1
|
Zheng H, Yu X, Wang C, Guo X, Gao C, Chen K, Wang G, Lin H, Liu C, Liu J, Wang F. Elucidation of the mechanism of the Yinhua Miyanling Tablet against urinary tract infection based on a combined strategy of network pharmacology, multi-omics and molecular biology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118835. [PMID: 39293704 DOI: 10.1016/j.jep.2024.118835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinhua Miyanling Tablet (YMT), a traditional Chinese medicine consisting of 10 herbs, has been widely used clinically to treat urinary tract infections (UTIs), however, its therapeutic mechanism is not fully understood. AIM OF THE STUDY To investigate the mechanism of YMT in treating UTIs through network pharmacology, multi-omics and experimental validation. MATERIALS AND METHODS Clinically, blood and urine samples from YMT-treated UTI patients were collected for transcriptomic and metabolomic analyses. Computationally, compounds that are related to YMT were obtained from the databases, relevant targets were identified, and UTI-related targets were analyzed to determine the core signaling pathways. Subsequently, an integrated approach combining multi-omics and network pharmacology assisted in identifying the key pathways underlying therapeutic effects of YMT on UTI. Finally, a mouse model of UTI was established using uropathogenic Escherichia coli (UPEC), and the therapeutic mechanism of YMT on UTI was validated by ELISA, qRT-PCR and Western blotting. RESULTS After taking YMT, patients showed reduced levels of urinary bacteria, white blood cells, and serum inflammatory factors (CRP, IL-6 and TNF-α). Multi-omics analysis combined with network pharmacology demonstrated that YMT significantly inhibited the TLR/MAPK/NFκB signaling pathway. In vivo experiments confirmed that YMT attenuated UPEC-induced pathological changes in bladder structural, reduced the expression of bladder proteins (TLR4, MyD88, p-p38 MAPK and p-p65 NFκB), increased protein expression of IκB-α, and attenuated the release of inflammatory factors (TNF-α, IL-6 and IL-1β) in mice. CONCLUSION YMT is effective in treating UTI by down-regulating the TLR4/p38MAPK/p65NFκB pathway, thereby providing a scientific basis for its clinical application.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chencheng Gao
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kai Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hongqiang Lin
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chuangui Liu
- National and Local United Engineering R&D Center of Ginseng Innovative Drugs, Changchun, 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Ke H, Zhu L, Zhang W, Wang H, Ding Z, Su D, Wang Q, Xu K. PACAP/PAC1 regulation in cystitis rats: induction of bladder inflammation cascade leading to bladder dysfunction. Front Immunol 2024; 15:1413078. [PMID: 39669574 PMCID: PMC11634801 DOI: 10.3389/fimmu.2024.1413078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic and debilitating condition marked by bladder pain, urinary urgency, and frequency. The pathophysiology of IC/BPS remains poorly understood, with limited therapeutic options available. The role of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor PAC1 in IC/BPS has not been thoroughly investigated, despite their potential involvement in inflammation and sensory dysfunction. This study aims to examine the expression and functional role of the PACAP/PAC1 signaling pathway in the pathogenesis of IC/BPS. Methods Bladder tissue samples from IC/BPS patients and a rat model of cystitis were analyzed to evaluate PACAP and PAC1 expression. Transcriptomic analysis, immunohistochemistry, and bladder function assays were employed to assess the correlation between PACAP/PAC1 activation, bladder inflammation, and sensory dysfunction. Additionally, modulation of the PACAP/PAC1 pathway was tested in rats to determine its effects on bladder inflammation and function. Results Our results demonstrate significant upregulation of PACAP and PAC1 in both human bladder tissues from IC/BPS patients and in the rat cystitis model. This upregulation was associated with increased bladder inflammation and sensory dysfunction. Intervention with PACAP/PAC1 pathway modulation in rats resulted in a marked reduction in bladder inflammation and improvement in bladder function, suggesting the pathway's pivotal role in disease progression. Discussion The findings provide compelling evidence that the PACAP/PAC1 pathway is involved in the inflammatory and sensory changes observed in IC/BPS. By targeting this signaling pathway, we may offer a novel therapeutic approach to mitigate the symptoms of IC/BPS. This study enhances our understanding of the molecular mechanisms driving IC/BPS and opens avenues for the development of targeted treatments.
Collapse
Affiliation(s)
- Hanwei Ke
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Lin Zhu
- Department of Plastic Surgery, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Weiyu Zhang
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Huanrui Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Zehua Ding
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Dongyu Su
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Qi Wang
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China
- Peking University Applied Lithotripsy Institute, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
3
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
4
|
Liu S, Li S, Dong Y, Qiao K, Zhao Y, Yu J. Hispidulin targets PTGS2 to improve cyclophosphamide-induced cystitis by suppressing NLRP3 inflammasome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5819-5830. [PMID: 38321213 DOI: 10.1007/s00210-024-02987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Interstitial cystitis (IC) is a chronic bladder inflammation. Inhibition of prostaglandin G/H synthase 2 (PTGS2) is the most common method for controlling inflammation-related diseases. This study aimed to analyze the effects of hispidulin on the PTGS2 and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammation in experimental IC models. A binding activity between hispidulin and PTGS2 was measured using molecular docking. Human urothelial cells (SV-HUC-1) were stimulated by 2 ng/mL of interleukin (IL)-1β for 24 h and cultured in a medium with different concentrations of hispidulin (2.5, 5, 10, 20 µM) for 24 h to observe the expressions of PTGS2 and NLRP3 protein. Cells overexpressing PTGS2 were established by PTGS2 cDNA transfection. In the IL-1β-treated cells, the NLRP3 inflammasome was measured after 20 µM hispidulin treatment. In rats, animals were performed with three injections of 40 mg/kg cyclophosphamide (CYP) and orally treated with 50 mg/kg/day hispidulin or ibuprofen for 3 days. The bladder pain was measured using Von Frey filaments, and the bladder pathology was observed using hematoxylin and eosin (H&E) staining. The expressions of PTGS2 and NLRP3 inflammasome were also observed in the bladder tissues. A good binding activity was found between hispidulin and PTGS2 (score = - 8.9 kcal/mol). The levels of PTGS2 and NLRP3 inflammasome were decreased with the hispidulin dose increase in the IL-1β-treated cells (p < 0.05). Cells overexpressing PTGS2 weakened the protective effects of hispidulin in the IL-1β-treated cells (p < 0.01). In the CYP-treated rats, hispidulin treatment improved the bladder pain through decreasing the nociceptive score (p < 0.01) and suppressed the bladder inflammation through suppressing the expressions of PTGS2 and NLRP3 inflammasome in bladder tissues (p < 0.01). Additionally, the results of ibuprofen treatment were similar to the effects of hispidulin in the CYP-treated rats. This study demonstrates that hispidulin may be a new alternative drug for the IC treatment that binds PTGS2 to perform its functions.
Collapse
Affiliation(s)
- Songlin Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Yuping Dong
- Department of Hematologic Lymphoma, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Kun Qiao
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Yang Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, China
| | - Jianyong Yu
- Department of Urology, Yantai Hospital of Traditional Chinese Medicine, No.39, Xingfu Road, Zhifu District, Yantai, 264000, China.
| |
Collapse
|
5
|
Chang YC, Yu CY, Dong C, Chen SL, Sung WW. Divergent histopathological and molecular patterns in chemically induced interstitial cystitis/bladder pain syndrome rat models. Sci Rep 2024; 14:16134. [PMID: 38997336 PMCID: PMC11245554 DOI: 10.1038/s41598-024-67162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex chronic pain disorder with an elusive etiology and nonspecific symptoms. Although numerous animal models with phenotypes similar to human disease have been established, no available regimen can consistently alleviate clinical symptoms. This dilemma led us to question whether current animal models adequately represent IC/BPS. We compared four commonly used IC/BPS rat models to determine their diverse histopathological and molecular patterns. Female rats were given single treatments with hydrochloric acid (HCL), acetic acid (AA), protamine sulfate plus lipopolysaccharide (PS + LPS), or cyclophosphamide (CYP) to induce IC/BPS. Bladder sections were stained for histopathologic evaluation, and mRNA expression profiles were examined using next-generation sequencing and gene set analyses. Mast cell counts were significantly higher in the HCL and AA groups than in the PS + LPS, CYP, and control groups, but only the AA group showed significant collagen accumulation. The models differed substantially in terms of their gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our observations suggest that none of these rat models fully reflects the complexity of IC/BPS. We recommend that future studies apply and compare multiple models simultaneously to fully replicate the complicated features of IC/BPS.
Collapse
Affiliation(s)
- Ya-Chuan Chang
- Department of Urology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chia-Ying Yu
- Department of Urology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chen Dong
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Sung-Lang Chen
- Department of Urology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Wen-Wei Sung
- Department of Urology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
6
|
Lu Q, Liu Q, Chen S, Wang J, Chen Y, Sun B, Yang Z, Feng H, Yi S, Chen W, Zhu J. The expression and distribution of TACAN in human and rat bladders. Low Urin Tract Symptoms 2023; 15:256-264. [PMID: 37649457 DOI: 10.1111/luts.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES A lot of ion channels participate in the regulation of bladder function. TACAN, a new mechanosensitive ion channel, was first discovered in 2020. TACAN has been found to be expressed in many tissues, such as the dorsal root ganglia (DRG) and adipose tissue. However, it is unclear whether or not TACAN is expressed in the bladder. In this work, we decided to study the expression and distribution of TACAN in human and rat bladders. Meanwhile, the expression of TACAN in the rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) was studied. METHODS Human bladder tissues were obtained from female patients. Cyclophosphamide (CYP) was used to build the rat model of IC/BPS. Real-time polymerase chain reaction, agarose gel electrophoresis, and western blotting were used to assess the expression of TACAN in human and rat bladders. Immunohistochemistry and immunofluorescence were used to observe the distribution of TACAN in human and rat bladders. Hematoxylin-eosin stain, withdrawal threshold, and micturition interval were used to evaluate animal models. RESULTS The results of agarose gel electrophoresis and western blotting suggested that TACAN was expressed in human and rat bladders. Immunohistochemical results suggested that TACAN showed positive immunoreaction in the urothelial and detrusor layers. The immunofluorescence results indicated that TACAN was co-stained with UPKIII, α-SMA, and PGP9.5. The IC/BPS model was successfully established with CYP. The mRNA and protein expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. CONCLUSIONS TACAN was found in human and rat bladders. TACAN was mainly distributed in the urothelial and detrusor layers and bladder nerves. The expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. This new discovery will provide a theoretical basis for future research on the function of TACAN in the bladder and a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwei Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Jiaolian Wang
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Yongjie Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Chen
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Tay C, Grundy L. Animal models of interstitial cystitis/bladder pain syndrome. Front Physiol 2023; 14:1232017. [PMID: 37731545 PMCID: PMC10507411 DOI: 10.3389/fphys.2023.1232017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic disorder characterized by pelvic and/or bladder pain, along with lower urinary tract symptoms that have a significant impact on an individual's quality of life. The diverse range of symptoms and underlying causes in IC/BPS patients pose a significant challenge for effective disease management and the development of new and effective treatments. To facilitate the development of innovative therapies for IC/BPS, numerous preclinical animal models have been developed, each focusing on distinct pathophysiological components such as localized urothelial permeability or inflammation, psychological stress, autoimmunity, and central sensitization. However, since the precise etiopathophysiology of IC/BPS remains undefined, these animal models have primarily aimed to replicate the key clinical symptoms of bladder hypersensitivity and pain to enhance the translatability of potential therapeutics. Several animal models have now been characterized to mimic the major symptoms of IC/BPS, and significant progress has been made in refining these models to induce chronic symptomatology that more closely resembles the IC/BPS phenotype. Nevertheless, it's important to note that no single model can fully replicate all aspects of the human disease. When selecting an appropriate model for preclinical therapeutic evaluation, consideration must be given to the specific pathology believed to underlie the development of IC/BPS symptoms in a particular patient group, as well as the type and severity of the model, its duration, and the proposed intervention's mechanism of action. Therefore, it is likely that different models will continue to be necessary for preclinical drug development, depending on the unique etiology of IC/BPS being investigated.
