel is involved in the development and maintenance of nociception and depressive-like behaviours in a fibromyalgia model, while the α-spinasterol has therapeutic potential to treat the pain and depression symptoms in fibromyalgia patients.
Collapse
Affiliation(s)
- Susana Paula Moreira Fischer
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extrem South Catarinense, Criciuma, SC, Brazil
| | | | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Neurophysiologic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31784959 DOI: 10.1007/978-981-32-9271-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Enormous efforts for near half-century have harvested a plenty of understanding on major depressive disorder (MDD), although the underlying mechanisms are still elusive. The available antidepressants are far from satisfaction due to long-delay action (LDA) of antidepressant efficacy and low response rates in MDD patients. Notably, discovery of a single low-dose ketamine-producing rapid-onset and sustained antidepressant efficacy has inspired new research direction. These new studies have revealed ketamine's NMDAR-dependent and NMDAR-independent mechanisms, most of which are well known to be the key bases of synaptic plasticity as well as learning and memory. In fact, animal models of MDD are all based on the principle of learning and memory, i.e., the change of a behavior, for which monoaminergic and glutamatergic systems are the major modulators and executors, respectively. Reconsidering MDD as an aberrant form of emotion-related learning and memory would endow us a clearer research direction for developing new techniques or ways to prevent, diagnose, and treat MDD.
Collapse
|
16
|
Lin J, Song Z, Chen X, Zhao R, Chen J, Chen H, Yang X, Wu Z. Trans-cinnamaldehyde shows anti-depression effect in the forced swimming test and possible involvement of the endocannabinoid system. Biochem Biophys Res Commun 2019; 518:351-356. [PMID: 31421826 DOI: 10.1016/j.bbrc.2019.08.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/10/2019] [Indexed: 01/20/2023]
Abstract
Depression is a mental disease that significantly reduces the quality of patients' life. Around 322 million people of all ages carry the heavy burden of depression on a worldwide scale, with a life-time prevalence of 20% according to the WHO. Trans-cinnamaldehyde (TCA) is an excellent COX-2 inhibitor in central nervous system which is a main constituent of GUIZHI as a member of traditional Chinese herb. Furthermore, previous studies demonstrated that TCA suppressed depression-like behavior in chronic unexpected mild stress, plus maze test and open field test. However, the molecular mechanism of TCA anti-depression effect is not clear. We examined the immobility of TCA pretreated male BALB/c mice in the forced swimming test (FST). Results show that TCA (50 mg/kg, po) revealed a significant effect on reduced immobility in the FST, compared with SAL group which indicated that TCA suppressed depression-like behavior. Moreover, TCA elevated the level of 5-HT and decreased the ratio of Glu/GABA in mice hippocampus. Compared with SAL + FST group, TCA + FST group significantly decreased COX-2, TRPV1 and CB1 protein level in mice hippocampus (p < 0.05, p < 0.05, p < 0.01). These findings suggest that TCA treatment exerted anti-depressive effect and was able to regulate neurotransmitters in the FST. This effect may have positive influence on the endocannabinoid (eCB) system.
Collapse
Affiliation(s)
- Jiacheng Lin
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaolei Chen
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Riji Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Jiawen Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Huifeng Chen
- School of Nursing, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaodan Yang
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Zhongping Wu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| |
Collapse
|
17
|
Attenuation of glutamatergic and nitrergic system contributes to the antidepressant-like effect induced by capsazepine in the forced swimming test. Behav Pharmacol 2019; 30:59-66. [PMID: 30299277 DOI: 10.1097/fbp.0000000000000416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) can modulate stress-related behaviours, thus representing an interesting target for new antidepressant drugs. TRPV1 can trigger glutamate release and nitric oxide synthesis in the brain, mechanisms also involved in the neurobiology of depression. However, it is not known if these mechanisms are involved in TRPV1-induced behavioural effects. Therefore, the aim of this study was to verify if the antidepressant-like effect induced by a TRPV1 antagonist in mice submitted to the forced swimming test (FST) would be facilitated by combined treatment with neuronal nitric oxide synthase (nNOS) inhibition and N-methyl-D-aspartate (NMDA) blockade. Male Swiss mice were given (intracerebroventricular) injections of capsazepine (CPZ) (TRPV1 antagonist - 0.05/0.1/0.3/0.6 nmol/µl), and AP7 (NMDA antagonist - 1/3/10 nmol/µl) or N-propyl-L-arginine (NPA, nNOS inhibitor - 0.001/0.01/0.1 nmol/µl), and 10 min later, submitted to an open field test, and immediately afterwards, to the FST. An additional group received coadministration of CPZ and AP7 or CPZ and NPA, in subeffective doses. The results demonstrated that CPZ (0.1 nmol/µl), AP7 (3 nmol/µl) and NPA (0.01/0.1 nmol/µl) induced antidepressant-like effects. Moreover, coadministration of subeffective doses of CPZ and AP7 or CPZ and NPA induced significant antidepressant-like effects. Altogether, the data indicate that blockade of TRPV1 receptors by CPZ induces antidepressant-like effects and that both nNOS inhibition and NMDA blockade facilitate CPZ effects in the FST.
