1
|
Zhao G, Zhao J, Lang J, Sun G. Activation of NFE2L2 Alleviates Endoplasmic Reticulum Stress-Mediated Pyroptosis in Murine Hippocampus: A Bioinformatics Analysis and Experimental Validation. Mol Neurobiol 2025; 62:1894-1903. [PMID: 39046701 DOI: 10.1007/s12035-024-04371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Pyroptosis has been implicated in many pathologic processes, including endoplasmic reticulum stress (ERS). However, the underlying mechanisms and molecular targets of ERS affecting pyroptosis still need further exploration. We obtained gene sets associated with ERS and pyroptosis, and the common genes were regarded as crosstalk genes linking ERS and pyroptosis. Protein-protein interaction (PPI) network was constructed, and the hub genes were obtained via Cytoscape. Moreover, to validate the efficacy of the therapeutic target, neurological tests, brain water content measurements, Nissl staining, Western blot, ELISA, TUNEL analyses, and transmission electron microscopy were performed in a mouse model. A total of 13 crosstalk genes were acquired, and enrichment analysis revealed that these genes were mainly enriched in stress-associated cellular processes and pathways, including KEAP1-NFE2L2 pathway. The hub gene, NFE2L2, was identified by Cytoscape, and tert-butylhydroquinone (tBHQ) was screened as candidate drug to activate NFE2L2. Western blot and ELISA results showed that activation of NFE2L2 could attenuate the expression of ERS and pyroptosis-related proteins by promoting nuclear translocation of Nrf2 (encoded by NFE2L2). Pathological evaluation by Nissl staining and TUNEL assay reflected a similar trend. Furthermore, activation of NFE2L2 ameliorated neurological deficits and reduced brain edema. In conclusion, our bioinformatic analysis results established the theoretical foundation of NFE2L2 as a promising therapeutic target. Moreover, in the mouse model, tBHQ pretreatment further confirmed the effectiveness of this target. We hypothesized NFE2L2 may play a key role in the progression of ERS-mediated pyroptosis. These findings may inspire new ideas to treat neurological disorders.
Collapse
Affiliation(s)
- Gengshui Zhao
- Department of Neurosurgery, Harrison International Peace Hospital Affiliated to Hebei Medical University, Hengshui, China
| | - Jianfei Zhao
- Department of Neurosurgery, The People's Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
3
|
Zhao G, Zhao J, Lang J, Sun G. Activation of NFE2L2 Alleviates Endoplasmic Reticulum Stress-Mediated Pyroptosis in Murine Hippocampus: A Bioinformatics Analysis and Experimental Validation. Mol Neurobiol 2024. [DOI: org/10.1007/s12035-024-04371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
|
4
|
Ziakova K, Kovalska M, Pilchova I, Dibdiakova K, Brodnanova M, Pokusa M, Kalenska D, Racay P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023; 60:6316-6329. [PMID: 37452223 PMCID: PMC10533597 DOI: 10.1007/s12035-023-03479-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
Collapse
Affiliation(s)
- Katarina Ziakova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Pilchova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic
| | - Maria Brodnanova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Pokusa
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic.
| |
Collapse
|
5
|
Wang YM, Xia CY, Jia HM, He J, Lian WW, Yan Y, Wang WP, Zhang WK, Xu JK. Sigma-1 receptor: A potential target for the development of antidepressants. Neurochem Int 2022; 159:105390. [PMID: 35810915 DOI: 10.1016/j.neuint.2022.105390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Though a great many of studies on the development of antidepressants for the therapy of major depression disorder (MDD) and the development of antidepressants have been carried out, there still lacks an efficient approach in clinical practice. The involvement of Sigma-1 receptor in the pathological process of MDD has been verified. In this review, recent research focusing on the role of Sigma-1 receptor in the etiology of MDD were summarized. Preclinical studies and clinical trials have found that stress induce the variation of Sigma-1 receptor in the blood, brain and heart. Dysfunction and absence of Sigma-1 receptor result in depressive-like behaviors in rodent animals. Agonists of Sigma-1 receptor show not only antidepressant-like activities but also therapeutical effects in complications of depression. The mechanisms underlying antidepressant-like effects of Sigma-1 receptor may include suppressing neuroinflammation, regulating neurotransmitters, ameliorating brain-derived neurotrophic factor and N-Methyl-D-Aspartate receptor, and alleviating the endoplasmic reticulum stress and mitochondria damage during stress. Therefore, Sigma-1 receptor represents a potential target for antidepressants development.