Collapse
Affiliation(s)
- Cindy Tay
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Luke Grundy
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Liu S, Lan XB, Tian MM, Zhu CH, Ma L, Yang JM, Du J, Zheng P, Yu JQ, Liu N. Targeting the chemokine ligand 2-chemokine receptor 2 axis provides the possibility of immunotherapy in chronic pain. Eur J Pharmacol 2023; 947:175646. [PMID: 36907261 DOI: 10.1016/j.ejphar.2023.175646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Chronic pain affects patients' physical and psychological health and quality of life, entailing a tremendous public health challenge. Currently, drugs for chronic pain are usually associated with a large number of side effects and poor efficacy. Chemokines in the neuroimmune interface combine with their receptors to regulate inflammation or mediate neuroinflammation in the peripheral and central nervous system. Targeting chemokines and their receptor-mediated neuroinflammation is an effective means to treat chronic pain. In recent years, growing evidence has shown that the expression of chemokine ligand 2 (CCL2) and its main chemokine receptor 2 (CCR2) is involved in its occurrence, development and maintenance of chronic pain. This paper summarises the relationship between the chemokine system, CCL2/CCR2 axis, and chronic pain, and the CCL2/CCR2 axis changes under different chronic pain conditions. Targeting chemokine CCL2 and its chemokine receptor CCR2 through siRNA, blocking antibodies, or small molecule antagonists may provide new therapeutic possibilities for managing chronic pain.
Collapse
Affiliation(s)
- Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
10
|
Abdelrahman RS, Nashar EME, Alghamdi MA, Al-Khater KM, Taha RI. Phosphodiesterase1 inhibitor "Vinpocetine" ameliorates the inflammation, apoptosis and oxidative stress induced by cyclophosphamide in urinary bladder: an experimental study. Int Urol Nephrol 2023; 55:129-139. [PMID: 35817991 DOI: 10.1007/s11255-022-03246-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CP). Vincamine (vinca alkaloid) is the source of the synthetic derivative vinpocetine (Vinpo). Worldwide, Vinpo is used as a cerebroprotective drug. As it has anti-oxidant, anti-thrombotic and anti-inflammatory effects but the power of Vinpo to prevent CP induced cystitis has not been studied. AIM OF STUDY This research was planned to explore the effect of Vinpo (10-30 mg/kg, orally) administered 1 or 4 h before inducing cystitis by CP injection (300 mg/kg, i.p.) on the urinary bladder of mice. RESULTS Administration of Vinpo 30 mg/kg, 4 h before CP injection ameliorated inflammatory markers. It reduced inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), and BCL2 Associated X (Bax) expression in the bladder and increased the total antioxidant capacity level. Histological examination of the bladder has further supported these results. The present study suggests a protective effect of Vinpo (30 mg/kg, 4 h before CP injection) against CP-induced bladder inflammation. CONCLUSION This proposes that Vinpo 30 mg/kg may become a promising pharmacological drug to prevent urinary adverse effects in patients treated with chemotherapy using CP.
Collapse
Affiliation(s)
- Rehab Sabri Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, Riyadh, 30001, Saudi Arabia
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, King Khalid University Post Office Box: 960, Abha, Postal Code: 61421, Saudi Arabia.
- Department of Histology and Cell Biology College of Medicine, Benha University, Benha, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Reham Ismail Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
de Oliveira MG, Monica FZ, Passos GR, Victorio JA, Davel AP, Oliveira ALL, Parada CA, D’Ancona CAL, Hill WG, Antunes E. Selective Pharmacological Inhibition of NOX2 by GSK2795039 Improves Bladder Dysfunction in Cyclophosphamide-Induced Cystitis in Mice. Antioxidants (Basel) 2022; 12:92. [PMID: 36670953 PMCID: PMC9854480 DOI: 10.3390/antiox12010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. Among the many mediators implicated in cystitis, the overproduction of reactive oxygen species (ROS) seems to play a key role, although the main source of ROS remains unclear. This study aimed to investigate the contribution of NADPH oxidase (NOX) isoforms in ROS generation and the voiding dysfunction of cyclophosphamide (CYP, 300 mg/Kg, ip, 24 h)-induced cystitis in adult female mice, a well-recognized animal model to study IC/BPS, by using GKT137831 (5 mg/Kg, ip, three times in a 24 h period) or GSK2795039 (5 mg/Kg, ip, three times in a 24 h period) to inhibit NOX1/4 or NOX2, respectively. Our results showed that treatment with GSK2795039 improved the dysfunctional voiding behavior induced by CYP, reduced bladder edema and inflammation, and preserved the urothelial barrier integrity and tight junction occludin expression, besides inhibiting the characteristic vesical pain and bladder superoxide anion generation. In contrast, the NOX1/4 inhibitor GKT137831 had no significant protective effects. Taken together, our in vivo and ex vivo data demonstrate that NOX2 is possibly the main source of ROS observed in cystitis-induced CYP in mice. Therefore, selective inhibition of NOX2 by GSK2795039 may be a promising target for future therapies for IC/BPS.
Collapse
Affiliation(s)
- Mariana G. de Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Fabíola Z. Monica
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Gabriela R. Passos
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Jamaira A. Victorio
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Anna Lethicia Lima Oliveira
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Carlos A. Parada
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Carlos A. L. D’Ancona
- Department of Surgery, Division of Urology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-881, SP, Brazil
| | - Warren G. Hill
- Laboratory of Voiding Dysfunction, Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| |
Collapse
|
12
|
Shal B, Amanat S, Khan AU, Lee YJ, Ali H, Din FU, Park Y, Khan S. Potential applications of PEGylated green gold nanoparticles in cyclophosphamide-induced cystitis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:130-146. [PMID: 35620802 DOI: 10.1080/21691401.2022.2078340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effect of green tea extract PEGylated gold nanoparticles (P-AuNPs) making use of its targeted and sustained drug delivery against cyclophosphamide (CYP)-induced cystitis. AuNPs were synthesized by reduction reaction of gold salts with green tea extract following the concept of green synthesis. Mostly spherical-shaped P-AuNPs were synthesized with an average size of 14.3 ± 3.3 nm. Pre-treatment with P-AuNPs (1, 10 mg/kg, i.p.) before CYP (150 mg/kg, i.p.) challenge suggested its uroprotective properties. P-AuNPs significantly reversed all pain-like behaviours and toxicities produced by CYP resulting in a decreased aspartate aminotransferase, alanine aminotransferase, C-reactive protein, and creatinine level. P-AuNPs increased anti-oxidant system by increasing the level of reduced glutathione, glutathione-S-transferase, catalase and superoxide dismutase, and reduced nitric oxide production in bladder tissue. Additionally, it attenuated hypokalaemia and hyponatremia, along with a decrease in Evans blue content in bladder tissue and peritoneal cavity. CYP-induced bladder tissue damage observed by macroscopic and histological findings were remarkably attenuated by P-AuNPs, along with reduced fibrosis of collagen fibre in bladder smooth muscles shown by Masson's trichrome staining. Additionally, alterations in hematological parameters and clinical scoring were also prevented by P-AuNPs suggesting its uroprotective effect.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Safa Amanat
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - You Jeong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Youmie Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
13
|
Abdel Baky NA, Al-Najjar AH, Elariny HA, Sallam AS, Mohammed AA. Pramipexole and Lactoferrin ameliorate Cyclophosphamide-Induced haemorrhagic cystitis via targeting Sphk1/S1P/MAPK, TLR-4/NF-κB, and NLRP3/caspase-1/IL-1β signalling pathways and modulating the Nrf2/HO-1 pathway. Int Immunopharmacol 2022; 112:109282. [DOI: 10.1016/j.intimp.2022.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
|
14
|
The Uroprotective Efficacy of Total Ginsenosides in Chinese Ginseng on Chemotherapy with Cyclophosphamide. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hemorrhagic cystitis is a recognizable complication of cyclophosphamide (CYP) attributable to its lively metabolite acrolein, which produces urothelial injury. The study intended to examine the uroprotective efficacy of total ginsenosides in Chinese ginseng (TGCG) in CYP-induced hemorrhagic cystitis. In total, 24 virgin female rats were randomized into four groups as follows: group 1 (control group; injected with normal saline), group 2 (injected with CYP plus a placebo with normal saline), group 3 (given CYP and TGCG (200 mg/kg)), and group 4 (given CYP and 2-mercaptoethane sulfonate sodium (Mesna, 30 mg/kg)). An evaluation by cystometry was conducted. Values of the voiding interval were assessed in anesthetized rats and histological examinations of the bladders were measured. In the cystometry analysis, the voiding interval was significantly reduced in the CYP group. TGCG and Mesna significantly increased in the voiding interval values, individually. Bladder edema and urothelial injury were examined after contact with CYP. Contrasted to the group given CYP, CYP-induced hemorrhagic cystitis, TGCG significantly increased the urothelial thickness, and significantly reduced scores of mucosal break and submucosal edema in the bladder. In conclusion, these findings mean that the treatment with TGCG in CYP rats can avoid hemorrhagic cystitis. TGCG decreases urothelial injury. TGCG may participate as the chief character of uroprotection in CYP-induced hemorrhagic cystitis.
Collapse
|
15
|
Shidid S, Bluth MH, Smith-Norowitz TA. The Role of Inflammasomes in Mediating Urological Disease: A Short Literature Review. J Inflamm Res 2022; 15:4359-4365. [PMID: 35937918 PMCID: PMC9354909 DOI: 10.2147/jir.s370451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammasome dysfunction may be responsible for underlying inflammatory diseases, which include renal and urological pathologies. Five inflammasomes have been described, including nucleotide-binding domain leucine-rich repeat (NLR), NL pyrin domain containing receptor 1(NLPR1), NLRP3, NLR and caspase recruitment domain containing receptor 4 (NLRC4), and the AIM2-like receptor. The purpose of this study was to review literature sources regarding how innate immunity and inflammasomes contribute to urologic disease and infection. A literature search of PubMed/MEDLINE, EMBASE and Google Scholar articles. Articles were selected for review if their content included (1) inflammasomes and (2) urology in the adult population. The initiation of specific cytokine cascades, which include IL-1β and IL-18, appear responsible for a repertoire of urologic pathologies. Inflammation mediates a wide range of uropathies (urologic disorders and infections) which are found in the bladder, prostate, or kidney and inflammasomes appear to be particularly responsible for urological and renal pathologies. Understanding the role of inflammasomes in urologic disorders can help improve treatment and overall quality of life in patients with these disorders.
