1
|
Zhao M, Mu F, Lin R, Gao K, Zhang W, Tao X, Xu D, Wang J. Chinese Medicine-Derived Salvianolic Acid B for Disease Therapy: A Scientometric Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1359-1396. [PMID: 39212495 DOI: 10.1142/s0192415x2450054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Salvianolic acid B (SalB), among the most abundant bioactive polyphenolic compounds found in Salvia miltiorrhiza Bge., exerts therapeutic and protective effects against various diseases. Although some summaries of the activities of SalB exist, there is lack of a scientometric and in-depth review regarding disease therapy. In this review, scientometrics was employed to analyze the number of articles, publication trends, countries, institutions, keywords, and highly cited papers pertaining to SalB research. The scientometric findings showed that SalB exerts excellent protective effects on the heart, lungs, liver, bones, and brain, along with significant therapeutic effects against atherosclerosis (AS), Alzheimer's disease (AD), liver fibrosis, diabetes, heart/brain ischemia, and osteoporosis, by regulating signaling pathways and acting on specific molecular targets. Moreover, this review delves into in-depth insights and perspectives, such as the utilization of SalB in combination with other drugs, the validation of molecular mechanisms and targets, and the research and development of novel drug carriers and dosage forms. In conclusion, this review aimed to offer a comprehensive scientometric analysis and in-depth appraisal of SalB research, encompassing both present achievements and future prospects, thereby providing a valuable resource for the clinical application and therapeutic exploitation of SalB.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| |
Collapse
|
2
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
4
|
Smit RD, Ghosh B, Campion TJ, Stingel R, Lavell E, Hooper R, Fan X, Soboloff J, Smith GM. STAT3 protects dopaminergic neurons against degeneration in animal model of Parkinson's disease. Brain Res 2024; 1824:148691. [PMID: 38030102 PMCID: PMC10842767 DOI: 10.1016/j.brainres.2023.148691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is the most prevalent disorder of the basal ganglia, propagated by the degeneration of axon terminals within the striatum and subsequent loss of dopaminergic neurons in the substantia nigra (SN). Exposure of environmental neurotoxins and mutations of several mitochondrial and proteasomal genes are primarily responsible. METHODS To determine whether signal transducer and activator of transcription 3 (STAT3) could protect dopaminergic neurons against degeneration, we first screened it in the in vitro capacity using immortalized rat dopaminergic N27 cells under 6-OHDA neurotoxicity. We then evaluated the effectiveness of constitutively active (ca) STAT3 as a neuroprotective agent on N27 cells in a 6-hydroxydopamine (6-OHDA) induced rat model of PD and compared it to control animals or animals where AAV/caRheb was expressed in SN. Behavioral outcomes were assessed using rotational and cylinder assays and mitochondrial function using reactive oxygen species (ROS) levels. RESULTS Using flow cytometry, the in vitro analysis determined caSTAT3 significantly decreased dopaminergic neuronal death under 6-OHDA treatment conditions. Importantly, in vivo overexpression of caSTAT3 in SN dopaminergic neurons using AAV-mediated expression demonstrated significant neuroprotection of dopaminergic neurons following 6-OHDA. Both caSTAT3 and caRheb + caSTAT3 co-injection into substantia nigra reduced D-amphetamine-induced rotational behavior and increased ipsilateral forelimb function when compared to control animals. In addition, caSTAT3 decreased mitochondrial ROS production following 6-OHDA induced neurotoxicity. CONCLUSION caSTAT3 confers resistance against ROS production in mitochondria of susceptible SN dopaminergic neurons potentially offering a new avenue for treatment against PD.
Collapse
Affiliation(s)
- Rupert D Smit
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA.
| | - Biswarup Ghosh
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Thomas J Campion
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Rachel Stingel
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Emily Lavell
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| | - Robert Hooper
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - Xiaoxuan Fan
- Flow Cytometry Core Facility, Temple University, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research & Molecular Biology, Temple University, USA
| | - George M Smith
- Department of Neuroscience & Shriners Hospitals for Pediatric Research Center, Temple University, USA
| |
Collapse
|
5
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
6
|
Effects of HF-rTMS on microglial polarization and white matter integrity in rats with poststroke cognitive impairment. Behav Brain Res 2023; 439:114242. [PMID: 36455674 DOI: 10.1016/j.bbr.2022.114242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Poststroke cognitive impairment (PSCI) occurs frequently after stroke, but effective treatments are lacking. Previous studies have revealed that high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has a beneficial effect on PSCI, but the mechanism is unclear. This study aimed to evaluate the effect of 10 and 20 Hz HF-rTMS on PSCI and the possible mechanisms. An ischemic stroke rat model was established by transient middle cerebral artery occlusion (tMCAO). The modified neurological deficit score (mNSS) and Morris water maze tests were conducted to assess neurological function and cognitive function. Luxol Fast Blue (LFB) staining was performed to evaluate white matter damage. Proinflammatory and anti-inflammatory cytokines were measured using enzyme-linked immunosorbent assays (ELISA). Immunofluorescence was used to assess microglial activation and polarization. Western blotting was performed to measure JAK2-STAT3 pathway-related protein expression. We found that HF-rTMS decreased the neurological deficit score. Compared with 10 Hz HF-rTMS, 20 Hz HF-rTMS more markedly improved the cognitive function of tMCAO rats at day 28 after operation. Furthermore, 20 Hz HF-rTMS attenuates white matter lesion, decreased proinflammatory cytokine levels, and increased anti-inflammatory cytokine levels. It also decreased the number of CD68- and CD16/32-positive microglia and increased the number of CD206-positive microglia. In addition, p-JAK2, JAK2, p-STAT3 and STAT3 expression was increased. These findings suggest that HF-rTMS improves cognitive function and attenuates white matter lesion in tMCAO rats by shifting microglia toward the M2 phenotype. Mechanisms may be related to regulation JAK2-STAT3 pathways.
Collapse
|
7
|
Glial roles in sterile inflammation after ischemic stroke. Neurosci Res 2023; 187:67-71. [PMID: 36206952 DOI: 10.1016/j.neures.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, but there are a limited number of therapies that improve patients' functional recovery. The complicated mechanisms of post-stroke neuroinflammation, which is responsible for secondary ischemic neuronal damage, have been clarified by extensive research. Activation of microglia and astrocytes due to ischemic insults is implicated in the production of pro-inflammatory factors, formation of the glial scar, and breakdown of the blood-brain barrier. This leads to the infiltration of leukocytes, which are activated by damage-associated molecular patterns (DAMPs) to produce pro-inflammatory factors and induce additional neuronal damage. In this review, we focus on the glial mechanisms underlying sterile post-ischemic inflammation after stroke.
Collapse
|
8
|
Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: A Potential Therapeutic Target in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1949718. [PMID: 36105479 PMCID: PMC9467755 DOI: 10.1155/2022/1949718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/06/2022]
Abstract
Stroke is a fatal cerebral vascular disease with a high mortality rate and substantial economic and social costs. ROS production and neuroinflammation have been implicated in both hemorrhagic and ischemic stroke and have the most critical effects on subsequent brain injury. SIRT1, a member of the sirtuin family, plays a crucial role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, and oxidative stress. Targeting SIRT1 to reduce ROS and neuroinflammation might represent an emerging therapeutic target for stroke. Therefore, we conducted the present review to summarize the mechanisms of SIRT1-mediated oxidative stress and neuroinflammation in stroke. In addition, we provide a comprehensive introduction to the effect of compounds and natural drugs on SIRT1 signaling related to oxidative stress and neuroinflammation in stroke. We believe that our work will be helpful to further understand the critical role of the SIRT1 signaling pathway and will provide novel therapeutic potential for stroke treatment.