Collapse
Affiliation(s)
- Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Hong-Mei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Ping Wang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
6
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
7
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
8
|
Brodnanova M, Hatokova Z, Evinova A, Cibulka M, Racay P. Differential impact of imipramine on thapsigargin- and tunicamycin-induced endoplasmic reticulum stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. Eur J Pharmacol 2021; 902:174073. [PMID: 33798597 DOI: 10.1016/j.ejphar.2021.174073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
The aim of our work was to study effect of antidepressant imipramine on both thapsigargin- and tunicamycin-induced ER stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. ER stress in SH-SY5Y cells was induced by either tunicamycin or thapsigargin in the presence or absence of imipramine. Cell viability was tested by the MTT assay. Splicing of XBP1 mRNA was studied by RT-PCR. Finally, expression of Hrd1 and Hsp60 was determined by Western blot analysis. Our findings provide evidence that at high concentrations imipramine potentiates ER stress-induced death of SH-SY5Y cells. The effect of imipramine on ER stress-induced death of SH-SY5Y cells was stronger in combination of imipramine with thapsigargin. In addition, we have found that treatment of SH-SY5Y cells with imipramine in combination of either thapsigargin or tunicamycin is associated with the alteration of ER stress-induced IRE1α-XBP1 signalling. Despite potentiation of ER stress-induced XBP1 splicing, imipramine suppresses both thapsigargin- and tunicamycin-induced expression of Hrd1. Finally, imipramine in combination with thapsigargin, but not tunicamycin, aggravates ER stress-induced mitochondrial dysfunction without significant impact on intracellular mitochondrial content as indicated by the unaltered expression of Hsp60. Our results indicate the possibility that chronic treatment with imipramine might be associated with a higher risk of development and progression of neurodegenerative disorders, in particular those allied with ER stress and mitochondrial dysfunction like Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Maria Brodnanova
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4D, SK-03601 Martin, Slovakia
| | | | | | | | - Peter Racay
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Mala Hora 4D, SK-03601 Martin, Slovakia.
| |
Collapse
|
9
|
Javadpour P, Askari S, Rashidi FS, Dargahi L, Ahmadiani A, Ghasemi R. Imipramine alleviates memory impairment and hippocampal apoptosis in STZ-induced sporadic Alzheimer's rat model: Possible contribution of MAPKs and insulin signaling. Behav Brain Res 2021; 408:113260. [PMID: 33775777 DOI: 10.1016/j.bbr.2021.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang Y, Zhao CS. Sigma-1 receptor activation ameliorates LPS-induced NO production and ROS formation through the Nrf2/HO-1 signaling pathway in cultured astrocytes. Neurosci Lett 2019; 711:134387. [PMID: 31330223 DOI: 10.1016/j.neulet.2019.134387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/26/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
Accumulating evidence has shown that astrocytes play a critical role in neuroinflammation and protection against oxidative stress. In this study, we investigated the effects of sigma-1 receptor (Sig-1R) activation on lipopolysaccharide (LPS)-induced inflammatory reactions and oxidative/nitrosative stress in cultured astrocytes. We found that SA4503, a selective Sig-1R agonist, attenuated LPS-induced inflammatory reactions and oxidative/nitrosative stress by downregulating the expression of iNOS and tumor necrosis factor α (TNF-α) and upregulating glutathione (GSH) in cultured astrocytes. To investigate the mechanism by which SA4503 caused these effects, we then examined the expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) through western blotting. The results revealed that SA4503 treatment increased Nrf2 and HO-1 expression significantly. These results suggested that the antioxidative/nitrosative stress and anti-inflammatory effects of Sig-1R activation in astrocytes were partially mediated by Nrf2 and HO-1 activation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The first affiliated hospital of China Medical University, Shenyang, China; Department of Neurology, The first affiliated hospital of Dalian Medical University, Dalian, China