Collapse
Affiliation(s)
- Sarah Shidid
- Department of Pediatrics, Division of Infectious Diseases, State University of New York Downstate Medical Center, New York, NY, 11203, USA
- Correspondence: Sarah Shidid, Department of Pediatrics, Division of Infectious Diseases, State University of New York Downstate Medical Center, Brooklyn, New York, NY, 11203, USA, Tel +1718 270-1295, Fax +1718 270-3289, Email
| | - Martin H Bluth
- Department of Pathology, Maimonides Medical Center, New York, NY, 11219, USA
| | - Tamar A Smith-Norowitz
- Department of Pediatrics, Division of Infectious Diseases, State University of New York Downstate Medical Center, New York, NY, 11203, USA
| |
Collapse
|
16
|
Augé C, Dizeyi N, Ramnemark L, Lluel P, Grabe M. Experimental in vivo model to evaluate the impact of Cernitin™ on pain response on induced chronic bladder inflammation. Scand J Urol 2022; 56:320-328. [PMID: 35766197 DOI: 10.1080/21681805.2022.2090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Inflammation of the urinary bladder may cause burdensome pain also called bladder pain syndrome (BPS). A limitation in understanding BPS pathophysiology is the lack of appropriate preclinical model. Previously published clinical and preclinical studies revealed positive impact of Cernitin™ on pain relief in chronic prostatitis. The objective of this study was to evaluate the effects of Cernitin™ on induced inflammation of the urinary bladder in rats. We also sought to identify biomarkers which might play a role in the management of BPS. MATERIALS AND METHODS Cystitis was induced by injection of cyclophosphamide (CYP) in female rats. Thereafter, animals were randomly divided into four treatment groups and two control groups. Evaluation of pain scores was assessed by von Frey assay. Expression of pain- and pro-inflammatory biomarkers was determined by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. RESULTS Treatments with Cernitin™ displayed significant anti-nociceptive effects on CYP-induced visceral pain (p < .01). In contrast, vehicle-treated animals showed high pain score even at the lowest force. Furthermore, results of ELISA showed that Cernitin™-treated animals had significantly reduced levels of COX-2 (T60, p < .01; GBX, p < .05) in bladder tissue homogenate. Immunohistochemical (IHC) staining of bladder tissues showed that Cernitin™-treated animals exhibited less CD45-positive cells, while massive CD45-positive cells infiltration was detected in vehicle-treated animals. IHC also revealed lower SP and PGD2 expression levels in Cernitin™-treated tissues. CONCLUSIONS Cernitin™ components reduced pain score and inflammatory marker COX-2. Our findings suggest a potential therapeutic role for Cernitin™ in the management of BPS.
Collapse
Affiliation(s)
| | | | | | | | - Magnus Grabe
- Department of Translational Medicine, Urologic Research, Lund University, Malmö, Sweden
| |
Collapse
|
17
|
Molecular Mechanisms and Key Processes in Interstitial, Hemorrhagic and Radiation Cystitis. BIOLOGY 2022; 11:biology11070972. [PMID: 36101353 PMCID: PMC9311586 DOI: 10.3390/biology11070972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Pathologies of the bladder are called cystitis. They cause discomfort for the patient. Due to persistent pain, bleeding, urinary incontinence, and uncontrolled urination, the chronic forms cause considerable degradation to patient quality of life. Currently, there is no curative treatment for the most severe forms. This is both an economic and a societal problem. Although the different forms of cystitis have different causes, they share common mechanisms. We propose to describe in detail the key processes and the associated mechanisms involved in abacterial cystitis. Abstract Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder. Overall, treatments are quite similar for abacterial cystitis, and include bladder epithelium protective or anti-inflammatory agents, alleviating pain and reducing bleeding. This review summarizes the mechanisms that the pathologies have in common, for instance, bladder dysfunction and inflammation. Conversely, some mechanisms have been described as present in only one pathology, such as neural regulation. Based on these specificities, we propose identifying a mechanism that could be common to all the above-mentioned pathologies.
Collapse
|
18
|
Kono J, Ueda M, Sengiku A, Suadicani SO, Woo JT, Kobayashi T, Ogawa O, Negoro H. Flavonoid Nobiletin Attenuates Cyclophosphamide-Induced Cystitis in Mice through Mechanisms That Involve Inhibition of IL-1β Induced Connexin 43 Upregulation and Gap Junction Communication in Urothelial Cells. Int J Mol Sci 2022; 23:5037. [PMID: 35563427 PMCID: PMC9102543 DOI: 10.3390/ijms23095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder inflammatory diseases cause various urinary symptoms, such as urinary frequency and painful urination, that impair quality of life. In this study, we used a mouse model of cyclophosphamide (CYP)-induced bladder inflammation and immortalized human urothelial (TRT-HU1) cells to explore the preventive potential of nobiletin (NOB), a polymethoxylated flavone enriched in citrus fruit peel, and investigate its mechanism of action in the bladder. Prophylaxis with PMF90 (60% NOB) attenuated the development of bladder inflammation and urinary symptoms in CYP-treated mice. PMF90 also reduced the upregulation of connexin 43 (Cx43), a major component of gap junction channels, in the bladder mucosa of CYP-treated mice. Stimulation of TRT-HU1 cells with the pro-inflammatory cytokine IL-1β increased Cx43 mRNA and protein expression and enhanced gap junction coupling-responses that were prevented by pre-treatment with NOB. In urothelium-specific Cx43 knockout (uCx43KO) mice, macroscopic signs of bladder inflammation and changes in voiding behavior induced by CYP treatment were significantly attenuated when compared to controls. These findings indicate the participation of urothelial Cx43 in the development of bladder inflammation and urinary symptoms in CYP-treated mice and provide pre-clinical evidence for the preventive potential of NOB through its anti-inflammatory effects on IL-1β signaling and urothelial Cx43 expression.
Collapse
Affiliation(s)
- Jin Kono
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Masakatsu Ueda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Department of Urology, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Atsushi Sengiku
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Sengiku Urology Clinic, Shiga 524-0045, Japan
| | - Sylvia O. Suadicani
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Je Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan;
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Hiromitsu Negoro
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
19
|
Amanat S, Shal B, Kyoung Seo E, Ali H, Khan S. Icariin attenuates cyclophosphamide-induced cystitis via down-regulation of NF-кB and up-regulation of Nrf-2/HO-1 signaling pathways in mice model. Int Immunopharmacol 2022; 106:108604. [PMID: 35149295 DOI: 10.1016/j.intimp.2022.108604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Cystitis is a chronic bladder pain associated with frequency and nocturia. In the present study, Icariin a prenylated flavonoid extracted from Epimedium koreanum, was investigated against cyclophosphamide (CYP)-induced cystitis pain in mice model. Preliminarily in an acute model, single dose of CYP (150 mg/kg; i.p) was administered followed by Icariin (5, 25 and 50 mg/kg, i.p.). The visceral sensitivity and nociceptive behaviors were significantly ameliorated by pretreatment with Icariin (25, 50 mg/kg) that were assessed by spontaneous pain scoring, von Frey test and clinical scoring. Further, in chronic model Icariin (25 mg/kg, i.p.) was administered for 10 consecutive days prior to CYP (75 mg/kg; i.p) challenged every 3rd day for the duration of 10 days. Icariin not only had a protective effect on edema including bladder wet weight and hemorrhage but also had a potential to reduce vascular permeability, mast cells infiltration and tissue fibrosis. Evidently, Icariin prevented the neutrophilia/lymphopenia caused by CYP, and markedly improved the antioxidant enzymes level including superoxide dismutase, glutathione sulfo-transferase, catalase, glutathione level and reduced Malondialdehyde level, myeloperoxidase activity and nitric oxide, and also decreased the production of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in bladder. Icariin markedly enhanced the Nrf-2, heme oxygenase (HO-1) and IкB-α expression, while attenuated the expression level of Keap1, TLR-4, NF-кB, i-NOS, COX-2 and TRPV1 as compared to negative group. This research illustrated the anti-inflammatory properties of Icariin and effectively improved CYP-induced cystitis pain.
Collapse
Affiliation(s)
- Safa Amanat
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
20
|
Brandolini L, Aramini A, Bianchini G, Ruocco A, Bertini R, Novelli R, Angelico P, Valsecchi AE, Russo R, Castelli V, Cimini A, Allegretti M. Inflammation-Independent Antinociceptive Effects of DF2755A, a CXCR1/2 Selective Inhibitor: A New Potential Therapeutic Treatment for Peripheral Neuropathy Associated to Non-Ulcerative Interstitial Cystitis/Bladder Pain Syndrome. Front Pharmacol 2022; 13:854238. [PMID: 35571079 PMCID: PMC9096165 DOI: 10.3389/fphar.2022.854238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a chronic bladder disease of unknown etiology characterized by urinary frequency and episodic and chronic pain. Analgesic treatments for IC/BPS are limited, especially for patients with non-Hunner (non-ulcerative) type IC who usually have poor overall outcomes. Here, we demonstrate that oral treatment with DF2755A, a potent and selective inhibitor of chemokine receptors CXCR1/2, can prevent and reverse peripheral neuropathy associated to non-Hunner IC/BPS by directly inhibiting chemokine-induced excitation of sensory neurons. We tested DF2755A antinociceptive effects in a cyclophosphamide (CYP)-induced non-ulcerative IC rat model characterized by severe peripheral neuropathy in the absence of bladder inflammatory infiltrate, urothelial hyperplasia, and hemorrhage. Treatment with DF2755A prevented the onset of peripheral neuropathy and reversed its development in CYP-induced IC rats, showing a strong and long-lasting anti-hyperalgesic effect. Ex vivo and in vitro studies showed that DF2755A treatment strongly inhibited the expression of CXCR2 agonists, CXCL1/KC, and CXCL5 and of transient receptor potential vanilloid 1 (TRPV1) compared to vehicle, suggesting that its effects can be due to the inhibition of the nociceptive signaling passing through the CXCL1/CXCR1-2 axis and TRPV1. In conclusion, our results highlight the key pathophysiological role played by the CXCL1/CXCR1-2 axis and TRPV1 in the onset and development of peripheral neuropathy in non-Hunner IC and propose DF2755A as a potential therapeutic approach for the treatment of not only inflammatory painful conditions but also neuropathic ones and in particular non-Hunner IC/BPS.