Collapse
|
9
|
Gu C, Zhang Q, Li Y, Li R, Feng J, Chen W, Ahmed W, Soufiany I, Huang S, Long J, Chen L. The PI3K/AKT Pathway-The Potential Key Mechanisms of Traditional Chinese Medicine for Stroke. Front Med (Lausanne) 2022; 9:900809. [PMID: 35712089 PMCID: PMC9194604 DOI: 10.3389/fmed.2022.900809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Stroke is associated with a high disability and fatality rate, and adversely affects the quality of life of patients and their families. Traditional Chinese Medicine (TCM) has been used effectively in the treatment of stroke for more than 2000 years in China and surrounding countries and regions, and over the years, this field has gleaned extensive clinical treatment experience. The Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway is important for regulation of cell migration, proliferation, differentiation, and apoptosis, and plays a vital role in vascularization and oxidative stress in stroke. Current Western medicine treatment protocols for stroke include mainly pharmacologic or mechanical thrombectomy to restore blood flow. This review collates recent advances in the past 5 years in the TCM treatment of stroke involving the PI3K/AKT pathway. TCM treatment significantly reduces neuronal damage, inhibits cell apoptosis, and delays progression of stroke via various PI3K/AKT-mediated downstream pathways. In the future, TCM can provide new perspectives and directions for exploring the key factors, and effective activators or inhibitors that affect occurrence and progression of stroke, thereby facilitating treatment.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yajing Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Shanghai 9th People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, China
| | | | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
The Role of PKC and HIF-1 and the Effect of Traditional Chinese Medicinal Compounds on Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1835898. [PMID: 35265143 PMCID: PMC8898791 DOI: 10.1155/2022/1835898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Neuronal death occurs during cerebral ischemia. However, when hemoperfusion and oxygen supply are resumed to the ischemic focus of the brain tissue, the brain tissue damage is further aggravated, resulting in cerebral ischemia-reperfusion injury (CIRI) to the patients. Protein kinase C (PKC) plays an important role in CIRI. Through the IP3/DAG/Ca2+ signaling pathway, it promotes the influx of calcium ions in neurons and causes calcium overload, which aggravates the damage. At the same time, when brain cells are hypoxic, hypoxia-inducible factor-1 (HIF-1) is expressed, which regulates the expression of Bcl-2 and Bax through the PI3K/Akt signaling pathway and reduces nerve cell injury. It also fights hypoxic-ischemic injury by increasing the production of vascular endothelial growth factor (VEGF) to promote blood vessel formation. The PKC and HIF-1 signaling pathways are also linked to CIRI. HIF-1 activates the PKC and ERK pathways via the upregulation of VEGF, leading to increased Cx43 phosphorylation and dysfunction and aggravating CIRI. Existing studies have shown that certain traditional Chinese medicine (TCM) compounds regulate the PKC and HIF-1 signaling pathways and alleviate CIRI. These compounds downregulate the PKC and the activity of the PKC-related signaling pathways to alleviate CIRI. They can also promote the expression of HIF-1, increase the content of VEGF in ischemic tissues to promote the generation of blood vessels, and improve microcirculation. TCM compounds can inhibit the cascade of reactions underlying disease occurrence and development by targeting multiple components using different herbal formulations to improve the structural and material changes in the brain cells, which alleviate CIRI and protect the brain tissue. This study briefly describes the role of PKC and HIF-1, their relationship in CIRI, and the effect of TCM on them.
Collapse
|
11
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Li D, Xu N, Hou Y, Ren W, Zhang N, Wang X, Sun Y, Lu W, Qu G, Yu Y, Lv C, Han F. Abnormal lipid droplets accumulation induced cognitive deficits in obstructive sleep apnea syndrome mice via JNK/SREBP/ACC pathway but not through PDP1/PDC pathway. Mol Med 2022; 28:3. [PMID: 35030992 PMCID: PMC8760803 DOI: 10.1186/s10020-021-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
The mechanisms of chronic intermittent hypoxia (CIH)-induced cognitive deficits remain unclear. Here, our study found that about 3 months CIH treatment induced lipid droplets (LDs) accumulation in hippocampal nerve and glia cells of C57BL/6 mice, and caused severe neuro damage including neuron lesions, neuroblast (NB) apoptosis and abnormal glial activation. Studies have shown that the neuronal metabolism disorders might contribute to the CIH induced-hippocampal impairment. Mechanistically, the results showed that pyruvate dehydrogenase complex E1ɑ subunit (PDHA1) and the pyruvate dehydrogenase complex (PDC) activator pyruvate dehydrogenase phosphatase 1 (PDP1) did not noticeable change after intermittent hypoxia. Consistent with those results, the level of Acetyl-CoA in hippocampus did not significantly change after CIH exposure. Interestingly, we found that CIH produced large quantities of ROS, which activated the JNK/SREBP/ACC pathway in nerve and glia cells. ACC catalyzed the carboxylation of Acetyl-CoA to malonyl-CoA and then more lipid acids were synthesized, which finally caused aberrant LDs accumulation. Therefore, the JNK/SREBP/ACC pathway played a crucial role in the cognitive deficits caused by LDs accumulation after CIH exposure. Additionally, LDs were peroxidized by the high level of ROS under CIH conditions. Together, lipid metabolic disorders contributed to nerve and glia cells damage, which ultimately caused behavioral dysfunction. An active component of Salvia miltiorrhiza, SMND-309, dramatically alleviated these injuries and improved cognitive deficits of CIH mice.
Collapse
Affiliation(s)
- Dongze Li
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Na Xu
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Yanyan Hou
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Wenjing Ren
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Na Zhang
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Xi Wang
- Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, YanTai, 264199, China
| | - Yeying Sun
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Wenxue Lu
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Guiwu Qu
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China
| | - Yan Yu
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China.
| | - Changjun Lv
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China.
| | - Fang Han
- Binzhou Medical University, 346 Guanhai Road, YanTai, 264003, China.
| |
Collapse
|
13
|
Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp Neurol 2021; 349:113966. [PMID: 34973964 DOI: 10.1016/j.expneurol.2021.113966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 01/01/2023]
Abstract
Astrocytic glycogen serves as an important glucose reserve, and its degradation provides extra support for neighboring neurons during energy deficiency. Salvianolic acid B (SAB) exerts a neuroprotective effect on reperfusion insult after cerebrovascular occlusion, but the effect of SAB on astrocytic glycogen and its relationship with neuroprotection are not completely understood. Here, we knocked down astrocyte-specific glycogen phosphorylase (GP, the rate-limiting enzyme in glycogenolysis) in vitro and in vivo and investigated the changes in key enzymes in glycogen metabolism by performing immunoblotting in vitro and immunofluorescence in vivo. Neurobehavioral and morphological assessments were conducted to uncover the outcomes during brain reperfusion. SAB accelerated astrocytic glycogenolysis by upregulating GP activity but not GP expression after reperfusion. Suppression of astrocytic glycogenolysis weakened SAB-mediated neuroprotection against the reperfusion insult. In addition, activation of glycogenolysis by SAB contributed to the survival of astrocytes and surrounding neurons by increasing antioxidant levels in astrocytes. Our data reveal that astrocytic GP represents an important metabolic target in SAB-induced protection against brain damage after cerebrovascular recanalization.