| | - Chuan-Sheng Zhao
- Department of Neurology, The first affiliated hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Kang Y, Lee JH, Seo YH, Jang JH, Jeong CH, Lee S, Jeong GS, Park B. Epicatechin Prevents Methamphetamine-Induced Neuronal Cell Death via Inhibition of ER Stress. Biomol Ther (Seoul) 2019; 27:145-151. [PMID: 30514054 PMCID: PMC6430228 DOI: 10.4062/biomolther.2018.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Methamphetamine (METH) acts strongly on the nervous system and damages neurons and is known to cause neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Flavonoids, polyphenolic compounds present in green tea, red wine and several fruits exhibit antioxidant properties that protect neurons from oxidative damage and promote neuronal survival. Especially, epicatechin (EC) is a powerful flavonoid with antibacterial, antiviral, antitumor and antimutagenic effects as well as antioxidant effects. We therefore investigated whether EC could prevent METH-induced neurotoxicity using HT22 hippocampal neuronal cells. EC reduced METH-induced cell death of HT22 cells. In addition, we observed that EC abrogated the activation of ERK, p38 and inhibited the expression of CHOP and DR4. EC also reduced METH-induced ROS accumulation and MMP. These results suggest that EC may protect HT22 hippocampal neurons against METH-induced cell death by reducing ER stress and mitochondrial damage.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji-Ha Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
12
|
Endoplasmic reticulum (ER) stress triggers Hax1-dependent mitochondrial apoptotic events in cardiac cells. Apoptosis 2018; 21:1227-1239. [PMID: 27654581 DOI: 10.1007/s10495-016-1286-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiomyocyte apoptosis is a major process in pathogenesis of a number of heart diseases, including ischemic heart diseases and cardiac failure. Ensuring survival of cardiac cells by blocking apoptotic events is an important strategy to improve cardiac function. Although the role of ER disruption in inducing apoptosis has been demonstrated, we do not yet fully understand how it influences the mitochondrial apoptotic machinery in cardiac cell models. Recent investigations have provided evidences that the prosurvival protein HCLS1-associated protein X-1 (Hax1) protein is intimately associated with the pathogenesis of heart disease, mitochondrial biology, and protection from apoptotic cell death. To study the role of Hax1 upon ER stress induction, Hax1 was overexpressed in cardiac cells subjected to ER stress, and cell death parameters as well as mitochondrial alterations were examined. Our results demonstrated that the Hax1 is significantly downregulated in cardiac cells upon ER stress induction. Moreover, overexpression of Hax1 protected from apoptotic events triggered by Tunicamycin-induced ER stress. Upon treatment with Tunicamycin, Hax1 protected from mitochondrial fission, downregulation of mitofusins 1 and 2 (MFN1 and MFN2), loss of mitochondrial membrane potential (∆Ψm), production of reactive oxygen species (ROS) and apoptotic cell death. Taken together, our results suggest that Hax1 inhibits ER stress-induced apoptosis at both the pre- and post-mitochondrial levels. These findings may offer an opportunity to develop new agents that inhibit cell death in the diseased heart.