Collapse
Affiliation(s)
- Laura Brandolini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Gianluca Bianchini
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
| | - Anna Ruocco
- Research and Early Development, Dompé Farmaceutici S.p.A., Naples, Italy
| | | | - Rubina Novelli
- Research and Early Development, Dompé Farmaceutici S.p.A., Milan, Italy
| | | | | | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marcello Allegretti
- Research and Early Development, Dompé Farmaceutici S.p.A., L’Aquila, Italy
- *Correspondence: Marcello Allegretti,
| |
Collapse
|
21
|
Wang R, Hong M, Huang J, Zhou N, Zhang Y, Xu S, Liu J, Yuan J, Zhang L, Huang L, Huang P, Tan B, Cao HY. Low-Dose Cyclophosphamide Induces Nerve Injury and Functional Overactivity in the Urinary Bladder of Rats. Front Neurosci 2021; 15:715492. [PMID: 34658764 PMCID: PMC8517437 DOI: 10.3389/fnins.2021.715492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: This research aimed to investigate the neurotoxicity of low-dose cyclophosphamide (CYP) on the urinary bladder of rats by in vivo and in vitro studies. Methods: To establish CYP-induced cystitis rat model, rats were treated with three intraperitoneal injections of CYP (25 mg/kg) in a week. During treatment, the up-down method was used to assess the mechanical withdrawal threshold. On day 8, urodynamic test and bladder smooth muscle contractility study, including the contraction of bladder strips to electrical field stimulation (EFS, 2-64 Hz), carbachol (CCh, 10-8-10-5 M) and KCl (120 mM), were performed to evaluate the function of bladder function. Body weight and bladder weight were also recorded. Morphometric analysis using an optical microscope and transmission electron microscope was performed to observe the changes of microstructure and submicrostructure of the bladder. The major pelvic neurons were isolated and treated with acrolein (the main CYP metabolite) to assess apoptosis in vitro. RT-PCR assays were used to quantify the mRNA expression levels of Nlrp6, Asc, Casp11 and Casp1 in bladder tissues and primary neurons. Results: After CYP injections, the body weights decreased, but the bladder weights increased in the model group. The mechanical withdrawal threshold of the cystitis model remained at a low level. The morphometric analysis suggested bladder inflammation and neuroinflammation in the bladder of the cystitis rat model. Urodynamic test revealed that, the amplitude, the pressure baseline, the peak pressure and pressure threshold of model rats significantly increased after CYP treatment. The muscle strips of model rats exhibited significantly higher contractility caused by EFS and CCh than the controls. Apoptotic cells appeared at the highest concentration group (100 μM acrolein) after 6 h of acrolein incubation in apoptosis assay of primary neurons. The mRNA expression levels of Nlrp6 and Casp11 were significantly increased in the cystitis rat model and in the acrolein-treated neurons. Conclusions: Low-dose CYP treatment was confirmed to induce nerve injury, which leading to bladder pain and overactive bladder in female rats, and the up-regulation of Nlrp6 and Casp11 may contribute to these pathological changes.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Hong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaye Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjie Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lusiqi Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linyuan Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Ochiai T, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Absence of prostacyclin greatly relieves cyclophosphamide-induced cystitis and bladder pain in mice. FASEB J 2021; 35:e21952. [PMID: 34555210 DOI: 10.1096/fj.202101025r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023]
Abstract
Cyclophosphamide (CP) has been widely used in the treatment of various malignancies and autoimmune diseases, but acrolein, a byproduct of CP, causes severe hemorrhagic cystitis as the major side effect of CP. On the other hand, a large amount of prostacyclin (PGI2 ) is produced in bladder tissues, and PGI2 has been shown to play a critical role in bladder homeostasis. PGI2 is biosynthesized from prostaglandin (PG) H2 , the common precursor of PGs, by PGI2 synthase (PTGIS) and is known to also be involved in inflammatory responses. However, little is known about the roles of PTGIS-derived PGI2 in bladder inflammation including CP-induced hemorrhagic cystitis. Using both genetic and pharmacological approaches, we here revealed that PTGIS-derived PGI2 -IP (PGI2 receptor) signaling exacerbated CP-induced bladder inflammatory reactions. Ptgis deficiency attenuated CP-induced vascular permeability and chemokine-mediated neutrophil migration into bladder tissues and then suppressed hemorrhagic cystitis. Treatment with RO1138452, an IP selective antagonist, also suppressed CP-induced cystitis. We further found that cystitis-related nociceptive behavior was also relieved in both Ptgis-/- mice and RO1138452-treated mice. Our findings may provide new drug targets for bladder inflammation and inflammatory pain in CP-induced hemorrhagic cystitis.
Collapse
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Chieko Yokoyama
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Atsugi, Japan
| | - Hiroshi Kuwata
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
23
|
Hassanein EHM, Ahmed MA, Sayed AM, Rashwan EK, Abd El-Ghafar OAM, Mahmoud AM. Edaravone mitigates hemorrhagic cystitis by modulating Nrf2, TLR-4/NF-κB, and JAK1/STAT3 signaling in cyclophosphamide-intoxicated rats. J Biochem Mol Toxicol 2021; 35:e22889. [PMID: 34390071 DOI: 10.1002/jbt.22889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/28/2023]
Abstract
Hemorrhagic cystitis is a potentially deadly complication associated with radiation therapy and chemotherapy. This study explored the protective effect of edaravone (ED) on cyclophosphamide (CP)-induced hemorrhagic cystitis, oxidative stress, and inflammation in rats. The animals received 20 mg/kg ED for 10 days and a single injection of 200 mg/kg CP on day 7. CP induced tissue injury manifested by the diffuse necrotic changes, disorganization of lining mucosa, focal hemorrhagic patches, mucosal/submucosal inflammatory cells infiltrates, and edema. CP increased malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha, and interleukin 6 (IL-6), decreased IL-10, and upregulated toll-like receptor 4 (TLR-4), nuclear factor-kappa B (NF-κB) p65, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 3 (STAT3) in the urinary bladder of rats. ED effectively prevented the histopathological alterations, decreased MDA, NO, and inflammatory mediators, and downregulated TLR-4, NF-κB, JAK1, and STAT3 in CP-induced rats. Treatment with ED upregulated ikβ kinase β, IL-10, nuclear factor-erythroid 2 related factor 2 (Nrf2), and cytoglobin, and boosted glutathione, superoxide dismutase, and glutathione S-transferase. Molecular docking simulations revealed the ability of ED to bind TLR-4, NF-κB, JAK1, and STAT3. In vitro, ED increased the cytotoxic activity of CP against HeLa, Caco-2, and K562 cell lines. In conclusion, ED prevented CP-induced hemorrhagic cystitis in rats by attenuating oxidative stress, suppressing TLR-4/NF-κB, and JAK1/STAT3 signaling and boosted Nrf2, cytoglobin, and antioxidants.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia.,Department of Physiology, College of Medicine, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
24
|
Xu Y, Yang F, Xie J, Li W, Liu B, Chen J, Ding H, Cai J. Human Umbilical Cord Mesenchymal Stem Cell Therapy Mitigates Interstitial Cystitis by Inhibiting Mast Cells. Med Sci Monit 2021; 27:e930001. [PMID: 34354037 PMCID: PMC8353995 DOI: 10.12659/msm.930001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Interstitial cystitis (IC) is a recurrent and chronic inflammatory disease that compromises patients’ quality of life. Effective treatments for IC are limited. This study aimed to evaluate the therapeutic potency of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) in an IC-induced rat model and investigate the potential molecular mechanism in a mast cell model (rat basophilic leukemia cells, RBL-2H3) in treating IC in a coculture system. Material/Methods The rat model of IC was induced by cyclophosphamide (CYP). Rats were randomly divided into 3 groups: sham, IC+PBS, and IC+MSC. In the coculture system, RBL-2H3 cells were sensitized overnight to Compound 48/80 (C48/80), cocultured with UC-MSCs for 3 days, and collected for subsequent experiments. RBL-2H3 cells were randomly divided into 3 groups: sham, C48, and UC-MSCs (C48+MSC). Results The UC-MSCs marked by thymidine analog 5-ethynyl-2-deoxyuridine (EdU) were transplanted in the treatment group, and were densely distributed in the bladder. Accordingly, the conscious cystometry was measured and the bladder tissues were harvested. Compared with the sham group, the treated IC rats exhibited shorter bladder voiding intervals (307±35 vs 217±37 s; P<0.01), more integral epithelia, and less collagen fiber aggregation, infiltration and degranulation of mast cells, and inflammatory cytokines in the bladder tissue. In the coculture system, compared with the C48 group, the UC-MSC-treated RBL-2H3 cells had suppressed degranulation. Conclusions UC-MSCs treatment showed a promising therapeutic effect on treating IC in vivo and in vitro. UC-MSCs inhibit mast cell degranulation in IC and could be a potential therapeutic target to ameliorate inflammation in IC.
Collapse
Affiliation(s)
- Yuancheng Xu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Juncong Xie
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Honglu Ding
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Jiarong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
25
|
Elrashidy RA, Hasan RA. Modulation of autophagy and transient receptor potential vanilloid 4 channels by montelukast in a rat model of hemorrhagic cystitis. Life Sci 2021; 278:119507. [PMID: 33864816 DOI: 10.1016/j.lfs.2021.119507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
AIMS Hemorrhagic cystitis (HC) is a major urotoxic complication of cyclophosphamide (CPA) therapy. This study investigated the uroprotective effect of montelukast on CPA-induced HC, compared to the efficacy of 2-mercaptoethane sulfonate sodium (MESNA). MAIN METHODS Male albino rats were pretreated with MESNA (40 mg/kg/day, IP) or montelukast (10 mg/kg/day, orally) for three days then received a single dose of CPA (200 mg/kg, IP), 1 h after the last dose, and compared to CPA-treated rats receiving drug vehicle. Age-matched rats were used as controls. Bladders of rats were assessed biochemically, macroscopically and microscopically by light and electron microscope 24 h later. KEY FINDINGS CPA injection contributed to increased bladder weight, urothelial ulceration, vascular congestion, hemorrhage, increased collagen deposition and mast cell infiltration, compared to control rats. Montelukast preconditioning suppressed mast cell infiltration and inflammatory mediators to greater extent than MESNA. Also, montelukast enhanced autophagosomes formation in detrusor myocytes and up-regulated the autophagy-related proteins (beclin-1 & LC3-II), likely through inhibition of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Montelukast preconditioning offset the up-regulation of transient receptor potential vanilloid 4 (TRPV4) in urothelial tissue of CPA-treated rats, to greater extent than MESNA. SIGNIFICANCE These results demonstrate the uroprotective effect of montelukast on CPA-induced HC, which appears to be more superior to MESNA. These findings suggest that montelukast can emerge as a novel strategy to protect against CPA-induced urotoxicity.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Rehab A Hasan
- Histology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
26
|
Augé C, Basso L, Blanpied C, Vergnolle N, Gamé X, Chabot S, Lluel P, Dietrich G. Pain Management in a Model of Interstitial Cystitis/Bladder Pain Syndrome by a Vaccinal Strategy. FRONTIERS IN PAIN RESEARCH 2021; 2:642706. [PMID: 35295433 PMCID: PMC8915701 DOI: 10.3389/fpain.2021.642706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Current analgesic treatments for Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) are limited. Here, we propose a novel antinociceptive strategy exploiting the opioid-mediated analgesic properties of T lymphocytes to relieve from bladder pain. In a chronic model of IC/BPS in rats, we show that a secondary T cell response against intravesically administered ovalbumin prevents from visceral pain in OVA-primed animals. The analgesic effect is associated with the recruitment of T lymphocytes within the inflamed mucosa and is reversed by naloxone-methiodide, a peripheral opioid receptor antagonist. Similarly, intravesical instillation of BCG or tetanus toxoid antigens in vaccinated rats protects from pain in the same model. We show opioid-dependent analgesic properties of local vaccine antigen recall in a preclinical rat model of chronic cystitis. Since BCG bladder instillation is regularly used in humans (as anticancer therapy), our results open it as a new therapeutic positioning for a pain management indication for IC/BPS patients.