Collapse
|
14
|
Wang YY, Lin SY, Chang CY, Wu CC, Chen WY, Liao SL, Chen YF, Wang WY, Chen CJ. Jak2 Inhibitor AG490 Improved Poststroke Central and Peripheral Inflammation and Metabolic Abnormalities in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:antiox10121958. [PMID: 34943061 PMCID: PMC8750281 DOI: 10.3390/antiox10121958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Poststroke hyperglycemia and inflammation have been implicated in the pathogenesis of stroke. Janus Kinase 2 (Jak2), a catalytic signaling component for cytokine receptors such as Interleukin-6 (IL-6), has inflammatory and metabolic properties. This study aimed to investigate the roles of Jak2 in poststroke inflammation and metabolic abnormality in a rat model of permanent cerebral ischemia. Pretreatment with Jak2 inhibitor AG490 ameliorated neurological deficit, brain infarction, edema, oxidative stress, inflammation, caspase-3 activation, and Zonula Occludens-1 (ZO-1) reduction. Moreover, in injured cortical tissues, Tumor Necrosis Factor-α, IL-1β, and IL-6 levels were reduced with concurrent decreased NF-κB p65 phosphorylation, Signal Transducers and Activators of Transcription 3 phosphorylation, Ubiquitin Protein Ligase E3 Component N-Recognin 1 expression, and Matrix Metalloproteinase activity. In the in vitro study on bEnd.3 endothelial cells, AG490 diminished IL-6-induced endothelial barrier disruption by decreasing ZO-1 decline. Metabolically, administration of AG490 lowered fasting glucose, with improvements in glucose intolerance, plasma-free fatty acids, and plasma C Reactive Proteins. In conclusion, AG490 improved the inflammation and oxidative stress of neuronal, hepatic, and muscle tissues of stroke rats as well as impairing insulin signaling in the liver and skeletal muscles. Therefore, Jak2 blockades may have benefits for combating poststroke central and peripheral inflammation, and metabolic abnormalities.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
15
|
Hypoxia Tolerant Species: The Wisdom of Nature Translated into Targets for Stroke Therapy. Int J Mol Sci 2021; 22:ijms222011131. [PMID: 34681788 PMCID: PMC8537001 DOI: 10.3390/ijms222011131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Human neurons rapidly die after ischemia and current therapies for stroke management are limited to restoration of blood flow to prevent further brain damage. Thrombolytics and mechanical thrombectomy are the available reperfusion treatments, but most of the patients remain untreated. Neuroprotective therapies focused on treating the pathogenic cascade of the disease have widely failed. However, many animal species demonstrate that neurons can survive the lack of oxygen for extended periods of time. Here, we reviewed the physiological and molecular pathways inherent to tolerant species that have been described to contribute to hypoxia tolerance. Among them, Foxo3 and Eif5A were reported to mediate anoxic survival in Drosophila and Caenorhabditis elegans, respectively, and those results were confirmed in experimental models of stroke. In humans however, the multiple mechanisms involved in brain cell death after a stroke causes translation difficulties to arise making necessary a timely and coordinated control of the pathological changes. We propose here that, if we were able to plagiarize such natural hypoxia tolerance through drugs combined in a pharmacological cocktail it would open new therapeutic opportunities for stroke and likely, for other hypoxic conditions.
Collapse
|
16
|
Zhong Y, Yin B, Ye Y, Dekhel OYAT, Xiong X, Jian Z, Gu L. The bidirectional role of the JAK2/STAT3 signaling pathway and related mechanisms in cerebral ischemia-reperfusion injury. Exp Neurol 2021; 341:113690. [PMID: 33798563 DOI: 10.1016/j.expneurol.2021.113690] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, a well-conserved and basic intracellular signaling cascade, is mostly inactivated under basal conditions, although it can be phosphorylated under extracellular stimulation; in addition, it can influence the transcription and expression of multiple genes involved in biological processes such as cellular growth, metabolism, differentiation, degradation and angiogenesis. The inflammatory response, apoptosis, oxidative stress and angiogenesis are the main factors involved in the pathogenesis of ischemic stroke. Numerous studies have confirmed that the JAK2/STAT3 axis can be activated rapidly by ischemic stress, which is closely related to the regulation of these important pathological processes. However, different opinions on the specific role of this signaling pathway remain. In this paper, we review and summarize previous studies on the JAK2/STAT3 pathway in ischemic stroke.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Omar Y A T Dekhel
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Wang R, Zhang S, Yang Z, Zheng Y, Yan F, Tao Z, Fan J, Zhao H, Han Z, Luo Y. Mutant erythropoietin enhances white matter repair via the JAK2/STAT3 and C/EBPβ pathway in middle-aged mice following cerebral ischemia and reperfusion. Exp Neurol 2021; 337:113553. [PMID: 33309747 DOI: 10.1016/j.expneurol.2020.113553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 01/20/2023]
Abstract
Previous studies have indicated that EPO maintains the M2 microglia phenotype that contributes to white matter repair after ischemic stroke in young mice (2 months old). However, the underlying mechanisms that regulate microglial polarization are poorly defined. This study investigated the neuroprotective effects of nonerythropoietic mutant EPO (MEPO) on white matter and the underlying mechanism in middle-aged (9-month-old) male mice following cerebral ischemia. Middle-aged male C57 BL/6 mice were treated with MEPO (5000 IU/kg) or vehicle after middle cerebral artery occlusion (MCAO) and reperfusion. The specific inhibitor AG490 was used to block the JAK2/STAT3 pathway. Neurological function was assessed by beam walking and adhesive removal tests. Immunofluorescence staining and western blotting were used to assess the severity of white matter injury, phenotypic changes in the microglia and the expression of the signaling molecules. MEPO significantly improved neurobehavioral outcomes, alleviated brain tissue loss, and ameliorated white matter injury after MCAO compared with the vehicle group. Moreover, MEPO promoted oligodendrogenesis by shifting microglia toward M2 polarization by promoting JAK2/STAT3 activation and inhibiting the expression of C/EBPβ at 14 days after cerebral ischemia-reperfusion. However, the MEPO's effect on microglial M2 polarization and oligodendrogenesis was largely suppressed by AG490 treatment. Collectively, these data indicate that MEPO treatment improves white matter integrity after cerebral ischemia, which may be partly explained by MEPO facilitating microglia toward the beneficial M2 phenotype to promote oligodendrogenesis via JAK2/STAT3 and the C/EBPβ signaling pathway. This study provides novel insight into MEPO treatment for ischemic stroke.
Collapse
Affiliation(s)
- Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Sijia Zhang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China.