Collapse
|
13
|
Kubo Y, Seko N, Usui T, Akanuma SI, Hosoya KI. Lysosomal Trapping Is Present in Retinal Capillary Endothelial Cells: Insight into Its Influence on Cationic Drug Transport at the Inner Blood–Retinal Barrier. Biol Pharm Bull 2016; 39:1319-24. [DOI: 10.1248/bpb.b16-00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Narumi Seko
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Takuya Usui
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
14
|
Yue ZS, Zeng LR, Quan RF, Tang YH, Zheng WJ, Qu G, Xu CD, Zhu FB, Huang ZM. 4‑Phenylbutyrate protects rat skin flaps against ischemia‑reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress. Mol Med Rep 2015; 13:1227-33. [PMID: 26648447 PMCID: PMC4732847 DOI: 10.3892/mmr.2015.4636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023] Open
Abstract
4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress-induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia-induced ER dysfunction has yet to be reported. In the present study, the effects of 4-PBA-induced ER stress inhibition on ischemia-reperfusion injury were investigated in the skin flap of rats, and transcriptional regulation was examined. 4-PBA attenuated ischemia-reperfusion injury and inhibited cell apoptosis in the skin flap. Furthermore, 4-PBA reversed the increased expression levels of two ER stress markers: CCAAT/enhancer-binding protein-homologous protein and glucose-regulated protein 78. These results suggested that 4-PBA was able to protect rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting ER stress marker expression and ER stress-mediated apoptosis. The beneficial effects of 4-PBA may prove useful in the treatment of skin flap ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhen-Shuang Yue
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Lin-Ru Zeng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Ren-Fu Quan
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Yang-Hua Tang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Wen-Jie Zheng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Gang Qu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Can-Da Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Fang-Bing Zhu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| | - Zhong-Ming Huang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang 311201, P.R. China
| |
Collapse
|
15
|
Jangra A, Dwivedi S, Sriram CS, Gurjar SS, Kwatra M, Sulakhiya K, Baruah CC, Lahkar M. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. Eur J Pharmacol 2015; 770:25-32. [PMID: 26638996 DOI: 10.1016/j.ejphar.2015.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/08/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023]
Abstract
The primary objective of our study is to investigate the neuroprotective efficacy of honokiol and imipramine against restraint stress (RS)-induced cognitive impairment and depressive-like behaviour in mice. We examined whether the neuroprotective activity of honokiol and imipramine mediates through the inhibition of endoplasmic reticulum stress. Adult Swiss albino mice were restrained for 6h/day for 28 days. Honokiol (3 and 10mg/kg) and Imipramine (10 and 30mg/kg) were administered for last 7 days to the different groups. Cognitive function was assessed by Morris water maze and novel object recognition test. Forced swimming test and tail suspension test were performed to evaluate the restraint stress-induced depressive-like behaviour. Proinflammatory cytokines, brain-derived neurotrophic factor, and ER stress markers i.e. 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) were quantified in the hippocampus. We observed cognitive impairment and depressive-like behaviour in RS-exposed animals. Honokiol (10mg/kg) treated group depicted marked reduction in cognitive impairment and depressive-like behaviour. However, imipramine (10 and 30mg/kg) prevented the depressive-like behaviour but failed to prevent RS-induced cognitive impairment. Moreover, proinflammatory cytokines, GRP78 and CHOP were elevated in the hippocampus of stressed mice as compared to unstressed mice. Honokiol (10mg/kg) significantly prevented the RS-induced elevated levels of proinflammatory cytokines and endoplasmic reticulum stress markers. Our results clearly suggest the beneficial potential of honokiol in restraint stress through inhibition of proinflammatory cytokines and endoplasmic reticulum stress. Honokiol could be an intriguing therapeutic approach in endoplasmic reticulum stress related neuro-pathophysiological conditions.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Shubham Dwivedi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Chandra Shaker Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Satendra Singh Gurjar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Mohit Kwatra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Chandana C Baruah
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India
| | - Mangala Lahkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam 781032, India; Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India; Department of Pharmacology, Gauhati Medical College, Guwahati, Assam 781032, India.