Collapse
|
18
|
Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases. Molecules 2019; 24:molecules24050995. [PMID: 30871017 PMCID: PMC6429077 DOI: 10.3390/molecules24050995] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways. It can inhibit cell proliferation, metastasis, and induce apoptosis. Moreover, capsazepine can exert anti-inflammatory effects through the downregulation of lipopolysaccharide (LPS)-induced nuclear transcription factor-kappa B (NF-κB), as well as the blockage of activation of both transient receptor potential cation channel subfamily V member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, and member 1 (TRPA1). This review briefly summarizes the diverse pharmacological actions of capsazepine against various cancers and inflammatory conditions.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
19
|
Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci 2019; 2019:7943481. [PMID: 30719038 PMCID: PMC6335777 DOI: 10.1155/2019/7943481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/26/2023] Open
Abstract
Depression is currently recognized as a crucial problem in everyday clinical practice, in light of ever-increasing rates of prevalence, as well as disability, morbidity, and mortality related to this disorder. Currently available antidepressant drugs are notoriously problematic, with suboptimal remission rates and troubling side-effect profiles. Their mechanisms of action focus on the monoamine hypothesis for depression, which centers on the disruption of serotonergic, noradrenergic, and dopaminergic neurotransmission in the brain. Nevertheless, views on the pathophysiology of depression have evolved notably, and the comprehension of depression as a complex neuroendocrine disorder with important systemic implications has sparked interest in a myriad of novel neuropsychopharmacological approaches. Innovative pharmacological targets beyond monoamines include glutamatergic and GABAergic neurotransmission, brain-derived neurotrophic factor, various endocrine axes, as well as several neurosteroids, neuropeptides, opioids, endocannabinoids and endovanilloids. This review summarizes current knowledge on these pharmacological targets and their potential utility in the clinical management of depression.
Collapse
|
20
|
Capsaicin produces antidepressant-like effects in the forced swimming test and enhances the response of a sub-effective dose of amitriptyline in rats. Physiol Behav 2018; 195:158-166. [DOI: 10.1016/j.physbeh.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/14/2022]
|
21
|
|
22
|
Sheng J, Liu S, Qin H, Li B, Zhang X. Drug-Resistant Epilepsy and Surgery. Curr Neuropharmacol 2018; 16:17-28. [PMID: 28474565 PMCID: PMC5771378 DOI: 10.2174/1570159x15666170504123316] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease that is caused by various factors and characterized by recurrent, episodic and temporary central nervous system dysfunction which results due to excessive discharge of brain neurons. In the past decades, despite the continuous development of antiepileptic drugs, there are still many patients with epilepsy progressing to drugresistant epilepsy. Currently, surgical treatment is one of important way to cure drug-resistant epilepsy. METHODS Data were collected from Web of Science, Medline, Pubmed, through searching of these keywords: "surgery" and "drug-resistant epilepsy". RESULTS An increasing number of studies have shown that surgery plays an important role in the treatment of drug-resistant epilepsy. Moreover, the comprehensive treatment mainly based on surgery can achieve the remission and even cure of drug-resistant epilepsy. CONCLUSION In this review, we discuss the pathogenesis of drug-resistant epilepsy and the comprehensive treatment mainly based on surgery; this review may provide a reference for the clinical treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jiyao Sheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Shui Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Hanjiao Qin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| | - Xuewen Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun130041, P.R. China
| |
Collapse
|
23
|
Raoof M, Ashrafganjoui E, Kooshki R, Abbasnejad M, Haghani J, Amanpour S, Zarei MR. Effect of chronic stress on capsaicin-induced dental nociception in a model of pulpitis in rats. Arch Oral Biol 2018; 85:154-159. [DOI: 10.1016/j.archoralbio.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/23/2023]
|
24
|
A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats. Acta Neuropsychiatr 2017; 29:324-329. [PMID: 27938441 DOI: 10.1017/neu.2016.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. METHODS We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. RESULTS Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). CONCLUSION A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.