| |
Collapse
|
18
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:ijms22042051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
- Correspondence:
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
19
|
Zuo W, Yan F, Liu Z, Zhang B. miR-330 regulates Drp-1 mediated mitophagy by targeting PGAM5 in a rat model of permanent focal cerebral ischemia. Eur J Pharmacol 2020; 880:173143. [PMID: 32360974 DOI: 10.1016/j.ejphar.2020.173143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence have suggested that mitophagy could exert a neuroprotective role in brain ischemia by removing the damaged mitochondria. However the upstream mechanisms of mitophagy are remain unclear. We previously observed a decrease of miR-330 in a miRNA profile of plasma from patients within 3 h after a stroke. Our study further focused on the role and mechanism of miR-330 in mitophagy induced by hypoxia-ischemia (H/I) in rats. Cerebral ischemia model in rats was made with permanent middle cerebral artery occlusion (pMCAO). In vitro, ischemic model in primary neurons was established with oxygen-glucose deprivation. Various methods, including TTC staining, immunofluorescence staining, Western blot, ELISA, flow cytometry, and transmission electron microscopy were used to clarify the role of miR-330 after H/I, and whether miR-330/phosphoglycerate mutase family member 5 (PGAM5) axis could regulate dynamin-related protein 1 (Drp-1) mediated mitophagy. MiR-330 levels decreased both in rat plasma and in ipsilateral brain tissues after H/I. Pretreating animals with miR-330 antagomir could decrease cerebral infarction, edema, mortality, and apoptosis after 6-h pMCAO. PGAM5 was validated as a target of miR-330. MiR-330 agomir and antagomir transfection respectively decreased and increased the PGAM5 protein expression. MiR-330 could down-regulate mitophagy by inhibiting PGAM5-induced Drp1 dephosphorylation, thus reducing the recruitment of Drp1 to mitochondrial outer membrane and Drp1-mediated mitophagy after H/I. Our results suggest a role of miR-330 in regulating mitophagy. Our study suggested a novel miR-based intervention strategy for stroke.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education", Yantai University, Yantai, China
| | - Feng Yan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Neurobiology, Capital Medical University, Beijing, China
| | - Zhenyu Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Sun Y, Cheng M, Liang X, Chen S, Wang M, Zhang X. JAK2/STAT3 involves oxidative stress-induced cell injury in N2a cells and a rat MCAO model. Int J Neurosci 2020; 130:1142-1150. [PMID: 32064985 DOI: 10.1080/00207454.2020.1730829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: In this study, we sought to test the hypothesis that oxidative stress injury in ischemic brains and H2O2-treated mouse neuroblastoma Neuro-2a cells (N2a) was related to STAT3 activation.Materials and methods: Rat middle cerebral artery occlusion (MCAO) model and H2O2-treated mouse neuroblastoma Neuro-2a cells (N2a) were used to investigate the relationship between oxidative stress injury and STAT3 activation.Results: 8-Hydroxy-2'-deoxyguanosine (8-OHdG) content and STAT3 protein phosphorylation level were significantly increased after cerebral ischemia-reperfusion. H2O2 treatment inhibited the cell viability, induced the apoptosis, and further raised pSTAT3 protein level in N2a cells. Moreover, the addition of AG490, the protein inhibitor of JAK2, significantly alleviated cerebral ischemic damage in vivo and H2O2-induced injury in vitro, and JAK2 siRNA also alleviated H2O2-induced injury in N2a cell.Conclusions: JAK2/STAT3 pathway may play a crucial role in mediating reactive oxidative species (ROS)-induced cell injury in rat middle cerebral artery occlusion (MCAO) model and N2a cells. ROS scavenging and down-regulation of STAT3 activation might be a candidate design of therapeutic strategies against oxidative stress-related neurological diseases.
Collapse
Affiliation(s)
- Yan Sun
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuang Chen
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Yu L, Liu Z, He W, Chen H, Lai Z, Duan Y, Cao X, Tao J, Xu C, Zhang Q, Zhao Z, Zhang J. Hydroxysafflor Yellow A Confers Neuroprotection from Focal Cerebral Ischemia by Modulating the Crosstalk Between JAK2/STAT3 and SOCS3 Signaling Pathways. Cell Mol Neurobiol 2020; 40:1271-1281. [PMID: 32060857 DOI: 10.1007/s10571-020-00812-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/23/2020] [Indexed: 01/24/2023]
Abstract
Natural bioactive compounds have increasingly proved to be promising in evidence- or target-directed treatment or modification of a spectrum of diseases including cerebral ischemic stroke. Hydroxysafflor yellow A (HSYA), a major active component of the safflower plant, has drawn more interests in recent year for its multiple pharmacological actions in the treatment of cerebrovascular and cardiovascular diseases. Although the Janus kinase signaling, such as JAK2/STAT3 pathway, has been implicated in the modulation of the disease, the inhibition or activation of the pathway that contributed to the neuronal prevention from ischemic damages remains controversial. In this study, a series of experiments were performed to examine the dose- and therapeutic time window-related pharmacological efficacies of HSYA with emphasis on the HSYA-modulated interaction of JAK2/STAT3 and SOCS3 signaling in the MCAO rats. We found that HSYA treatment significantly rescued the neurological and functional deficits in a dose-dependent manner in the MCAO rats within 3 h after ischemia. HSYA treatment with a dosage of 8 mg/kg or higher markedly downregulated the expression of the JAK2-mediated signaling that was activated in response to ischemic insult, while it also promoted the expression of SOCS3 coordinately. In the subsequent experiments with the use of the JAK2 inhibitor WP1066, we found that the treatment of WP1066 alone or combination of WP1066/HSYA all exhibited inhibitory effects on JAK2-mediated signaling, while there was no influence on the SOCS3 activity of corresponding efficacious data in the MCAO rats, suggesting that excessive activation of JAK2/STAT3 might be necessary for HSYA to provoke SOCS3-negative feedback signaling. Taking together, our study demonstrates that HSYA might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways that eventually contributed to its therapeutic roles against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zhili Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Wendi He
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| |
Collapse
|
23
|
Neuroprotective Effect of SCM-198 through Stabilizing Endothelial Cell Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7850154. [PMID: 31827699 PMCID: PMC6885260 DOI: 10.1155/2019/7850154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 01/02/2023]
Abstract
Leonurine, also named SCM-198, which was extracted from Herba leonuri, displayed a protective effect on various cardiovascular and brain diseases, like ischemic stroke. Ischemic stroke which is the leading cause of morbidity and mortality, ultimately caused irreversible neuron damage. This study is aimed at exploring the possible therapeutic potential of SCM-198 in the protection against postischemic neuronal injury and possible underlying mechanisms. A transient middle cerebral artery occlusion (tMCAO) rat model was utilized to measure the protective effect of SCM-198 on neurons. TEM was used to determine neuron ultrastructural changes. The brain slices were stained with Nissl staining solution for Nissl bodies. Fluoro-Jade B (FJB) was used for staining the degenerating neurons. In the oxygen-glucose deprivation and re-oxygenation (OGD/R) model of bEnd.3 cells treated with SCM-198 (0.1, 1, 10 μM). Then, the bEnd.3 cells were cocultured with SH-SY5Y cells. Cell viability, MDA level, CAT activity, and apoptosis were examined to evaluate the cytotoxicity of these treatments. Western blot and immunofluorescent assays were used to examine the expression of protein related to the p-STAT3/NOX4/Bcl-2 signaling pathway. Coimmunoprecipitation was performed to determine the interaction between p-STAT3 and NOX4. In the transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could ameliorate neuron morphology and reduce the degenerating cell and neuron loss. In the in vitro model of bEnd.3 cell oxygen-glucose deprivation and reoxygenation (OGD/R), treatment with SCM-198 restored the activity of catalase (CAT), improved the expression of Cu-Zn superoxide dismutase (SOD1), and decreased the malondialdehyde (MDA) production. SCM-198 treatment prevented OGD/R-induced cell apoptosis as indicated by increased cell viability and decreased the number of TUNEL-positive cells, accompanied with upregulation of Bcl-2 and Bcl-xl protein and downregulation Bax protein. The results were consistent with SH-SY5Y cells which coculture with bEnd.3 cells. The forthcoming study revealed that SCM-198 activated the p-STAT3/NOX4/Bcl-2 signaling pathway. All the data indicated that SCM-198 protected against oxidative stress and neuronal damage in in vivo and in vitro injury models via the p-STAT3/NOX4/Bcl-2 signaling pathway. Our results suggested that SCM-198 could be the potential drug for neuroprotective effect through stabilizing endothelial cell function.