| |
Collapse
|
16
|
Lim EJ, Heo J, Kim YH. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression. Apoptosis 2015; 20:1087-98. [DOI: 10.1007/s10495-015-1135-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ramakrishnan NK, Marosi K, Nyakas CJ, Kwizera C, Elsinga PH, Ishiwata K, Luiten PGM, Dierckx RAJO, van Waarde A. Altered sigma-1 receptor expression in two animal models of cognitive impairment. Mol Imaging Biol 2015; 17:231-8. [PMID: 25273321 DOI: 10.1007/s11307-014-0780-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Sigma-1 receptors are involved in learning and memory processes. We assessed sigma-1 receptor expression and memory function in two animal models of cognitive impairment. PROCEDURES Male Wistar-Hannover rats were either lesioned by unilateral injection of N-methyl-D-aspartic acid in the nucleus basalis, or deprived of rapid eye movement sleep for 48 h, using the modified multiple platform method. Sigma-1 receptor expression was examined with the positron emission tomography radiotracer [(11)C]SA4503, immunohistochemistry, and Western blotting. RESULTS Cortical tracer uptake after 1 week was not significantly affected by lesioning. Immunohistochemistry revealed moderate increases of sigma-1 receptors at bregma level -2.8, in parietal cortex layer V of the lesioned hemisphere. Sleep deprivation lowered passive avoidance test scores and reduced [(11)C]SA4503 accumulation and sigma-1 receptor expression in pons. CONCLUSIONS Cholinergic lesioning causes an increase of sigma-1 receptor expression in a small cortical area which may be neuroprotective. Sleep deprivation decreases receptor expression in midbrain and pons.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shimazawa M, Sugitani S, Inoue Y, Tsuruma K, Hara H. Effect of a sigma-1 receptor agonist, cutamesine dihydrochloride (SA4503), on photoreceptor cell death against light-induced damage. Exp Eye Res 2015; 132:64-72. [PMID: 25616094 DOI: 10.1016/j.exer.2015.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
Cutamesine dihydrochloride is an agonist of sigma-1 receptor, which is a ligand-operated receptor chaperone at the mitochondrion-associated endoplasmic reticulum (ER) membrane. ER stress plays a pivotal role in light irradiation-induced retinal damage. In the present study, we examined whether cutamesine is effective against experimental degenerative retinal damages in vitro and in vivo. The effects of cutamesine against white light-induced retinal photoreceptor damage were evaluated in vitro by measuring cell death. The expression of sigma-1 receptor after the light exposure was examined by immunoblot analysis. The disruption of the mitochondrial membrane potential and caspase-3/7 activation after excessive light exposure were also examined. In addition, retinal damage in mice induced by irradiation to white light was evaluated using histological staining and electroretinography. Cutamesine reduced the cell death rate induced by light exposure, and the protective effect was prevented by N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD-1047) dihydrobromide, a sigma-1 receptor antagonist. Sigma-1 receptor expression was decreased by light exposure, and cutamesine suppressed the decreased expression of sigma-1 receptor protein. Cutamesine also reduced the mitochondrial damage and reduced the elevated level of caspase 3/7 activity; this effect was attenuated by BD-1047. In in vivo studies, cutamesine suppressed the light-induced retinal dysfunction and thinning of the outer nuclear layer in the mouse retina. These findings indicate that cutamesine protects against retinal cell death in vitro and in vivo by the agonistic effect of sigma-1 receptor. Therefore, sigma-1 receptor may have a potential as a therapeutic target in retinal diseases mediated by photoreceptor degeneration.
Collapse
Affiliation(s)
- Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Sou Sugitani
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
19
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|
20
|
Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 2015; 283:157-67. [PMID: 25620058 DOI: 10.1016/j.taap.2014.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1-CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress.