Collapse
|
25
|
Regular physical activity prevents development of chronic muscle pain through modulation of supraspinal opioid and serotonergic mechanisms. Pain Rep 2017; 2:e618. [PMID: 29392233 PMCID: PMC5777681 DOI: 10.1097/pr9.0000000000000618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022] Open
Abstract
The current study shows that blockade of opioid receptors systemically in the periaqueductal gray and the rostral ventromedial medulla prevents analgesia by 8 weeks of wheel running in a chronic muscle pain model. We further show increases in serotonin transporter expression and reversal of hyperalgesia with a selective reuptake inhibitor in the rostral ventromedial medulla in the chronic muscle pain model, and exercise normalizes serotonin transporter expression. Introduction: It is generally believed that exercise produces its effects by activating central opioid receptors; there are little data that support this claim. The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are key nuclei in opioid-induced analgesia, and opioids interact with serotonin to produce analgesia. Objectives: The purpose was to examine central inhibitory mechanisms involved in analgesia produced by wheel running. Methods: C57/Black6 mice were given access to running wheels in their home cages before induction of chronic muscle hyperalgesia and compared with those without running wheels. Systemic, intra-PAG, and intra-RVM naloxone tested the role of central opioid receptors in the antinociceptive effects of wheel running in animals with muscle insult. Immunohistochemistry for the serotonin transporter (SERT) in the spinal cord and RVM, and pharmacological blockade of SERT, tested whether the serotonin system was modulated by muscle insult and wheel running. Results: Wheel running prevented the development of muscle hyperalgesia. Systemic naloxone, intra-PAG naloxone, and intra-RVM naloxone reversed the antinociceptive effect of wheel running in animals that had received muscle insult. Induction of chronic muscle hyperalgesia increased SERT in the RVM, and blockade of SERT reversed the hyperalgesia in sedentary animals. Wheel running reduced SERT expression in animals with muscle insult. The serotonin transporter in the superficial dorsal horn of the spinal cord was unchanged after muscle insult, but increased after wheel running. Conclusion: These data support the hypothesis that wheel running produced analgesia through central inhibitory mechanisms involving opioidergic and serotonergic systems.
Collapse
|
26
|
Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y, Zhang Y. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol 2017; 295:66-76. [PMID: 28479337 DOI: 10.1016/j.expneurol.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Capsaicin, the ingredient responsible for the pungent taste of hot chili peppers, is widely used in the study and management of pain. Recently, its neuroprotective effect has been described in multiple studies. Herein, we investigated the underlying mechanisms for the neuroprotective effect of capsaicin. Direct injection of capsaicin (1 or 3nmol) into the peri-infarct area reduced the infarct volume and improved neurological behavioral scoring and motor coordination function in the middle cerebral artery occlusion (MCAO)/reperfusion model in rats. The time window of the protective effect of capsaicin was within 1h after reperfusion, when excitotoxicity is the main reason of cell death. In cultured cortical neurons, administration of capsaicin attenuated glutamate-induced excitotoxic injury. With respect to the mechanisms of the neuroprotective effect of capsaicin, reduced calcium influx after glutamate stimulation was observed following capsaicin pretreatment in cortical neurons. Trpv1 knock-out abolished the inhibitory effect of capsaicin on glutamate-induced calcium influx and subsequent neuronal death. Reduced expression of GluN1 and GluN2B, subunits of NMDA receptor, was examined after capsaicin treatment in cortical neurons. In summary, our studies reveal that the neuroprotective effect of capsaicin in cortical neurons is TRPV1-dependent and down-regulation of the expression and function of NMDA receptors contributes to the protection afforded by capsaicin.