Collapse
|
24
|
Yu X, Guan Q, Wang Y, Shen H, Zhai L, Lu X, Jin Y. Anticonvulsant and anti-apoptosis effects of salvianolic acid B on pentylenetetrazole-kindled rats via AKT/CREB/BDNF signaling. Epilepsy Res 2019; 154:90-96. [DOI: 10.1016/j.eplepsyres.2019.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
|
25
|
Li F, Wong R, Luo Z, Du L, Turlova E, Britto LRG, Feng ZP, Sun HS. Neuroprotective Effects of AG490 in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2019; 56:8109-8123. [PMID: 31190145 DOI: 10.1007/s12035-019-01656-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
In infants and children, neonatal hypoxic-ischemic (HI) brain injury represents a major cause of chronic neurological morbidity. The transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel that conducts calcium, can mediate neuronal death following HI brain injury. An important endogenous activator of TRPM2 is H2O2, which has previously been reported to be upregulated in the neonatal brain after hypoxic ischemic injury. Here, incorporating both in vitro (H2O2-induced neuronal cell death model) and in vivo (mouse HI brain injury model) approaches, we examined the effects of AG490, which can inhibit the H2O2-induced TRPM2 channel. We found that AG490 elicited neuroprotective effects. We confirmed that AG490 reduced H2O2-induced TRPM2 currents. Specifically, application of AG490 to neurons ameliorated H2O2-induced cell injury in vitro. In addition, AG490 administration reduced brain damage and improved neurobehavioral performance following HI brain injury in vivo. The neuroprotective benefits of AG490 suggest that pharmacological inhibition of H2O2-activated TRPM2 currents can be exploited as a potential therapeutic strategy to treat HI-induced neurological complications.
Collapse
Affiliation(s)
- Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Zhengwei Luo
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Lida Du
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Luiz R G Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada. .,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
26
|
Wei ZZ, Chen D, Liu LP, Gu X, Zhong W, Zhang YB, Wang Y, Yu SP, Wei L. Enhanced Neurogenesis and Collaterogenesis by Sodium Danshensu Treatment After Focal Cerebral Ischemia in Mice. Cell Transplant 2019; 27:622-636. [PMID: 29984620 PMCID: PMC7020234 DOI: 10.1177/0963689718771889] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke remains a serious threat to human life. There are limited effective
therapies for the treatment of stroke. We have previously demonstrated that angiogenesis
and neurogenesis in the brain play an important role in functional recovery following
ischemic stroke. Recent studies indicate that increased arteriogenesis and collateral
circulation are determining factors for restoring reperfusion and outcomes of stroke
patients. Danshensu, the Salvia miltiorrhiza root extract, is used in
treatments of various human ischemic events in traditional Chinese medicine. Its
therapeutic mechanism, however, is not well clarified. Due to its proposed effect on
angiogenesis and arteriogenesis, we hypothesized that danshensu could benefit stroke
recovery through stimulating neurogenesis and collaterogenesis in the post-ischemia brain.
Focal ischemic stroke targeting the right sensorimotor cortex was induced in wild-type
C57BL6 mice and transgenic mice expressing green fluorescent protein (GFP) to label smooth
muscle cells of brain arteries. Sodium danshensu (SDS, 700 mg/kg) was administered
intraperitoneally (i.p.) 10 min after stroke and once daily until animals were sacrificed.
To label proliferating cells, 5-bromo-2′-deoxyuridine (BrdU; 50 mg/kg, i.p.) was
administered, starting on day 3 after ischemia and continued once daily until sacrifice.
At 14 days after stroke, SDS significantly increased the expression of vascular
endothelial growth factor (VEGF), stromal-derived factor-1 (SDF-1), brain-derived
neurotrophic factor (BDNF), and endothelial nitric oxide synthase (eNOS) in the
peri-infarct region. SDS-treated animals showed increased number of doublecortin
(DCX)-positive cells. Greater numbers of proliferating endothelial cells and smooth muscle
cells were detected in SDS-treated mice 21 days after stroke in comparison with vehicle
controls. The number of newly formed neurons labeled by NeuN and BrdU antibodies increased
in SDS-treated mice 28 days after stroke. SDS significantly increased the newly formed
arteries and the diameter of collateral arteries, leading to enhanced local cerebral blood
flow recovery after stroke. These results suggest that systemic sodium danshensu treatment
shows significant regenerative effects in the post-ischemic brain, which may benefit
long-term functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dongdong Chen
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Li-Ping Liu
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiwei Zhong
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong-Bo Zhang
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- 4 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Ping Yu
- 3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- 1 Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,2 Experimental and Translational Research Center, Beijing Friendship Hospital, Beijing, China.,3 Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.,5 Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Zhou H, Wang X, Cheng R, Hou X, Chen Y, Feng Y, Qiu J. Analysis of long non-coding RNA expression profiles in neonatal rats with hypoxic-ischemic brain damage. J Neurochem 2019; 149:346-361. [PMID: 30802942 DOI: 10.1111/jnc.14689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/26/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) which is a common cause of acute mortality and neurological dysfunction in neonates still lacks effective therapeutic methods. Long non-coding RNAs (lncRNAs) were demonstrated to play a crucial role in many diseases. To give a foundation for subsequent functional studies of lncRNAs in HIBD, we investigated the profiling of lncRNAs and messenger RNAs (mRNAs) using neonatal HIBD rat model. Six neonatal rats were divided into sham-operated group (n = 3) and HIBD group (n = 3) randomly. Deep RNA sequencing was implemented to find out the meaningful lncRNAs and mRNAs. Quantitative real-time PCR was used to validate expressions of lncRNAs and mRNAs. The Gene Ontology (GO) and kyoto encyclopedia of genes a genomes (KEGG) database were used to predict functions of lncRNAs. A total of 328 differentially expressed lncRNAs (177 down-regulated vs 151 up-regulated) and 7157 differentially expressed mRNAs (2552 down-regulated vs 4605 up-regulated) were identified. The Quantitative real-time PCR results showed significant differential expressions of five lncRNAs and five mRNAs which were consistent with the RNA-Seq data. Gene ontology and KEGG analysis showed these lncRNAs and their expression-correlated mRNAs were closely related to the Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, calcium signaling pathway, Notch signaling pathway, mitogen activated protein kinase signaling pathway, neuroactive ligand-receptor interaction pathway and more. The results of our study identified the characterization and expression profiles of lncRNAs in neonatal HIBD and may be a basis for further therapeutic research. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/yf3da/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Han Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Chen
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Feng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Sun S, Du G, Xue J, Ma J, Ge M, Wang H, Tian J. PCC0208009 enhances the anti-tumor effects of temozolomide through direct inhibition and transcriptional regulation of indoleamine 2,3-dioxygenase in glioma models. Int J Immunopathol Pharmacol 2018; 32:2058738418787991. [PMID: 29993291 PMCID: PMC6047256 DOI: 10.1177/2058738418787991] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO), which is highly expressed in human
glioblastoma and involved in tumor immune escape and resistance to chemotherapy,
is clinically correlated with tumor progression and poor clinical outcomes, and
is a promising therapeutic target for glioblastoma. IDO inhibitors are
marginally efficacious as single-agents; therefore, combination with other
therapies holds promise for cancer therapy. The aim of this study was to
investigate the anti-tumor effects and mechanisms of the IDO inhibitor
PCC0208009 in combination with temozolomide. The effects of PCC0208009 on IDO
activity inhibition, and mRNA and protein expression in HeLa cells were
observed. In the mouse glioma GL261 heterotopic model, the effects of PCC0208009
on l-kynurenine/tryptophan (Kyn/Trp), tumor growth, flow cytometry for
T cells within tumors, and immunohistochemistry for IDO and Ki67 were examined.