Collapse
|
21
|
Kubo Y, Tsuchiyama A, Shimizu Y, Akanuma SI, Hosoya KI. Involvement of Carrier-Mediated Transport in the Retinal Uptake of Clonidine at the Inner Blood–Retinal Barrier. Mol Pharm 2014; 11:3747-53. [DOI: 10.1021/mp500516j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yoshiyuki Kubo
- Department
of Pharmaceutics,
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ai Tsuchiyama
- Department
of Pharmaceutics,
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshimi Shimizu
- Department
of Pharmaceutics,
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-ichi Akanuma
- Department
of Pharmaceutics,
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ken-ichi Hosoya
- Department
of Pharmaceutics,
Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
22
|
Chen J, Guo H, Zheng G, Shi ZN. Region-specific vulnerability to endoplasmic reticulum stress-induced neuronal death in rat brain after status epilepticus. J Biosci 2014; 38:877-86. [PMID: 24296890 DOI: 10.1007/s12038-013-9391-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We sought to clarify the involvement and the intra-cerebral distribution variability of C/EBP homologous protein (CHOP), a representative molecule related to endoplasmic reticulum (ER) stress-induced cell death signalling pathways, in neuronal death resulting from status epilepticus in rats. The expression patterns of CHOP and glucose-regulated protein (GRP) 78, a good marker of ER stress, were assessed by Western blotting, real-time PCR, Hoechst and immunohistochemistry in the hippocampus, cortex and striatum on a status epilepticus (SE) model. Double-fluorescent staining of CHOP and the terminal deoxynucleotidyl transferase-mediated DNA nick-end labelling (TUNEL) method were performed to clarify the involvement of CHOP in cell death. SE resulted in a timedependent increase in the expression of GRP78 and CHOP. The expression of GRP78 protein was increased at 3, 6 and 12 h after SE and no brain region variability was found. The expression of CHOP protein was also increased, reached its peak at 24 h and remained high at 48 h. CHOP protein expression, however, showed brain region variability with highest expression noted in the hippocampus followed by the striatum, and lowest in the cortex. The up-regulation of CHOP occurring at the transcriptional level was demonstrated by real-time PCR. Double fluorescence showed that CHOP expression strongly correlated with neurons undergoing apoptosis. The results indicated that SE compromises the function of the ER and that the hippocampus is more vulnerable than the cortex and the striatum.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, No. 72, Guangzhou Road, Gu Lou District, Nanjing 210008, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Jin ML, Park SY, Kim YH, Oh JI, Lee SJ, Park G. The neuroprotective effects of cordycepin inhibit glutamate-induced oxidative and ER stress-associated apoptosis in hippocampal HT22 cells. Neurotoxicology 2014; 41:102-11. [PMID: 24486958 DOI: 10.1016/j.neuro.2014.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 01/21/2014] [Indexed: 01/01/2023]
Abstract
Glutamate toxicity increases the formation of reactive oxygen species (ROS) and intracellular calcium levels, resulting in neuronal dysfunction, neurodegenerative disorders, and death. Cordycepin is a derivative of the nucleoside adenosine, and is believed to exert neuroprotective effects against glutamate-induced oxidative toxicity in HT22 neuronal cells. Excessive glutamate induces oxidative and endoplasmic reticulum (ER) stress, gradually increasing ER-related pro-apoptotic transcription factor C/EBP homologous protein (CHOP) expression, and eventually up-regulating expression of the pro-apoptotic factor Bax. Cordycepin inhibits CHOP and Bax expressions, as well as p-ERK, p-JNK, and p-p38, all of which are involved in oxidative or ER stress-induced apoptosis. In addition, the increased production of ROS from excessive glutamate leads to elevation of mitochondrial membrane potential (MMP), a hallmark of mitochondrial dysfunction. Cordycepin retains MMP and reduces the elevated levels of ROS and Ca(2+) induced by glutamate. Caspases are crucial mediators involved in mitochondrial apoptosis, and while glutamate disrupts mitochondrial function, it does not change expression levels of caspase 3 and caspase 9. Similarly, cordycepin has no effect on caspase 3 and caspase 9 expressions; however, it decreases the expression of ER stress-specific caspase 12, which plays a key role in the initiation of ER stress-induced apoptosis. Finally, we found that the anti-apoptotic effects of cordycepin are partially dependent on activation of the adenosine A1 receptor, whereas an antagonist selectively attenuated the neuroprotective effects of cordycepin. Collectively, these results suggest that cordycepin could be a potential future therapeutic agent for neuronal disorders.