Collapse
Affiliation(s)
- Ming Huang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Gen Cheng
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Han Tan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Rui Qin
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, La Jolla, San Diego, CA 92093, USA
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
27
|
Sartim A, Moreira F, Joca S. Involvement of CB 1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior. Neuroscience 2017; 340:126-134. [DOI: 10.1016/j.neuroscience.2016.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/24/2016] [Accepted: 10/12/2016] [Indexed: 01/03/2023]
|
28
|
Tishkina AO, Mart'yanova EK, Logashina YA, Andreev YA, Khaibullina SF, Martynova EV, Rizvanov AA, Gulyaeva NV, Grishin EV. Effects of intranasal administration of the peptide antagonist of type I vaniloid receptor (TRPV1) in the rodent central nervous system. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 470:234-236. [PMID: 27822750 DOI: 10.1134/s0012496616050082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Intranasal administration of the polypeptide APHC3, an antagonist of the TRPV1 receptor, had acute anxiolytic and antidepressant effects, as well as an ability to modify the microglial response to proinflammatory stress and cytokine profile of the hippocampus. However, the acute antidepressant effect of the polypeptide was not related to the attenuation of neuroiflammation and probably had a different mechanism. The use of intranasal administration of the APHC3 peptide as a therapeutic approach aimed at decreasing depression symptoms needs additional studies in order to find the mechanism of action of this polypeptide in the central nervous system (CNS).
Collapse
Affiliation(s)
- A O Tishkina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - E K Mart'yanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - S F Khaibullina
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - E V Martynova
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - A A Rizvanov
- Kazan (Privolzhskii) Federal University, Kazan, Tatrstan, Russia
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - E V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Madasu MK, Okine BN, Olango WM, Rea K, Lenihan R, Roche M, Finn DP. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Pharmacol Res 2016; 113:44-54. [PMID: 27520401 DOI: 10.1016/j.phrs.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Negative affective state has a significant impact on pain, and genetic background is an important moderating influence on this interaction. The Wistar-Kyoto (WKY) inbred rat strain exhibits a stress-hyperresponsive, anxiety/depressive-like phenotype and also displays a hyperalgesic response to noxious stimuli. Transient receptor potential subfamily V member 1 (TRPV1) within the midbrain periaqueductal grey (PAG) plays a key role in regulating both aversive and nociceptive behaviour. In the present study, we investigated the role of TRPV1 in the sub-columns of the PAG in formalin-evoked nociceptive behaviour in WKY versus Sprague-Dawley (SD) rats. TRPV1 mRNA expression was significantly lower in the dorsolateral (DL) PAG and higher in the lateral (L) PAG of WKY rats, compared with SD counterparts. There were no significant differences in TRPV1 mRNA expression in the ventrolateral (VL) PAG between the two strains. TRPV1 mRNA expression significantly decreased in the DLPAG and increased in the VLPAG of SD, but not WKY rats upon intra-plantar formalin administration. Intra-DLPAG administration of either the TRPV1 agonist capsaicin, or the TRPV1 antagonist 5'-Iodoresiniferatoxin (5'-IRTX), significantly increased formalin-evoked nociceptive behaviour in SD rats, but not in WKY rats. The effects of capsaicin were likely due to TRPV1 desensitisation, given their similarity to the effects of 5'-IRTX. Intra-VLPAG administration of capsaicin or 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, and similar effects were seen with 5'-IRTX in WKY rats. Intra-LPAG administration of 5'-IRTX reduced nociceptive behaviour in a moderate and transient manner in SD rats, but not in WKY rats. These results indicate that modulation of inflammatory pain by TRPV1 in the PAG occurs in a sub-column-specific manner. The data also provide evidence for differences in the expression of TRPV1, and differences in the effects of pharmacological modulation of TRPV1 in specific PAG sub-columns, between WKY and SD rats, suggesting that TRPV1 expression and/or functionality in the PAG plays a role in hyper-responsivity to noxious stimuli in a genetic background prone to negative affect.