In the rat glioma C6 orthotopic model, animal survival, flow cytometry for T
cells within tumors, and immunohistochemistry for proliferating cell nuclear
antigen (PCNA) and IDO were examined. The results show that PCC0208009 is a
highly effective IDO inhibitor, not only directly inhibiting IDO activity but
also participating in the gene regulation of IDO expression at the transcription
and translation levels. PCC0208009 significantly enhanced the anti-tumor effects
of temozolomide in GL261 and C6 models, by increasing the percentages of
CD3+, CD4+, and CD8+ T cells within tumors
and suppressing tumor proliferation. These findings indicate that PCC0208009 can
potentiate the anti-tumor efficacy of temozolomide and suggest that combination
of IDO inhibitor-based immunotherapy with chemotherapy is a potential strategy
for brain tumor treatment.
Collapse
Affiliation(s)
- Shanyue Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Guangying Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Jiang Xue
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Jinbo Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Minmin Ge
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
29
|
He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W, Yu H. Bioinformatics analysis of microarray data to reveal the pathogenesis of brain ischemia. Mol Med Rep 2018; 18:333-341. [PMID: 29749511 PMCID: PMC6059688 DOI: 10.3892/mmr.2018.9000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Brain ischemia leads to energy depletion, mitochondrial dysfunction and neuronal cell death. The present study was designed to identify key genes and pathways associated with brain ischemia. The gene expression profile GSE52001, including 3 normal brain samples and 3 cerebral ischemia samples, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the limma package. Then functional and pathway enrichment analyses were performed by the MATHT tool. Protein‑protein interaction (PPI) network, module selection and microRNA (miRNA)‑target gene network were constructed utilizing Cytoscape software. A total of 488 DEGs were identified (including 281 upregulated and 207 downregulated genes). In the PPI network, Rac family small GTPase 2 (RAC2) had higher degrees. RAC2 was significantly enriched in the FcγR‑mediated phagocytosis pathway. miR‑29A/B/C had a higher degree in the miRNA‑target gene network. Insulin like growth factor 1 (Igf1) was identified as the target gene for miR‑29A/B/C. RAC2 may function in brain ischemia through mediating the FcγR‑mediated phagocytosis pathway. Meanwhile, miR‑29A/B/C and their targets gene Igf1 may serve important roles in the development and progression of brain ischemia.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Wu
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoming Lei
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yong Zhang
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Weikang Pan
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Yu
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
30
|
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 2018; 5:245-255. [PMID: 30320189 PMCID: PMC6176158 DOI: 10.1016/j.gendis.2018.06.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common disease with high mortality and morbidity worldwide. One of the important pathophysiological effects of ischemic stroke is apoptosis. A neuroprotective effect is defined as the inhibition of neuronal apoptosis to rescue or delay the infarction in the surviving ischemic penumbra. Resveratrol is a natural polyphenol that reportedly prevents cerebral ischemia injury by regulating the expression of PI3K/AKT/mTOR. Therefore, this study aimed to elucidate the neuroprotective effect of resveratrol on cerebral ischemia/reperfusion injury and to investigate the signaling pathways and mechanisms through which resveratrol regulates apoptosis in the ischemic penumbra. Rats were subjected to middle cerebral artery occlusion for 2 h followed by 24 h reperfusion. Cerebral infarct volume was measured using 2% TTC staining. TUNEL staining was conducted to evaluate neuronal apoptosis. Western blotting and immunohistochemistry were used to detect the proteins involved in the JAK2/STAT3/PI3K/AKT/mTOR pathway. The results suggested that resveratrol significantly improved neurological function, reduced cerebral infarct volume, decreased neuronal damage, and markedly attenuated neuronal apoptosis; these effects were attenuated by the inhibition of PI3K/AKT with LY294002 and JAK2/STAT3 with AG490. We also found that resveratrol significantly upregulated the expression of p-JAK2, p-STAT3, p-AKT, p-mTOR, and BCL-2 and downregulated expression of cleaved caspase-3 and BAX, which was partially reversed by LY294002 and AG490. These results suggested that resveratrol provides a neuroprotective effect against cerebral ischemia/reperfusion injury, which is partially mediated by the activation of JAK2/STAT3 and PI3K/AKT/mTOR. Resveratrol may indirectly upregulate the PI3K/AKT/mTOR pathway by activating JAK2/STAT3.
Collapse
Affiliation(s)
- Yongying Hou
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Wang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Weijun Wan
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Cheng
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Pu
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiufeng Ye
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
31
|
Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci 2018; 19:E458. [PMID: 29401682 PMCID: PMC5855680 DOI: 10.3390/ijms19020458] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
32
|
Salvianolic acid B improves airway hyperresponsiveness by inhibiting MUC5AC overproduction associated with Erk1/2/P38 signaling. Eur J Pharmacol 2018; 824:30-39. [PMID: 29382534 DOI: 10.1016/j.ejphar.2018.01.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Salvianolic acid B (SalB) is one of the main water-soluble composites from Chinese medicine Dansen (Radix miltiorrhiza). It is used for clinical treatment of various diseases including cardiovascular, lung, Liver, renal and cancers. However, the effects of SalB to allergy induced airway mucin hypersecretion, inflammation and hyperresponsiveness (AHR) remains not clear. Overproduction of airway MUC5AC is a central effector of inflammation that is strongly associated with AHR in asthmatic attack. In this study, we investigated the anti-asthmatic activity and mechanism of SalB in a murine model and human epithelial cells by monitoring changes in mucin expression and secretion, airway inflammation, AHR, and signaling pathways. SalB was administered by intragastric administration (i.g) daily for a week, starting at 21 days after sensitization of ovalbumin (OVA). All examinations were performed 24h after the last antigen challenge. We found that treatments with SalB significantly inhibited increase in the tracheobronchial secretion, glycosaminoglycan levels, interleukin (IL)-13, IL-4, and IL-5 cytokines mRNA and protein expression, and decrease in mucociliary clearance in lung tissues. Histological results demonstrated that SalB attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, and MUC5AC and MUC5B mRNA and protein expression in lung tissues. SalB exhibited protective effects against AHR in OVA-challenged animals. In vitro, SalB significantly inhibited IL-13-induced MUC5AC and MUC5B mRNA and protein expression in human epithelial cells. These effects were blocked by SalB by downregulating the Erk1/2 and P38 signaling pathways. Taken together, these data indicate that treatment with SalB may improve AHR by inhibiting MUC5AC overproduction.