Collapse
Affiliation(s)
- Céline Augé
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xavier Gamé
- Urology Department, Rangueil University Hospital, Toulouse, France
- INSERM, I2MC-U1048, CHU Rangueil, Toulouse, France
| | - Sophie Chabot
- Urosphere, Department of Pain and Inflammation, Toulouse, France
| | - Philippe Lluel
- Urosphere, Department of Pain and Inflammation, Toulouse, France
- *Correspondence: Philippe Lluel
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
27
|
Houttuynia cordata Extract Ameliorates Bladder Damage and Improves Bladder Symptoms via Anti-Inflammatory Effect in Rats with Interstitial Cystitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9026901. [PMID: 33133219 PMCID: PMC7568804 DOI: 10.1155/2020/9026901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
Abstract
The mechanism of interstitial cystitis/bladder pain syndrome (IC/BPS) remains unclear to date, but reports showed that bladder inflammation and increasing number of activating mast cells in bladder tissues were common in patients with IC/BPS. Houttuynia cordata is widely used in Chinese traditional medicine, and its function of anti-inflammation has been proved. The purpose of this study was to investigate the efficacy and possible mechanisms of the Houttuynia cordata (HC) extract in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS). In the current study, a total of 30 adult female rats were randomly divided into three groups: sham group (n = 10), cyclophosphamide + saline (CYP + NS) group (n = 10), and cyclophosphamide + Houttuynia cordata extract (CYP + HC) group (n = 10). The animal model of IC/BPS was induced with cyclophosphamide (75 mg/kg, intraperitoneal injection, once every 3 days for 10 days) in the CYP + NS group and CYP + HC group, and sham rats received a volume-matched injection of saline. After anesthesia with urethane (0.8 g/kg, intraperitoneal injection), intravesical administration of either saline (1 ml) or Houttuynia cordata extract (1 ml, 2 g/ml) was continued once per day for a week in the CYP + NS group and CYP + HC group, respectively. Subsequently, urinary frequency, nociceptive behaviors, cystometry, bladder weight, histological changes, and cytokine (IL-6, IL-8, TNF-α) concentration were evaluated and compared among the three groups. Variables including inflammatory grade, mast cell number, proportion of activated mast cells, bladder weight, cytokine concentration of bladder homogenates, and frequency of urination significantly increased in the CYP + NS group compared with the sham group (P < 0.01) and CYP + HC group (P < 0.01). Besides, compared with the CYP + NS group, longer intercontraction interval, bigger bladder capacity, higher nociceptive threshold, fewer number of mast cells, and lower proportion of activated mast cells were found in the CYP + HC group (P < 0.01). Our study demonstrated that the Houttuynia cordata extract can effectively inhibit mast cell proliferation and activation and downregulate proinflammatory cytokine in a rat model of IC/BPS induced with cyclophosphamide and might be potentially valuable for the treatment of IC/BPS.
Collapse
|
28
|
Augé C, Gamé X, Vergnolle N, Lluel P, Chabot S. Characterization and Validation of a Chronic Model of Cyclophosphamide-Induced Interstitial Cystitis/Bladder Pain Syndrome in Rats. Front Pharmacol 2020; 11:1305. [PMID: 32982733 PMCID: PMC7485435 DOI: 10.3389/fphar.2020.01305] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022] Open
Abstract
Interstitial cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease characterized by visceral pain and voiding symptoms. IC/BPS is still an unsolved enigma with ineffective diagnosis criteria and treatment. A main limitation in IC/BPS understanding is the lack of appropriate preclinical model. Cyclophosphamide (CYP) is commonly used as an experimental model for IC/BPS in rodent. However, the proposed models are very aggressive, contrasting with what occurs in clinic, and often associated with severe toxicity and high mortality rate. In addition, visceral pain, the hallmark symptom of IC/BPS, has been validated in only few of them. In this study, we developed a chronic model of CYP-induced IC/BPS in female rat. In our protocol, no severe weight loss occurred and the survival rate was 100%. In accordance to human pathology, chronic CYP-injected rats developed severe painful behavior whereas only sparse inflammation was observed. Inflammatory response was characterized by bladder edema and focal urothelial damage but absence of massive infiltrate. This chronic model showed persistent symptoms indicative for a central sensitization mechanism. We further demonstrate that CYP-induced chronic visceral pain was significantly reduced by curative treatment with clinically relevant compounds (gabapentin, ibuprofen, and Ialuril®). We therefore developed and validated a rat model of chronic cystitis that shares strong similarity with human non-ulcerative IC/BPS features without overtly affecting the animal health. This model will thus provide mechanistic insights of the disease and help to evaluate therapeutic agents for IC/BPS.
Collapse
Affiliation(s)
- Céline Augé
- Department of Pain and Inflammation, Urosphere, Toulouse, France
| | - Xavier Gamé
- Urology Department, Rangueil University Hospital, Toulouse, France.,INSERM, I2MC-U1048, CHU Rangueil, Toulouse, France
| | | | - Philippe Lluel
- Department of Pain and Inflammation, Urosphere, Toulouse, France
| | - Sophie Chabot
- Department of Pain and Inflammation, Urosphere, Toulouse, France
| |
Collapse
|
29
|
Chlorogenic acid attenuates cyclophosphamide-induced rat interstitial cystitis. Life Sci 2020; 254:117590. [DOI: 10.1016/j.lfs.2020.117590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/30/2022]
|
30
|
Wróbel A, Zapała Ł, Zapała P, Piecha T, Radziszewski P. The effect of O-1602, a GPR55 agonist, on the cyclophosphamide-induced rat hemorrhagic cystitis. Eur J Pharmacol 2020; 882:173321. [PMID: 32615180 DOI: 10.1016/j.ejphar.2020.173321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
The goal of our study was to determine whether GPR55 agonists, O-1602, could reverse the cyclophosphamide (CYP)-induced changes in cystometric and inflammatory parameters, indicative of the development of bladder inflammation and overactivity. If confirmed, the stimulation of novel cannabinoid receptor - GPR55, could be a reasonable strategy as a treatment of CYP-induced haemorrhagic cystitis. The experiments were conducted in female Wistar rats. Based on the methodology of our published studies on CYP-induced heamorrhagic cystitis we performed experiments after administration of CYP, O-1602 or CYP plus O-1602. These included surgical procedures, conscious cystometry, measurements of bladder oedema and urothelium thickness using the Evans Blue dye leakage technique, as well as biochemical analyses with particular ELISA kits. O-1602 ameliorated the symptoms of CYP-induced detrusor overactivity leading to an increase in voided volume (0.59 vs. 0.93 ml), and lowering the detrusor overactivity index (703 vs. 115 cm H2O/ml). Intravenous administration of the GPR55 agonist to animals that received CYP significantly decreased Evans Blue extravasation and increased urothelium thickness. O-1602 also reversed the pro-inflammatory activity of CYP by restoring concentrations of brain-derived neurotrophic factor, nerve growth factor, calcitonin gene related peptide, interleukin 1-beta, interleukin-6, tumour necrosis factor alpha, malondialdehyde, nitrotyrosine, occludin, and organic cation transporter 3. GPR55 agonist, O-1602, represents a novel class of uroprotective agents, targeting the inflammatory basis of cystitis. To our knowledge, this is the first paper proposing O-1602 agent, as a candidate for future studies in the treatment of CYP-induced cystitis.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Łukasz Zapała
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland.
| | - Piotr Zapała
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Tomasz Piecha
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| | - Piotr Radziszewski
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005, Warsaw, Poland
| |
Collapse
|
31
|
Chen YH, Man KM, Chen WC, Liu PL, Tsai KS, Tsai MY, Wu YT, Chen HY. Platelet-Rich Plasma Ameliorates Cyclophosphamide-Induced Acute Interstitial Cystitis/Painful Bladder Syndrome in a Rat Model. Diagnostics (Basel) 2020; 10:diagnostics10060381. [PMID: 32521683 PMCID: PMC7344907 DOI: 10.3390/diagnostics10060381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Interstitial cystitis/painful bladder syndrome (IC/PBS) could be treated to ameliorate urothelial injury. Here, we investigated the efficacy of intravesical instillation with platelet-rich plasma (PRP) and hyaluronic acid for acute IC/PBS. Methods: The effects of PRP and hyaluronic acid on the proliferation of normal human fibroblast cells (HFCs) were assessed. Additionally, thirty virgin female rats were randomized into five groups: group 1, saline-injected control; group 2, cyclophosphamide (CYP) plus intravesical instillation with normal saline; group 3, CYP plus intravesical instillation with hyaluronic acid (1 mg/mL); group 4, CYP plus intravesical instillation with PRP; and group 5, CYP plus intravesical instillation with PRP plus hyaluronic acid. A cystometry and histological assessments were performed. The expression of cell junction-associated protein zonula occludens-2 (ZO-2) and inflammatory cytokine interleukin 6 (IL-6) was also measured. Results: Low dose PRP increased proliferation in HFCs. The acute IC/PBS rats showed significantly lower voiding interval values. Voiding interval values were significantly higher in the CYP plus intravesical instillation with PRP group than in the CYP-induced acute IC/PBS group. Additionally, the expression of ZO-2 was increased and IL-6 was decreased in the CYP plus intravesical instillation with PRP group compared with the CYP-induced acute IC/PBS group. Conclusion: These findings suggest that PRP modulate urothelial repair, which ameliorate the increase in urination frequency in rats treated with CYP. Overall, PRP may confer potential benefits by acting as urothelial repair modulators.
Collapse
Affiliation(s)
- Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Kee-Ming Man
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Anesthesiology, China Medical University Hsinchu Hospital, Hsinchu 30272, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da Yeh University, Changhua 51591, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kao-Sung Tsai
- Department of Applied Cosmetology, Hungkuang University, Taichung 43302, Taiwan;
| | - Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Yu-Tzu Wu
- Department of Neurology, Kuang Tien General Hospital, Taichung 43303, Taiwan;
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (Y.-H.C.); (W.-C.C.)