Collapse
Affiliation(s)
- Manish K Madasu
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Bright N Okine
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Weredeselam M Olango
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Kieran Rea
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Róisín Lenihan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
30
|
Amiri S, Alijanpour S, Tirgar F, Haj-Mirzaian A, Amini-Khoei H, Rahimi-Balaei M, Rastegar M, Ghaderi M, Ghazi-Khansari M, Zarrindast MR. NMDA receptors are involved in the antidepressant-like effects of capsaicin following amphetamine withdrawal in male mice. Neuroscience 2016; 329:122-33. [DOI: 10.1016/j.neuroscience.2016.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 01/27/2023]
|
31
|
Abstract
Epilepsy has 2-3% incidence worldwide. However, present antiepileptic drugs provide only partial control of seizures. Calcium ion accumulation in hippocampal neurons has long been known as a major contributor to the etiology of epilepsy. TRPV1 is a calcium-permeable channel and mediator of epilepsy in the hippocampus. TRPV1 is expressed in epileptic brain areas such as CA1 area and dentate gyrus of the hippocampus. Here the author reviews the patent literature on novel molecules targeting TRPV1 that are currently being investigated in the laboratory and are candidates for future clinical evaluation in the management of epilepsy. A limited number of recent reports have implicated TRPV1 in the induction or treatment of epilepsy suggesting that this may be new area for potential drugs targeting this debilitating disease. Thus activation of TRPV1 by oxidative stress, resiniferatoxin, cannabinoid receptor (CB1) activators (i.e. anandamide) or capsaicin induced epileptic effects, and these effects could be reduced by appropriate inhibitors, including capsazepine (CPZ), 5'-iodoresiniferatoxin (IRTX), resolvins, and CB1 antagonists. It has been also reported that CPZ and IRTX reduced spontaneous excitatory synaptic transmission through modulation of glutaminergic systems and desensitization of TRPV1 channels in the hippocampus of rats. Immunocytochemical studies indicated that TRPV1 channel expression increased in the hippocampus of mice and patients with temporal lobe epilepsy. Taken together, findings in the current literature support a role for calcium ion accumulation through TRPV1 channels in the etiology of epileptic seizures, indicating that inhibition of TRPV1 in the hippocampus may possibly be a novel target for prevention of epileptic seizures.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Director of Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
| |
Collapse
|
32
|
Abstract
Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders. Activation of TRPC4, TRPC5, and TRPV1 cation channels in the etiology of psychiatric disorders such as anxiety, fear-associated responses, and depression modulate calcium ion influx. Evidence substantiates that anandamide and its analog (methanandamide) induce an anxiolytic-like effect via CB1 receptors and TRPV1 channels. Intracellular calcium influx induced by oxidative stress has an significant role in the etiology of bipolar disorders (BDs), and studies recently reported the important role of TRP channels such as TRPC3, TRPM2, and TRPV1 in converting oxidant or nitrogen radical signaling to cytosolic calcium ion homeostasis in BDs. The TRPV1 channel also plays a function in morphine tolerance and hyperalgesia. Among psychotropic drugs, amitriptyline and capsazepine seem to have protective effects on psychiatric disorders via the TRP channels. Some drugs such as cocaine and methamphetamine also seem to have an important role in alcohol addiction and substance abuse via activation of the TRPV1 channel. Thus, we explore the relationships between the etiology of psychiatric disorders and TRP channel-regulated mechanisms. Investigation of the TRP channels in psychiatric disorders holds the promise of the development of new drug treatments.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Dekanlık Binası, TR-32260, Isparta, Turkey.