Collapse
Affiliation(s)
- Mei Ling Jin
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Young Hun Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Sang Joon Lee
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Geuntae Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea; Institute for Research & Industry Cooperation, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
24
|
Ono Y, Tanaka H, Takata M, Nagahara Y, Noda Y, Tsuruma K, Shimazawa M, Hozumi I, Hara H. SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 2014; 559:174-8. [PMID: 24334165 DOI: 10.1016/j.neulet.2013.12.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/07/2013] [Accepted: 12/04/2013] [Indexed: 12/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Recently, it has been reported that a mutation in the sigma-1 receptor causes juvenile ALS. Therefore, the function of the sigma-1 receptor may be important in the pathology of ALS. In the present study, we investigated the effect of SA4503, a sigma-1 receptor agonist, against in in vitro and in vivo ALS models. We first investigated whether SA4503, a sigma-1 receptor agonist, prevented superoxide dismutase 1 (SOD1(G93A))- and serum free-induced cell death of mice motor neuron cells (NSC34) in in vitro model of an ALS. At concentrations of 1-10μM, SA4503 reduced SOD1(G93A)-induced cell death in a concentration-dependent manner, and BD1047, a sigma-1 receptor antagonist, inhibited the protective effect of SA4503. Next, we investigated whether SA4503 affected the phosphorylation levels of Akt (Ser 473) and extracellular signal-regulated kinase (ERK) 1/2 and the expression of the sigma-1 receptor. SA4503 promoted the phosphorylation of Akt (Ser 473) and ERK1/2 in a time-dependent manner, but SA4503 did not affect the expression of the sigma-1 receptor. These results suggest that the protective effect of SA4503 might be involved in promoting the phosphorylation of Akt and ERK1/2. We then investigated whether SA4503 suppressed the progression of ALS in an SOD1(G93A) ALS mouse model. SA4503 did not affect the onset time of ALS. However, it significantly extended the survival time in the SOD1(G93A) mice compared with a vehicle-treated group. These findings indicate that SA4503 is effective in suppressing motor neuron degeneration and symptom progression in ALS.
Collapse
Affiliation(s)
- Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirotaka Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masafumi Takata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuhiro Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Isao Hozumi
- Department of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
25
|
Icariin protects rat cardiac H9c2 cells from apoptosis by inhibiting endoplasmic reticulum stress. Int J Mol Sci 2013; 14:17845-60. [PMID: 23999590 PMCID: PMC3794756 DOI: 10.3390/ijms140917845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 01/02/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is one of the mechanisms of apoptotic cell death. Inhibiting the apoptosis induced by ERS may be a novel therapeutic target in cardiovascular diseases. Icariin, a flavonoid isolated from Epimedium brevicornum Maxim, has been demonstrated to have cardiovascular protective effects, but its effects on ERS are unknown. In the present study, we focused on icariin and investigated whether it might protect the cardiac cell from apoptosis via inhibition of ERS. In H9c2 rat cardiomyoblast cells, pretreatment of icariin significantly inhibited cell apoptosis by tunicamycin, an ERS inducer. Icariin also decreased generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential and activation of caspase-3. Moreover, icariin inhibited upregulation of endoplasmic reticulum markers, GRP78, GRP94 and CHOP, elicited by tunicamycin. These results indicated that icariin could protect H9c2 cardiomyoblast cells from ERS-mitochondrial apoptosis in vitro, the mechanisms may be associated with its inhibiting of GRP78, GRP94 and CHOP and decreasing ROS generation directly. It may be a potential agent for treating cardiovascular disease.