- Departments of Medical Research, Urology and Obstetrics and Gynecology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence:
| |
Collapse
|
32
|
González-Cano R, Artacho-Cordón A, Romero L, Tejada MA, Nieto FR, Merlos M, Cañizares FJ, Cendán CM, Fernández-Segura E, Baeyens JM. Urinary bladder sigma-1 receptors: A new target for cystitis treatment. Pharmacol Res 2020; 155:104724. [PMID: 32105755 DOI: 10.1016/j.phrs.2020.104724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
No adequate treatment is available for painful urinary bladder disorders such as interstitial cystitis/bladder pain syndrome, and the identification of new urological therapeutic targets is an unmet need. The sigma-1 receptor (σ1-R) modulates somatic pain, but its role in painful urological disorders is unexplored. The urothelium expresses many receptors typical of primary sensory neurons (e.g. TRPV1, TRPA1 and P2X3) and high levels of σ1-R have been found in these neurons; we therefore hypothesized that σ1-R may also be expressed in the urothelium and may have functional relevance in this tissue. With western blotting and immunohistochemical methods, we detected σ1-R in the urinary bladder in wild-type (WT) but not in σ1-R-knockout (σ1-KO) mice. Interestingly, σ1-R was located in the bladder urothelium not only in mouse, but also in human bladder sections. The severity of histopathological (edema, hemorrhage and urothelial desquamation) and biochemical alterations (enhanced myeloperoxidase activity and phosphorylation of extracellular regulated kinases 1/2 [pERK1/2]) that characterize cyclophosphamide-induced cystitis was lower in σ1-KO than in WT mice. Moreover, cyclophosphamide-induced pain behaviors and referred mechanical hyperalgesia were dose-dependently reduced by σ1-R antagonists (BD-1063, NE-100 and S1RA) in WT but not in σ1-KO mice. In contrast, the analgesic effect of morphine was greater in σ1-KO than in WT mice. Together these findings suggest that σ1-R plays a functional role in the mechanisms underlying cyclophosphamide-induced cystitis, and modulates morphine analgesia against urological pain. Therefore, σ1-R may represent a new drug target for urinary bladder disorders.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Anesthesia Department and Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Lucía Romero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, Esteve Pharmaceuticals SA, Barcelona, 08028, Spain
| | - Francisco J Cañizares
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - Cruz M Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain
| | - Eduardo Fernández-Segura
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain; Department of Histology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, 18016, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla (Granada), 18100, Spain; Instituto de Investigación Biosanitaria, Ibs Granada, Spain.
| |
Collapse
|
33
|
Efficacy of Frankincense and Myrrha in Treatment of Acute Interstitial Cystitis/Painful Bladder Syndrome. Chin J Integr Med 2020; 26:519-526. [PMID: 32279153 DOI: 10.1007/s11655-020-3216-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the efficacy of frankincense and myrrha in the treatment of acute interstitial cystitis/painful bladder syndrome (IC/PBS). METHODS The effects of frankincense and myrrha on the proliferation and migration of primary human urothelial cells (HUCs) were assessed in vitro. In the animal study, 48 virgin female rats were randomized into 4 groups (12 in each group): (1) control group (saline-injected control); (2) cyclophosphamide (CYP) group (intraperitoneal injected 150 mg/kg CYP); (3) CYP + pentosan polysulfate sodium group (orally received 50 mg/kg pentosan polysulfate sodium); and (4) CYP + frankincense and myrrha group [orally received frankincense (200 mg/kg) and myrrha (200 mg/kg)]. Rats orally received pentosan polysulfate sodium or frankincense and myrrha on day 1, 2, and 3. The experiments were performed on day 4. Pain and cystometry assessment behavior test were performed. Voiding interval values were assessed in rats under anesthesia. Finally, immunohistochemistry and Western blot were used to confirm the location and level, respectively, of cell junction-associated protein zonula occludens-2 (ZO-2) expression. RESULTS Low dose frankincense and myrrha increased cell proliferation and migration in HUCs compared with control (P<0.05). Rats with acute IC/PBS rats exhibited lower voiding interval values, pain tolerance, and ZO-2 expression (P<0.05). Voiding interval values and pain tolerance were higher in the frankincense and myrrha group than CYP group (P<0.05). ZO-2 expression in the bladder was increased in the CYP + pentosan polysulfate and frankincense + myrrha groups compared with the CYP-induced acute IC/PBS group (P<0.05). CONCLUSION frankincense and myrrha modulate urothelial wound healing, which ameliorates typical features of acute IC/PBS in rats.
Collapse
|
34
|
Nausch B, Pace S, Pein H, Koeberle A, Rossi A, Künstle G, Werz O. The standardized herbal combination BNO 2103 contained in Canephron ® N alleviates inflammatory pain in experimental cystitis and prostatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152987. [PMID: 31257118 DOI: 10.1016/j.phymed.2019.152987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Urinary tract infections are among the most common types of infections and give rise to inflammation with pain as one of the main symptoms. The herbal medicinal product Canephron® N contains BNO 2103, a defined mixture of pulverized rosemary leaves, centaury herb, and lovage root, and has been used in the treatment of urinary tract infections for more than 25 years. PURPOSE To test the hypothesis that BNO 2103 reduces pain in cystitis and prostatitis by virtue of anti-inflammatory properties, and to reveal potential mechanisms underlying the anti-inflammatory features. STUDY DESIGN BNO 2103 was studied for anti-inflammatory and analgesic properties in three animal models in vivo, and the mode of action underlying the anti-inflammatory features was investigated in human leukocytes and cell-free assays in vitro. METHODS To assess the anti-inflammatory and analgesic efficacy of BNO 2103 we employed cyclophosphamide-induced cystitis and carrageenan-induced prostatitis in rats, and zymosan-induced peritonitis in mice. Human neutrophils and monocytes as well as isolated human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1-containing microsomes were utilized to assess inhibition of leukotriene and/or prostaglandin E2 production by HPLC and/or ELISA. RESULTS When given orally, BNO 2103 reduced inflammation and hyperalgesia in experimental cystitis in rats, while individual components of BNO 2103 also reduced hyperalgesia. Furthermore, BNO 2103 reduced hyperalgesia in rats with carrageenan-induced prostatitis. Cell-based and cell-free studies implicate inhibition of prostaglandin E2 and leukotriene B4 biosynthesis as potential mechanisms underlying the analgesic and anti-inflammatory effects. CONCLUSION Our data support the hypothesis that BNO 2103 reduces pain by virtue of its anti-inflammatory properties, possibly related to suppression of prostaglandin E2 and leukotriene B4 formation, and suggest that this combination has the potential to treat clinical symptoms such as inflammatory pain. Thus BNO 2103 may represent an alternative to reduce the use of antibiotics in urinary tract infections.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Kerschensteinerstrasse 11-15, 92318 Neumarkt, Germany.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Gerald Künstle
- Bionorica SE, Kerschensteinerstrasse 11-15, 92318 Neumarkt, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
35
|
Wróbel A, Serefko A, Bańczerowska‐Górska M, Szopa A, Dudka J, Poleszak E. Intravesical administration of blebbistatin prevents cyclophosphamide‐induced toxicity of the urinary bladder in female Wistar rats. Neurourol Urodyn 2019; 38:1044-1052. [DOI: 10.1002/nau.23973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Andrzej Wróbel
- Second Department of GynaecologyMedical University of LublinLublin Poland
| | - Anna Serefko
- Chair and Department of Applied PharmacyMedical University of LublinLublin Poland
| | | | - Aleksandra Szopa
- Chair and Department of Applied PharmacyMedical University of LublinLublin Poland
| | - Jarosław Dudka
- Chair and Department of ToxicologyMedical University of LublinLublin Poland
| | - Ewa Poleszak
- Chair and Department of Applied PharmacyMedical University of LublinLublin Poland
| |
Collapse
|
36
|
Chen YH, Chen CJ, Wang SJ, Lin YN, Chen WC, Tsai MY, Chen HY. Downregulation of tight junction protein zonula occludens-2 and urothelium damage in a cyclophosphamide-induced mouse model of cystitis. Taiwan J Obstet Gynecol 2018; 57:399-406. [PMID: 29880173 DOI: 10.1016/j.tjog.2018.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The cyclophosphamide (CYP)-induced model of cystitis in mice closely fits the symptoms of chronic bladder inflammation. Cystitis was recently found to be due to an altered gap junction protein in a rat model. Thus, this study was conducted to evaluate changes in protein expression and composition in the bladder of CYP-treated mice. MATERIALS AND METHODS Administration of CYP induced cystitis-related symptoms in mice. Cystometry was assessed and cell junction-associated protein zonula occludens-2 (ZO-2) expression was measured. Voiding interval values (time between voids) were assessed in mice under anesthesia. The bladders were removed for proteomic analysis using label-free quantitative proteomics and liquid chromatography-mass spectrometry. Additionally, immunochemistry (IHC) and Western blot were used to confirm the location and level, respectively, of ZO-2 expression. RESULTS Compared to the control group, the voiding interval values and urothelial thickness in the bladder in the CYP-treated group were significantly decreased. Additionally, we identified 105 differentially expressed proteins in the bladder of CYP-treated mice with proteomic analysis. These proteins were involved in cell-cell tight junctions, exocytosis, muscle development, contraction, and regulation, immune responses, proteolysis, and cell adhesion. IHC and Western blot confirmed the downregulation of the tight junction protein ZO-2 in the urothelium of bladder. CONCLUSIONS Our results suggest that downregulation in tight junction protein ZO-2 and urothelium damage may have a role in cystitis-related OAB. These changes could be related to the molecular mechanism of cystitis-related OAB.
Collapse
Affiliation(s)
- Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, Sex Hormone Research Center, China Medical University Hospital, Taichung 40402, Taiwan; Department of Urology, Chinese Medicine Research Center, Research Center for Chinese Medicine and Acupuncture, China Medical University Hospital, Taichung 40402, Taiwan; Proteomics Core Laboratory, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, Sex Hormone Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shih-Jing Wang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yu-Ning Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, Sex Hormone Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wen-Chi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Urology, Chinese Medicine Research Center, Research Center for Chinese Medicine and Acupuncture, China Medical University Hospital, Taichung 40402, Taiwan; Proteomics Core Laboratory, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Yen Tsai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Huey-Yi Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Research, Sex Hormone Research Center, China Medical University Hospital, Taichung 40402, Taiwan; Proteomics Core Laboratory, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
37
|
de Oliveira MG, Mónica FZ, Calmasini FB, Alexandre EC, Tavares EBG, Soares AG, Costa SKP, Antunes E. Deletion or pharmacological blockade of TLR4 confers protection against cyclophosphamide-induced mouse cystitis. Am J Physiol Renal Physiol 2018; 315:F460-F468. [PMID: 29717937 DOI: 10.1152/ajprenal.00100.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic inflammatory disease without consistently effective treatment. We investigate the role of toll-like receptor 4 (TLR4) on voiding dysfunction and inflammation in the cyclophosphamide (CYP)-induced mouse cystitis. Male C57BL/6 [wild-type, (WT)] and/or TLR4 knockout (TLR4-/-) mice were treated with an injection of CYP (300 mg/kg, 24 h) or saline (10 ml/kg). The pharmacological blockade of the TLR4 by resatorvid (10 mg/kg) was also performed 1 h prior CYP-injection in WT mice. Urodynamic profiles were assessed by voiding stain on filter paper and filling cystometry. Contractile responses to carbachol were measured in isolated bladders. In CYP-exposed WT mice, mRNA for TLR4, myeloid differentiation primary response 88, and TIR-domain-containing adapter-inducing interferon-β increased by 45%, 72%, and 38%, respectively ( P < 0.05). In free-moving mice, CYP-exposed mice exhibited a higher number of urinary spots and smaller urinary volumes. Increases of micturition frequency and nonvoiding contractions, concomitant with decreases of intercontraction intervals and capacity, were observed in the filling cystometry of WT mice ( P < 0.05). Carbachol-induced bladder contractions were significantly reduced in the CYP group, which was paralleled by reduced mRNA for M2 and M3 muscarinic receptors. These functional and molecular alterations induced by CYP were prevented in TLR4-/- and resatorvid-treated mice. Additionally, the increased levels of inflammatory markers induced by CYP exposure, myeloperoxidase activity, interleukin-6, and tumor necrosis factor-alpha were significantly reduced by resatorvid treatment. Our findings reveal a central role for the TLR4 signaling pathway in initiating CYP-induced bladder dysfunction and inflammation and thus emphasize that TLR4 receptor blockade may have clinical value for IC/BPS treatment.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Fabiola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Edith B G Tavares
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| | - Antonio G Soares
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas , Campinas , Brazil
| |
Collapse
|
38
|
Kuga N, Tanioka A, Hagihara K, Kawai T. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states. PLoS One 2017; 12:e0189941. [PMID: 29267380 PMCID: PMC5739434 DOI: 10.1371/journal.pone.0189941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/18/2017] [Indexed: 11/20/2022] Open
Abstract
Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases.