| | | |
Collapse
|
33
|
Socała K, Wlaź P. Evaluation of the antidepressant- and anxiolytic-like activity of α-spinasterol, a plant derivative with TRPV1 antagonistic effects, in mice. Behav Brain Res 2016; 303:19-25. [DOI: 10.1016/j.bbr.2016.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 11/28/2022]
|
34
|
Paracetamol potentiates the antidepressant-like and anticompulsive-like effects of fluoxetine. Behav Pharmacol 2015; 26:268-81. [DOI: 10.1097/fbp.0000000000000104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Socała K, Nieoczym D, Pieróg M, Wlaź P. α-Spinasterol, a TRPV1 receptor antagonist, elevates the seizure threshold in three acute seizure tests in mice. J Neural Transm (Vienna) 2015; 122:1239-47. [PMID: 25764210 PMCID: PMC4540766 DOI: 10.1007/s00702-015-1391-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
α-Spinasterol is a plant-derived compound which was reported to act as a selective antagonist for the transient receptor potential vanilloid 1 (TRPV1) receptor. Several studies revealed that the TRPV1 receptors might modulate seizure activity in animal models of seizures and epilepsy. The aim of the present study was to investigate the effect of α-spinasterol on the seizure threshold in three acute models of seizures, i.e., in the intravenous (i.v.) pentylenetetrazole (PTZ) seizure test, in the maximal electroshock seizure threshold (MEST) test and in the model of psychomotor seizures induced by 6 Hz stimulation in mice. Our results revealed significant anticonvulsant effect of α-spinasterol in all the used seizure tests. In the i.v. PTZ test, statistically significant elevation was noted in case of the threshold for myoclonic twitches (doses of 0.1–1 mg/kg) and generalized clonus seizures (doses of 0.5 and 1 mg/kg) but not for tonic seizures. The studied TRPV1 antagonist also increased the threshold for tonic hindlimb extension in the MEST (doses of 0.5 and 1 mg/kg) and 6 Hz psychomotor seizure (doses of 0.1 and 0.5 mg/kg) tests in mice. Furthermore, α-spinasterol did not produce any significant impairment of motor coordination (assessed in the chimney test) and muscular strength (investigated in the grip-strength test) and it did not provoke significant changes in body temperature in mice. Based on the results of our study and the fact that α-spinasterol is characterized by good blood–brain permeability, we postulate further investigation of this compound to precisely evaluate mechanism of its anticonvulsant action and opportunity of its usage in clinical practice.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
36
|
Behavioral in-effectiveness of high frequency electromagnetic field in mice. Physiol Behav 2015; 140:32-7. [PMID: 25496977 DOI: 10.1016/j.physbeh.2014.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
Abstract
The present investigation was carried out with an objective to study the influence of high frequency electromagnetic field (HF-EMF) on anxiety, obsessive compulsive disorder (OCD) and depression-like behavior. For exposure to HF-EMF, non-magnetic material was used to fabricate the housing. Mice were exposed to HF-EMF (2.45GHz), 60min/day for 7 or 30 or 60 or 90 or 120days. The exposure was carried out by switching-on inbuilt class-I BLUETOOTH device that operates on 2.45GHz frequency in file transfer mode at a peak density of 100mW. Mice were subjected to the assessment of anxiety, OCD and depression-like behavior for 7 or 30 or 60 or 90 or 120days of exposure. The anxiety-like behavior was assessed by elevated plus maze, open field test and social interaction test. OCD-like behavior was assessed by marble burying behavior, whereas depression-like behavior was assessed by forced swim test and tail suspension test. The present experiment demonstrates that up to 120days of exposure to HF-EMF does not produce anxiety, OCD and depression-like behavior in mice.