Collapse
|
33
|
Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 2017; 14:187. [PMID: 28923114 PMCID: PMC5604224 DOI: 10.1186/s12974-017-0963-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Background Elevated plasma homocysteine (Hcy) levels have been indicated as a strong and modifiable risk factor of ischemic stroke; the previous studies have shown that exposure to Hcy activates cultured microglia. However, whether neurotoxicity of Hcy involves microglia activation following brain ischemia and the underlying mechanisms remains incompletely understood. Methods The cerebral damage was evaluated by staining with 2,3,5-triphenyltetrazolium chloride, hematoxylin-eosin, and Fluoro Jade B. The activation state of microglia was assessed via immunoreaction using the microglial markers Iba1 and OX-42. Then, the inflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) were examined by Western blot analysis and fluorescence immunohistochemistry. Results Elevated Hcy level augmented brain damage and neural cell toxicity in the brain cortex and the dentate gyrus region of the hippocampus after cerebral ischemia/reperfusion. Meanwhile, Hcy activated microglia and induced the expression of the inflammatory factors such as TNF-α and IL-6. Moreover, Hcy caused an increase in pSTAT3 expression which occurs in microglial cells. AG490, a JAK2-STAT3 inhibitor, effectively inhibited the phosphorylation of STAT3, microglial cell activation and the secretion of IL-6, TNF-α raised by Hcy treatment. Conclusions STAT3 signaling pathway located in microglia plays a critical role in mediating Hcy-induced activation of microglia and neuroinflammation in rat MCAO model. This suggests the feasibility of targeting the JAK2/STAT3 pathway as an effective therapeutic strategy to alleviate the progression of Hcy-associated ischemia stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-0963-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yaqian Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
34
|
Zhang Y, Zhang X, Cui L, Chen R, Zhang C, Li Y, He T, Zhu X, Shen Z, Dong L, Zhao J, Wen Y, Zheng X, Li P. Salvianolic Acids for Injection (SAFI) promotes functional recovery and neurogenesis via sonic hedgehog pathway after stroke in mice. Neurochem Int 2017; 110:38-48. [PMID: 28887094 DOI: 10.1016/j.neuint.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/12/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
There is a pressing need of developing approaches for delayed post-stroke therapy for patients who fail to receive thrombolysis within the narrow time window. Neuroprotection of Salvianolic Acids for Injection (SAFI) for cerebral ischemia-reperfusion injury in acute phase has been well documented. The current study was to determine the influence of SAFI at the subacute phase after stroke in mice, and to elucidate the underlying mechanisms. Adult male C57BL/6 mice were subjected to permanent occlusion of the distal middle cerebral artery (dMCAO), followed by daily intraperitoneal injection of SAFI 24 h after stroke for 14 days. Motor behavior was measured by neurological function evaluations weekly, and proliferation, migration, survival and differentiation of neural progenitor cells (NPCs) were examined with immunohistochemistry. Sonic hedgehog (Shh) inhibitor cyclopamine (CYC) was injected to determine the involvement of Shh pathway in the therapeutic effects of SAFI. The results showed that SAFI led to dramatic brain functional improvement, elevated NPCs proliferation, and prompted long-term survival of newborn neurons in the subventricular zone (SVZ). Up-regulation of Shh, Ptch and nuclear translocation of Gli1 were observed in the peri-infarct region, accompanied with robust production of Brain derived neurotrophic factor (BDNF) and Nerve growth factor (NGF). Simultaneous administration with CYC strikingly attenuated the beneficial outcomes of SAFI as well as abolished SAFI induced BDNF and NGF production. Collectively, our study demonstrated SAFI significantly promoted long-term functional recovery and neurogenesis, which might be dependent on Shh signaling mediated BDNF and NGF production. Therefore, SAFI might serve as a potential clinically translatable therapy during recovery stage after stroke.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China.
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yaoru Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Tingting He
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xingyuan Zhu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Zuyuan Shen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Lipeng Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Jingru Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Ya Wen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xiufen Zheng
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Pan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| |
Collapse
|
35
|
Chen S, Dong Z, Zhao Y, Sai N, Wang X, Liu H, Huang G, Zhang X. Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain. Sci Rep 2017; 7:6932. [PMID: 28761070 PMCID: PMC5537278 DOI: 10.1038/s41598-017-07112-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
Homocysteine (Hcy) has been shown to have a neurotoxic effect on ischemic brain cells; however, the underlying mechanisms remain incompletely understood. Here, we examined whether Hcy treatment influences mitochondria injury, oxidative stress, and mitochondrial STAT3 (mitoStat3) expression in rat ischemic brain. Our results demonstrated that Hcy treatment aggravated the damage of mitochondrial ultrastructure in the brain cortex and the dentate gyrus region of the hippocampus after focal cerebral ischemia. An elevated Hcy level was also accompanied by the significant inhibition of mitochondrial complex I–III enzymatic activities in addition to an increase in cytochrome c release. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) content and mitoStat3 protein phosphorylation level were increased in Hcy-treated animals, whereas AG490, a Jak2 inhibitor, inhibited mitoStat3 phosphorylation as well as 8-OHdG levels induced by Hcy. In vitro studies revealed that Hcy also markedly increased reactive oxygen species (ROS) and mitoStat3 levels. In addition, the inhibition of pSTAT3 reduced Hcy-mediated increase in ROS levels, whereas quenching ROS using the ROS inhibitor glutathione ethyl ester inhibited Hcy-mediated pSTAT3 overactivation in Neuro2a cells. These findings suggest that the development of therapies that interfere with the ROS/pSTAT3 pathway may be helpful for treating cerebral infarction-related diseases associated with Hcy.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaqian Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
36
|
Gao G, Fan H, Zhang X, Zhang F, Wu H, Qi F, Zhao L, Li Y. Neuroprotective effect of G14-humanin on global cerebral ischemia/reperfusion by activation of SOCS3 – STAT3 – MCL–1 signal transduction pathway in rats. Neurol Res 2017; 39:895-903. [PMID: 28720038 DOI: 10.1080/01616412.2017.1352187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guangsheng Gao
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Huaihai Fan
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Xiaoying Zhang
- Department of Neonatology, Taian City Central Hospital, Taian, P.R. China
| | - Fusen Zhang
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Haiyan Wu
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Feng Qi
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Lei Zhao
- Intensive Care Unit, Taian City Central Hospital, Taian, P.R. China
| | - Yun Li
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, P.R. China
| |
Collapse
|
37
|
Xu S, Zhong A, Ma H, Li D, Hu Y, Xu Y, Zhang J. Neuroprotective effect of salvianolic acid B against cerebral ischemic injury in rats via the CD40/NF-κB pathway associated with suppression of platelets activation and neuroinflammation. Brain Res 2017; 1661:37-48. [DOI: 10.1016/j.brainres.2017.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 11/16/2022]
|
38
|
Tsai FJ, Ho TJ, Cheng CF, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin CW, Lin JG, Lin JC, Lin CC, Liang WM, Lin YJ. Effect of Chinese herbal medicine on stroke patients with type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2017; 200:31-44. [PMID: 28213110 DOI: 10.1016/j.jep.2017.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Complications of type 2 diabetes (T2D) include stroke, which is a cerebrovascular disturbance characterized by reduced blood flow in the brain, leading to death or physical disability. Chinese herbal medicine (CHM) has been widely used in ancient China for the treatment of diabetes and stroke by supplementing Qi and activating blood circulation. AIM OF THE STUDY This study aimed to investigate the frequencies and patterns of CHM treatment for stroke patients with T2D and the outcomes of long-term use in Taiwan. MATERIALS AND METHODS We identified 3079 stroke patients (ICD-9-CM: 430-438) with T2D. We allocated 618 stroke patients, matched for age, gender, and T2D-to-stroke duration, to both CHM and non-CHM groups. Chi-square test, conditional multivariable logistic regression, Kaplan-Meier method, and the log-rank test were used in this study. RESULTS The CHM group was characterized by more cases of chronic obstructive pulmonary disease, ulcer disease, hyperlipidemia, tobacco use, and higher income. The cumulative survival probability was higher in the CHM group (P<0.001, log rank test); after adjusting for comorbidities, income, and urbanization level, this group also exhibited a lower mortality hazard ratio (0.37, 95% confidence interval [0.25-0.55]). Shu-Jing-Huo-Xue-Tang, Xue-Fu-Zhu-Yu-Tang, and Du-Huo-Ji-Sheng-Tang; and Dan-Shen, Niu-Xi, and Yan-Hu-Suo represented the top three formulas and herbs, respectively. CONCLUSION The use of CHM as adjunctive therapy may improve the overall survival (OS) of stroke patients with T2D. The list of the comprehensive herbal medicines that they used might be useful in future large-scale, randomized clinical investigations of agent effectiveness, safety, and potential interactions with conventional treatments in stroke patients with T2D.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan; Division of Chinese Medicine, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
39
|
Yang X, Liu S, Li S, Wang P, Zhu W, Liang P, Tan J, Cui S. Salvianolic acid B regulates gene expression and promotes cell viability in chondrocytes. J Cell Mol Med 2017; 21:1835-1847. [PMID: 28244648 PMCID: PMC5571559 DOI: 10.1111/jcmm.13104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022] Open
Abstract
Articular chondrocytes reside in lacunae distributed in cartilage responsible for the remodelling of the tissue with limited ability of damage repairing. The in vitro expanded chondrocytes enhanced by factors/agents to obtain large numbers of cells with strengthened phenotype are essential for successful repair of cartilage lesions by clinical cell implantation therapies. Because the salvianolic acid B (Sal B), a major hydrophilic therapeutic agent isolated from Salvia miltiorrhiza, has been widely used to treat diseases and able to stimulate activity of cells, this study examines the effects of Sal B on passaged chondrocytes. Chondrocytes were treated with various concentrations of Sal B in monolayer culture, their morphological properties and changes, and mitochondrial membrane potential were analysed using microscopic analyses, including cellular biochemical staining and confocal laser scanning microscopy. The proteins were quantified by BCA and Western blotting, and the transcription of genes was detected by qRT‐PCR. The passaged chondrocytes treated with Sal B showed strengthened cellular synthesis and stabilized mitochondrial membrane potential with upregulated expression of the marker genes for chondrocyte phenotype, Col2‐α1, Acan and Sox9, the key Wnt signalling molecule β‐catenin and paracrine cytokine Cytl‐1. The treatments using CYTL‐1 protein significantly increased expression of Col2‐α1 and Acan with no effect on Sox9, indicating the paracrine cytokine acts on chondrocytes independent of SOX9. Sal B has ultimately promoted cell growth and enhanced chondrocyte phenotype. The chondrocytes treated with pharmaceutical agent and cytokine in the formulated medium for generating large number of differentiated chondrocytes would facilitate the cell‐based therapies for cartilage repair.