Collapse
Affiliation(s)
- Nahoko Kuga
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Company, Limited, Nogi, Tochigi, Japan
| | - Asao Tanioka
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Company, Limited, Nogi, Tochigi, Japan
| | - Koichiro Hagihara
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Company, Limited, Nogi, Tochigi, Japan
| | - Tomoyuki Kawai
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Company, Limited, Nogi, Tochigi, Japan
- * E-mail:
| |
Collapse
|
39
|
Gao P, Ding XW, Dong L, Luo P, Zhang GH, Rong WF. Expression of aromatase in the rostral ventromedial medulla and its role in the regulation of visceral pain. CNS Neurosci Ther 2017; 23:980-989. [PMID: 29047208 DOI: 10.1111/cns.12769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
Abstract
AIMS Estrogens are known to exert a wide spectrum of actions on brain functions including modulation of pain. Besides the circulating estrogens produced mainly by the ovaries, many brain regions are also capable of de novo synthesizing estrogens, which may exert important modulatory effects on neuronal functions. This study was aimed to test the hypothesis that aromatase, the enzyme that catalyzes the conversion of testosterone to estradiols, may be distributed in the rostral ventromedial medulla (RVM), where it may impact on visceral pain. METHODS AND RESULTS Adult female rats were treated with cyclophosphamide (CPM, 50 mg/kg, ip, once every 3 days) or saline. At approximately day 10 following the 3rd injection, CPM-treated rats exhibited colorectal hyperalgesia as they showed significantly greater abdominal withdrawal responses (AWR) to graded colorectal distension (CRD, 0-100 mm Hg) than the saline group. Immunofluorescent staining and Western blot assay revealed that CPM-induced colorectal hyperalgesia was associated with significantly increased expression of aromatase and phosphorylated μ-type opioid receptor (pMOR) and decreased expression of total MOR in the RVM. Intracisternal application of aromatase inhibitors, fadrozole, and letrozole reversed CPM-induced colorectal hyperalgesia and restored pMOR and MOR expression in the RVM. CONCLUSIONS Our observations confirmed the expression of aromatase in the RVM, a pivotal brain region in descending modulation of pain and opioid analgesia. The results support the hypothesis that locally produced estrogens in the RVM may be involved in the maintenance of chronic visceral hyperalgesia and the downstream signaling may involve phosphorylation of MOR.
Collapse
Affiliation(s)
- Po Gao
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Wei Ding
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Dong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Luo
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-Hua Zhang
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Fang Rong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
40
|
Proliferation of Interstitial Cells in the Cyclophosphamide-Induced Cystitis and the Preventive Effect of Imatinib. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3457093. [PMID: 28698872 PMCID: PMC5494099 DOI: 10.1155/2017/3457093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/21/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
Cyclophosphamide- (CYP-) induced cystitis in the rat is a well-known model of bladder inflammation that leads to an overactive bladder, a process that appears to involve enhanced nitric oxide (NO) production. We investigated the changes in the number and distribution of interstitial cells (ICs) and in the expression of endothelial NO synthase (eNOS) in the bladder and urethra of rats subjected to either intermediate or chronic CYP treatment. Pronounced hyperplasia and hypertrophy of ICs were evident within the lamina propria and in the muscle layer. IC immunolabeling with CD34, PDGFRα, and vimentin was enhanced, as reflected by higher colocalization indexes of the distinct pairs of markers. Moreover, de novo expression of eNOS was evident in vimentin and CD34 positive ICs. Pretreatment with the receptor tyrosine kinase inhibitor Imatinib prevented eNOS expression and ICs proliferation, as well as the increased voiding frequency and urinary tract weight provoked by CYP. As similar results were obtained in the urethra, urethritis may contribute to the uropathology of CYP-induced cystitis.
Collapse
|
41
|
Zhang X, Gao S, Tanaka M, Zhang Z, Huang Y, Mitsui T, Kamiyama M, Koizumi S, Fan J, Takeda M, Yao J. Carbenoxolone inhibits TRPV4 channel-initiated oxidative urothelial injury and ameliorates cyclophosphamide-induced bladder dysfunction. J Cell Mol Med 2017; 21:1791-1802. [PMID: 28244642 PMCID: PMC5571544 DOI: 10.1111/jcmm.13100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/25/2016] [Indexed: 01/23/2023] Open
Abstract
Carbenoxolone (CBX) is a clinically prescribed drug for the treatment of digestive ulcer and inflammation. It is also a widely used pharmacological inhibitor of several channels in basic research. Given that the overactivity of several channels, including those inhibitable by CBX, underlies bladder dysfunction, we tested the potential therapeutic application and mechanism of CBX in the treatment of voiding dysfunction. In a mouse model of cystitis induced by cyclophosphamide (CYP), CBX administration prevented the CYP‐elicited increase in bladder weight, oedema, haemorrhage, and urothelial injury. CBX also greatly improved micturition pattern, as manifested by the apparently decreased micturition frequency and increased micturition volume. Western blot results showed that CBX suppressed CYP‐induced increase in protein carbonyls, COX‐2, and iNOS. Further analysis using cultured urothelial cells revealed that acrolein, the major metabolite of CYP, caused protein oxidation, p38 activation, and urothelial injury. These effects of acrolein were reproduced by TRPV4 agonists and significantly prevented by antioxidant NAC, p38 inhibitor SB203580, TRPV4 antagonist RN‐1734, and CBX. Further studies showed that CBX potently suppressed TRPV4 agonist‐initiated calcium influx and subsequent cell injury. CBX attenuated CYP‐induced cystitis in vivo and reduced acrolein‐induced cell injury in vitro, through mechanisms involving inhibition of TRPV4 channels and attenuation of the channel‐mediated oxidative stress. CBX might be a promising agent for the treatment of bladder dysfunction.
Collapse
Affiliation(s)
- Xiling Zhang
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan.,China Medical University, Shenyang, China
| | - Shan Gao
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan.,China Medical University, Shenyang, China
| | - Masayoshi Tanaka
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan
| | - Takahiko Mitsui
- Department of Urology, University of Yamanashi, Yamanashi, Japan
| | - Manabu Kamiyama
- Department of Urology, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Masayuki Takeda
- Department of Urology, University of Yamanashi, Yamanashi, Japan
| | - Jian Yao
- Division of Molecular Signaling, Department of Advanced Biomedical Research, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
42
|
Haldar S, Dru C, Mishra R, Tripathi M, Duong F, Angara B, Fernandez A, Arditi M, Bhowmick NA. Histone deacetylase inhibitors mediate DNA damage repair in ameliorating hemorrhagic cystitis. Sci Rep 2016; 6:39257. [PMID: 27995963 PMCID: PMC5171776 DOI: 10.1038/srep39257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022] Open
Abstract
Hemorrhagic cystitis is an inflammatory and ulcerative bladder condition associated with systemic chemotherapeutics, like cyclophosphomide. Earlier, we reported reactive oxygen species resulting from cyclophosphamide metabolite, acrolein, causes global methylation followed by silencing of DNA damage repair genes. Ogg1 (8-oxoguanine DNA glycosylase) is one such silenced base excision repair enzyme that can restore DNA integrity. The accumulation of DNA damage results in subsequent inflammation associated with pyroptotic death of bladder smooth muscle cells. We hypothesized that reversing inflammasome-induced imprinting in the bladder smooth muscle could prevent the inflammatory phenotype. Elevated recruitment of Dnmt1 and Dnmt3b to the Ogg1 promoter in acrolein treated bladder muscle cells was validated by the pattern of CpG methylation revealed by bisulfite sequencing. Knockout of Ogg1 in detrusor cells resulted in accumulation of reactive oxygen mediated 8-Oxo-dG and spontaneous pyroptotic signaling. Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), restored Ogg1 expression in cells treated with acrolein and mice treated with cyclophosphamide superior to the standard of care, mesna or nicotinamide-induced DNA demethylation. SAHA restored cyclophosphamide-induced bladder pathology to that of untreated control mice. The observed epigenetic imprinting induced by inflammation suggests a new therapeutic target for the treatment of hemorrhagic cystitis.