Collapse
|
37
|
Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M. The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 2014; 12:462-74. [PMID: 25426013 PMCID: PMC4243035 DOI: 10.2174/1570159x12666140923205412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Dawid Gawliński
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Edmund Przegaliński
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland ; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
38
|
Coppola M, Mondola R. Is there a role for palmitoylethanolamide in the treatment of depression? Med Hypotheses 2014; 82:507-11. [DOI: 10.1016/j.mehy.2013.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 12/28/2022]
|
39
|
Almeida V, Peres FF, Levin R, Suiama MA, Calzavara MB, Zuardi AW, Hallak JE, Crippa JA, Abílio VC. Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain. Schizophr Res 2014; 153:150-9. [PMID: 24556469 DOI: 10.1016/j.schres.2014.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 02/06/2023]
Abstract
Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs display hyperlocomotion - reverted by atypical and typical antipsychotics. These results suggest that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia and the effects of potential drugs with an antipsychotic profile. The aim of this study was to investigate the effects of WIN55-212,2 (CB1/CB2 agonist), ACEA (CB1 agonist), rimonabant (CB1 inverse agonist), AM404 (anandamide uptake/metabolism inhibitor), capsaicin (agonist TRPV1) and capsazepine (antagonist TRPV1) on the social interaction and locomotion of control animals (Wistar rats) and SHRs. The treatment with rimonabant was not able to alter either the social interaction or the locomotion presented by Wistar rats (WR) and SHR at any dose tested. The treatment with WIN55-212,2 decreased locomotion (1mg/kg) and social interaction (0.1 and 0.3mg/kg) of WR, while the dose of 1mg/kg increased social interaction of SHR. The treatment with ACEA increased (0.3mg/kg) and decreased (1mg/kg) locomotion of both strain. The administration of AM404 increased social interaction and decreased locomotion of SHR (5mg/kg), and decreased social interaction and increased locomotion in WR (1mg/kg). The treatment with capsaicin (2.5mg/kg) increased social interaction of both strain and decreased locomotion of SHR (2.5mg/kg) and WR (0.5mg/kg and 2.5mg/kg). In addition, capsazepine (5mg/kg) decreased locomotion of both strains and increased (5mg/kg) and decreased (10mg/kg) social interaction of WR. Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Valéria Almeida
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Fernanda F Peres
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Raquel Levin
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mayra A Suiama
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Mariana B Calzavara
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, University of São Paulo, Ribeirão Preto, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Federal University of São Paulo, UNIFESP/EPM, Brazil; Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Department of Psychiatry, Federal University of São Paulo, UNIFESP/EPM, Brazil.
| |
Collapse
|
40
|
Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors. Pharmacol Res 2013; 79:21-7. [PMID: 24200896 DOI: 10.1016/j.phrs.2013.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 μg/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat).
Collapse
|
41
|
Iacob E, Light KC, Tadler SC, Weeks HR, White AT, Hughen RW, VanHaitsma TA, Bushnell L, Light AR. Dysregulation of leukocyte gene expression in women with medication-refractory depression versus healthy non-depressed controls. BMC Psychiatry 2013; 13:273. [PMID: 24143878 PMCID: PMC4015603 DOI: 10.1186/1471-244x-13-273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/07/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Depressive Disorders (DD) are a great financial and social burden. Females display 70% higher rate of depression than males and more than 30% of these patients do not respond to conventional medications. Thus medication-refractory female patients are a large, under-served, group where new biological targets for intervention are greatly needed. METHODS We used real-time quantitative polymerase chain reaction (qPCR) to evaluate mRNA gene expression from peripheral blood leukocytes for 27 genes, including immune, HPA-axis, ion channels, and growth and transcription factors. Our sample included 23 females with medication refractory DD: 13 with major depressive disorder (MDD), 10 with bipolar disorder (BPD). Our comparison group was 19 healthy, non-depressed female controls. We examined differences in mRNA expression in DD vs. controls, in MDD vs. BPD, and in patients with greater vs. lesser depression severity. RESULTS DD patients showed increased expression for IL-10, IL-6, OXTR, P2RX7, P2RY1, and TRPV1. BPD patients showed increased APP, CREB1, NFKB1, NR3C1, and SPARC and decreased TNF expression. Depression severity was related to increased IL-10, P2RY1, P2RX1, and TRPV4 expression. CONCLUSIONS These results support prior findings of dysregulation in immune genes, and provide preliminary evidence of dysregulation in purinergic and other ion channels in females with medication-refractory depression, and in transcription and growth factors in those with BPD. If replicated in future research examining protein levels as well as mRNA, these pathways could potentially be used to explore biological mechanisms of depression and to develop new drug targets.
Collapse
Affiliation(s)
- Eli Iacob
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA.
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Scott C Tadler
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Howard R Weeks
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Andrea T White
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Department of Exercise and Sport Science, University of Utah, USA, Salt Lake City, UT, USA
| | - Ronald W Hughen
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Timothy A VanHaitsma
- Department of Exercise and Sport Science, University of Utah, USA, Salt Lake City, UT, USA
| | - Lowry Bushnell
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA,Neuroscience Program, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol Ther 2013; 138:18-37. [DOI: 10.1016/j.pharmthera.2012.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|