Collapse
|
26
|
Ono Y, Tanaka H, Tsuruma K, Shimazawa M, Hara H. A sigma-1 receptor antagonist (NE-100) prevents tunicamycin-induced cell death via GRP78 induction in hippocampal cells. Biochem Biophys Res Commun 2013; 434:904-9. [PMID: 23618865 DOI: 10.1016/j.bbrc.2013.04.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 02/01/2023]
Abstract
Endoplasmic reticulum (ER) stress is involved in various diseases such as ischemia, Alzheimer's disease, and Parkinson's disease. The widely used selective sigma-1 receptor antagonist, N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine monohydrochloride (NE-100), has been shown to suppress ischemia-induced neuronal cell death in the murine hippocampus. In the present study, we investigated whether NE-100 might suppress neuronal cell death that is induced by ER stress in ischemic injury. These studies show that NE-100 protected the ER stress-induced cell death of murine hippocampal HT22 cells, but not the oxidative stress-induced cell death. This suggests that NE-100 may have a protective effect on the ER. However, another sigma-1 receptor antagonist (BD1047) did not suppress ER stress-induced cell death. In addition, NE-100 attenuated the upregulation of C/EBP homologous protein (CHOP) induced by ER stress and upregulated the expression of both the 50-kDa activating transcription factor 6 (p50ATF6) and the 78-kDa glucose-regulated protein (GRP78). However, NE-100 did not impact the expression of phosphorylated eukaryotic initiation factor 2α (p-eIF2α) nor splicing of X-box-binding protein 1 (XBP-1). These findings suggest that NE-100 suppresses ER stress-induced cell death via CHOP expression by the upregulation of GRP78 through ATF6 pathway, independent sigma-1 receptor antagonist effect.
Collapse
Affiliation(s)
- Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | |
Collapse
|
27
|
Cheng L, Zhao H, Zhang W, Liu B, Liu Y, Guo Y, Nie L. Overexpression of conserved dopamine neurotrophic factor (CDNF) in astrocytes alleviates endoplasmic reticulum stress-induced cell damage and inflammatory cytokine secretion. Biochem Biophys Res Commun 2013; 435:34-9. [PMID: 23624196 DOI: 10.1016/j.bbrc.2013.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/08/2013] [Indexed: 01/24/2023]
Abstract
Astrocyte damage and the disorders of cytokine secretion induced by endoplasmic reticulum stress (ERS) are crucial pathological processes in ischemic injury of the central nervous system (CNS), (e.g., ischemic reperfusion injury of the brain and spinal cord). ERS stimulates damage to astrocytes and the release of pro-inflammatory cytokines, which deteriorates CNS injury. This current study investigates whether the overexpression of conserved dopamine neurotrophic factor (CDNF) alleviates ER stress-induced cell damage and inflammatory cytokine secretion. We found that primary astrocytes showed both a successful transduction and a significant overexpression of CDNF protein following lentivirus application. Our results show that the percentage of LDH released as a result of ER stress was significantly lower in astrocytes with an overexpression of CDNF than in the control groups without CDNF overexpression, indicating that CDNF alleviates ER stress-induced astrocyte damage. The secretion and mRNA expression levels of pro-inflammatory cytokines were increased by tunicamycin, and this stimulation was significantly suppressed by an overexpression of CDNF, demonstrating that CDNF plays an important role in astrocyte inflammation and functioning by resisting ER stress. These findings suggest that primary astrocytes can be efficiently transduced with CDNF lentiviral vectors and that the overexpression of CDNF in astrocytes shows the potential to alleviate cell damage and proinflammatory cytokine secretion, which may represent a promising strategy for neuroprotection in the CNS.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|