Collapse
Affiliation(s)
- Subhash Haldar
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher Dru
- Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rajeev Mishra
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manisha Tripathi
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Frank Duong
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Greater Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - Bryan Angara
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Greater Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - Ana Fernandez
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Greater Los Angeles Veterans Administration, Los Angeles, CA, USA
| | - Moshe Arditi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil A. Bhowmick
- Department of Medicine, Samuel Ochin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Greater Los Angeles Veterans Administration, Los Angeles, CA, USA
| |
Collapse
|
43
|
Liu B, Su M, Tang S, Zhou X, Zhan H, Yang F, Li W, Li T, Xie J. Spinal astrocytic activation contributes to mechanical allodynia in a rat model of cyclophosphamide-induced cystitis. Mol Pain 2016; 12:12/0/1744806916674479. [PMID: 27852964 PMCID: PMC5117243 DOI: 10.1177/1744806916674479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that glial cells play an important role in the generation and maintenance of neuropathic pain. Activated glial cells produce numerous mediators such as proinflammatory cytokines that facilitate neuronal activity and synaptic plasticity. Similarly, bladder pain syndrome/interstitial cystitis shares many characteristics of neuropathic pain. However, related report on the involvement of spinal glia in bladder pain syndrome/interstitial cystitis-associated pathological pain and the underlying mechanisms are still lacking. The present study investigated spinal glial activation and underlying molecular mechanisms in a rat model of bladder pain syndrome/interstitial cystitis. RESULTS A rat model of bladder pain syndrome/interstitial cystitis was established via systemic injection with cyclophosphamide. Mechanical allodynia was tested with von Frey monofilaments and up-down method. Moreover, Western blots and double immunofluorescence were used to detect the expression and location of glial fibrillary acidic protein, OX42/Iba1, P-P38, NeuN, interleukin (IL)-1β, phosphorylation of N-methyl-D-aspartate receptor 1 (P-NR1), and IL-1 receptor I (IL-1RI) in the L6-S1 spinal cord. We found that glial fibrillary acidic protein rather than OX42/Iba1 or P-P38 was significantly increased in the spinal cord of cyclophosphamide-induced cystitis. L-alpha-aminoadipate but not minocycline markedly attenuated the allodynia. Furthermore, we found that spinal IL-1β was dramatically increased in cyclophosphamide-induced cystitis, and activated astrocytes were the only source of IL-1β release, which contributed to allodynia in cystitis rats. Besides, spinal P-NR1 was statistically increased in cyclophosphamide-induced cystitis and only localized in IL-1RI positive neurons in spinal dorsal horn. Additionally, NR antagonist significantly attenuated the cystitis-induced pain. Interestingly, the time course of the P-NR1 expression paralleled to that of IL-1β or glial fibrillary acidic protein. CONCLUSIONS Our results demonstrated that astrocytic activation but not microglial activation contributed to the allodynia in cyclophosphamide-induced cystitis and IL-1β released from astrocytes might bind to its endogenous receptor on the neurons inducing the phosphorylation of NR1 subunit, leading to sensory neuronal hyperexcitability and pathological pain.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital·and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - ShaoJun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Juncong Xie
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Monjotin N, Gillespie J, Farrié M, Le Grand B, Junquero D, Vergnolle N. F16357, a novel protease-activated receptor 1 antagonist, improves urodynamic parameters in a rat model of interstitial cystitis. Br J Pharmacol 2016; 173:2224-36. [PMID: 27111354 PMCID: PMC4919585 DOI: 10.1111/bph.13501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/17/2016] [Accepted: 04/10/2016] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose The aims of the present study were to characterize the role of PAR1 in rat bladder under inflammatory conditions and determine whether a selective PAR1 antagonist, F16357, can prevent the pathophysiological symptoms of cyclophosphamide‐induced interstitial cystitis (IC). Experimental Approach Immunohistochemistry, contractile activity in isolated bladder and urodynamics were determined before and after cyclophosphamide treatment. F16357 was administered intravesically during the acute phase of inflammation, and effects on PAR1 and PAR1‐related bladder contraction evaluated 24 h after cyclophosphamide injection. Urodynamics and associated voided volumes were recorded 7 and 24 h after cyclophosphamide. Key Results In control conditions, PAR1 was present only in some umbrella cells. Cyclophosphamide disrupted the urothelium and expression of PAR1 by all remaining urothelial cells. After F16357 treatment, urothelial damage was absent and PAR1 immunoreactivity similar to control tissues. Thrombin and TFLLR‐NH2 induced bladder contractions. These were increased in inflammatory conditions and antagonized by F16357 in a concentration‐dependent manner. In telemetric experiments, furosemide increased urine production and voiding frequency for 60 min, 7 h after cyclophosphamide injection. Intravesical administration of F16357 blocked these changes with a return to a physiological profile; 24 h after cyclophosphamide, the volume of micturition was still lower with no increase in number of micturitions. F16357 30 μM reduced the number of micturitions and improved bladder capacity, but did not affect diuresis. Under similar experimental conditions, lidocaine 2% induced comparable effects. Conclusions and Implications PAR1 is expressed in rat bladder, overactivated in inflammatory conditions and involved in bladder function and sensation. F16357 could represent an interesting candidate for IC treatment.
Collapse
Affiliation(s)
- N Monjotin
- Institut de Recherche Pierre Fabre, Castres, France
| | - J Gillespie
- Newcastle University, Newcastle upon Tyne, England
| | - M Farrié
- Institut de Recherche Pierre Fabre, Castres, France
| | - B Le Grand
- Institut de Recherche Pierre Fabre, Castres, France
| | - D Junquero
- Institut de Recherche Pierre Fabre, Castres, France
| | - N Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, INP-ENVT, Université de Toulouse-3 Paul Sabatier, Toulouse, France
| |
Collapse
|
45
|
de Oliveira MG, Calmasini FB, Alexandre EC, De Nucci G, Mónica FZ, Antunes E. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am J Physiol Renal Physiol 2016; 311:F85-93. [PMID: 27122537 DOI: 10.1152/ajprenal.00041.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
46
|
Uroprotective effect of oleuropein in a rat model of hemorrhagic cystitis. Int J Biochem Cell Biol 2016; 74:12-7. [PMID: 26905436 DOI: 10.1016/j.biocel.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
Hemorrhagic cystitis is one of the devastating complications seen after receiving cyclophosphamide chemotherapy. Oleuropein is the most important phenolic compound of olive leaves that mediates most of its beneficial pharmacological properties. Herein, we investigated the possible uroprotective effect of oleuropein against cyclophosphamide induced hemorrhagic cystitis in a rat model. For this purpose, we measured bladder nitric oxide, reduced glutathione, catalase, tumor necrosis factor-alpha and vascular endothelial growth factor levels in addition to the bladder gene expression of intercellular adhesion molecule-1 after induction of hemorrhagic cystitis in the presence or absence of oleuropein. Histopathological examination of bladder tissues was also performed. After cyclophosphamide injection, we demonstrated a significant decrease in bladder reduced glutathione (39%) and catalase (55.4%) levels and a significant increase of nitric oxide (5.6 folds), tumor necrosis factor-alpha (3.3 folds), vascular endothelial growth factor (2 folds) and intercellular adhesion molecule-1 (8 folds) bladder contents when compared to those in normal control rats. Administration of oleuropein induced a marked elevation in bladder reduced glutathione (37.8%), catalase (100.4%) with a prominent reduction of bladder nitric oxide (40%), tumor necrosis factor-alpha (35.9%) and vascular endothelial growth factor (56.2%) levels along with downregulation of intercellular adhesion molecule-1 bladder expression (73.1%) in comparison to cyclophosphamide treated rats levels. Our data demonstrated that oleuropein counteracts the harmful effects of cyclophosphamide on the bladder through its antioxidant and anti-inflammatory activities. Oleuropein exerts a definite uroprotective effect against cyclophosphamide induced hemorrhagic cystitis in rats.
Collapse
|
47
|
Monjotin N, Farrié M, Vergnolle N, Le Grand B, Gillespie J, Junquero D. Bladder telemetry: A new approach to evaluate micturition behavior under physiological and inflammatory conditions. Neurourol Urodyn 2016; 36:308-315. [PMID: 26879122 DOI: 10.1002/nau.22970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
AIMS To establish a new approach to cystometry using telemetry in conscious rats and to use this technique to determine the role of conscious decision making processes with respect to the initiation of voiding in physiological, inflammatory, and painful conditions. METHODS The pressure transducer of a telemetric transmitter was implanted in the dome of the urinary bladder. After a recovery period of at least 1 month, several investigations of urodynamic parameters were performed after diuresis activation by a pulse of furosemide. The model was characterized by tolterodine and mirabegron under physiological conditions and same animals were reused to evaluate the modification of the voiding pattern under bladder inflammation induced by cyclophosphamide. RESULTS The quality of traces and measurement of parameters recorded telemetrically were comparable to those with conventional cystometry. Furosemide induced a reproducible transient increase of urine production and a series of voids that persisted for 60 min. Tolterodine reduced the amplitude of micturition contractions although mirabegron was devoid of any effect. Seven hours after injection of CYP, voiding frequency increased significantly and the micturition amplitude contraction was not altered. However, the mean volume voided during individual micturitions and the total voided volume decreased. During a second exposure to furosemide 24H after CYP injection, the micturition pattern returned to control, however, the micturition volume was still lower than in control. CONCLUSION This telemetric model appears to be as accurate as previously described in conscious conventional cystometry, and allows the repeated evaluation of compounds which may modulate the voiding patterns. Neurourol. Urodynam. 36:308-315, 2017. © 2016 The Authors. Neurourology and Urodynamics published by Wiley Periodicals, Inc.
Collapse
|
48
|
Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice. J Nutr Biochem 2016; 27:219-32. [DOI: 10.1016/j.jnutbio.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
|
49
|
Burmeister D, Bishwokarma B, AbouShwareb T, Olson J, Herco M, Tan J, Andersson KE, Christ G. The potential utility of non-invasive imaging to monitor restoration of bladder structure and function following subtotal cystectomy (STC). BMC Urol 2015; 15:103. [PMID: 26463481 PMCID: PMC4604729 DOI: 10.1186/s12894-015-0094-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/25/2015] [Indexed: 12/03/2022] Open
Abstract
Background Restoration of normal bladder volume and function (i.e., bioequivalent bladder) are observed within 8 weeks of performing subtotal cystectomy (STC; removal of ~70 % of the bladder) in 12-week old rats. For analysis of bladder function in rodents, terminal urodynamic approaches are largely utilized. In the current study, we investigated the potential for Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans to noninvasively track restoration of structure and function following STC. Methods Twelve week old female Fisher F344 rats underwent STC and were scanned via CT and/or MRI 2, 4, 8, and 12 weeks post-STC, followed by urodynamic testing. After euthanasia, bladders were excised for histological processing. Results MRI scans demonstrated an initial decline followed by a time-dependent increase to normal bladder wall thickness (BWT) by 8 weeks post-STC. Masson’s trichrome staining showed a lack of fibrosis post-STC, and also revealed that the percent of smooth muscle in the bladder wall at 2 and 4 weeks positively correlated with pre-operative baseline BWT. Moreover, increased BWT values before STC was predictive of improved bladder compliance at 2 and 4 weeks post-STC. Cystometric studies indicated that repeated MRI manipulation (i.e. bladder emptying) apparently had a negative impact on bladder capacity and compliance. A “window” of bladder volumes was identified 2 weeks post-STC via CT scanning that were commensurate with normal micturition pressures measured in the same animal 6 weeks later. Conclusions Taken together, the data indicate some limitations of “non-invasive” imaging to provide insight into bladder regeneration. Specifically, mechanical manipulation of the bladder during MRI appears to negatively impact the regenerative process per se, which highlights the importance of terminal cystometric studies.
Collapse
Affiliation(s)
- David Burmeister
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| | - Bimjhana Bishwokarma
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| | - Tamer AbouShwareb
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| | - John Olson
- Wake Forest Department of Biomolecular Imaging, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Maja Herco
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| | - Josh Tan
- Wake Forest Department of Biomolecular Imaging, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA.
| | - George Christ
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA. .,Departments of Biomedical Engineering and Orthopaedic Surgery, and Laboratory of Regenerative Therapeutics, University of Virginia, 415 Lane Road, Charlottesville, VA, 22908, USA.
| |
Collapse
|
50
|
Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat Commun 2015; 6:7650. [PMID: 26151598 DOI: 10.1038/ncomms8650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Pirt is a transmembrane protein predominantly expressed in peripheral neurons. However, the physiological and pathological roles of Pirt in hollow viscus are largely unknown. Here we show that Pirt deficiency in mice causes bladder overactivity. The density of α,β-meATP-induced currents is significantly reinforced in Pirt-deficient dorsal root ganglion (DRG) neurons. Pirt and P2X3 receptor co-localize in bladder nerve fibres and heterologous Pirt expression significantly reduces P2X3-mediated currents. Pirt interacts with P2X3 through the N-terminal 14 amino-acid residues. TAT-conjugated Pirt(N14) peptide (Pirt(N14)) is sufficient to inhibit P2X3 activation in bladder DRG neurons and to alleviate bladder overactivity in Pirt(-/-) mice. Pirt expression is decreased in the bladder of cyclophosphamide (CYP)-treated mice, a commonly used model of bladder overactivity. Importantly, Pirt(N14) administration reduces the frequency of bladder voiding and restores the voided volume of CYP-treated mice. Therefore, our results demonstrate that Pirt is an endogenous regulator of P2X3 in bladder function.
Collapse
|