Collapse
Affiliation(s)
- Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shaojie Liu
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Siming Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Weicong Zhu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Peihong Liang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Jianrong Tan
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China
| | - Shuliang Cui
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University School of Medicine, Guangzhou, China.,Department of Zoology, Faculty of Science, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Sevoflurane Postconditioning Reduces Apoptosis by Activating the JAK-STAT Pathway After Transient Global Cerebral Ischemia in Rats. J Neurosurg Anesthesiol 2017; 29:37-45. [DOI: 10.1097/ana.0000000000000331] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Wei S, Tong J, Xue Q, Liu Y, Xu X. Effect of puerarin on transcriptome of astrocyte during oxygen-glucose deprivation/reoxygenation injury. Mol Cell Biochem 2016; 425:113-123. [PMID: 27844252 DOI: 10.1007/s11010-016-2867-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
Stroke is a serious disease with complex pathomechanism and limited therapeutic effect in clinic. Our previous research has found obvious therapeutic effect of Puerarin (Pur) on stroke injury of rat. The aim of this study is to investigate the transcriptome changes of oxygen-glucose deprivation/reoxygenation (OGD/R)-injured astrocytes before and after the intervention of Pur. Cells activity and apoptosis detection indicated that the activity of OGD/R-injured astrocytes was improved, and the apoptosis was ameliorated by Pur. Affymetrix GeneChip Rat Genome 230 2.0 Array assays indicated that after intervention of Pur, mRNA expressions of 31 genes were up-regulated and 40 genes were down-regulated in OGD group, whereas mRNA expression of 36 genes were up-regulated, and 88 genes were down-regulated in OGD/R group. Pathway analysis indicated that the olfactory transduction pathway and the JAK (janus kinase) 2/STAT (signal transducer and activator of transcription) three pathways were down-regulated by Pur during OGD/R injury of astrocytes. These data indicated that Pur regulates transcriptome and expresses protective effect on astrocytes during OGD/R injury, and may be a potential therapeutic agent for the treatment of stroke.
Collapse
Affiliation(s)
- Shuyong Wei
- Southwest University, Rongchang campus, Rongchang, Chongqing, 402460, China.
| | - Jie Tong
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Qiang Xue
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Yang Liu
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences College & Chinese Medicine College, Southwest University, Chongqing Engineering Research Center for Pharmacodynamics Evaluation, Chongqing, 400716, China.
| |
Collapse
|
42
|
Oxidative Stress and Salvia miltiorrhiza in Aging-Associated Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4797102. [PMID: 27807472 PMCID: PMC5078662 DOI: 10.1155/2016/4797102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Aging-associated cardiovascular diseases (CVDs) have some risk factors that are closely related to oxidative stress. Salvia miltiorrhiza (SM) has been used commonly to treat CVDs for hundreds of years in the Chinese community. We aimed to explore the effects of SM on oxidative stress in aging-associated CVDs. Through literature searches using Medicine, PubMed, EMBASE, Cochrane library, CINAHL, and Scopus databases, we found that SM not only possesses antioxidant, antiapoptotic, and anti-inflammatory effects but also exerts angiogenic and cardioprotective activities. SM may reduce the production of reactive oxygen species by inhibiting oxidases, reducing the production of superoxide, inhibiting the oxidative modification of low-density lipoproteins, and ameliorating mitochondrial oxidative stress. SM also increases the activities of catalase, manganese superoxide dismutase, glutathione peroxidase, and coupled endothelial nitric oxide synthase. In addition, SM reduces the impact of ischemia/reperfusion injury, prevents cardiac fibrosis after myocardial infarction, preserves cardiac function in coronary disease, maintains the integrity of the blood-brain barrier, and promotes self-renewal and proliferation of neural stem/progenitor cells in stroke. However, future clinical well-designed and randomized control trials will be necessary to confirm the efficacy of SM in aging-associated CVDs.
Collapse
|
43
|
Wang Y, Zhang J, Han M, Liu B, Gao Y, Ma P, Zhang S, Zheng Q, Song X. SMND-309 promotes neuron survival through the activation of the PI3K/Akt/CREB-signalling pathway. PHARMACEUTICAL BIOLOGY 2016; 54:1982-1990. [PMID: 26911316 DOI: 10.3109/13880209.2015.1137951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context In clinical practice, the promotion of neuron survival is necessary to recover neurological functions after the onset of stroke. Objective This study aimed to investigate the post-ischaemic neuroprotective effect of SMND-309, a novel metabolite of salvianolic acid, on differentiated SH-SY5Y cells. Materials and methods SH-SY5Y cells were differentiated by pre-treating with 5 μM all-trans-retinoic acid for 6 d. The differentiated SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD) for 2 h and reperfusion (R) for 24 h to induce OGD/R injury. After OGD injury, differentiated SH-SY5Y cells were treated with or without SMND-309 (5, 10, 20 μM) for another 24 h. Cell viability was detected through Cell counting kit-8 assay and lactate dehydrogenase leakage assay. Apoptosis was evaluated through flow cytometry, caspase-3 activity assay. Changes in protein levels were assessed through Western blot. Results SMND-309 ameliorated the degree of injury in the differentiated SH-SY5Y cells by increasing cell viabilities (5 μM, 65.4% ± 4.1%; 10 μM, 69.8% ± 3.7%; 20 μM, 75.3% ± 5.1%) and by reducing LDH activity (20 μM, 2.5 fold) upon OGD/R stimulation. Annexin V-fluorescein isothiocyanate/propidium iodide staining results suggested that apoptotic rate of differentiated SH-SY5Y cells decreased from 43.8% induced by OGD/R injury to 19.2% when the cells were treated with 20 μM SMND-309. SMND-309 significantly increased the Bcl-2 level of the injured differentiated SH-SY5Y cells but decreased the caspase-3 activity of these cells by 1.6-fold. In contrast, SMND-309 did not affect the Bax level of these cells. SMND-309 evidently increased the protein expression of BDNF when Akt and CREB were activated. This function was antagonized by the addition of LY294002. Conclusion SMND-309 can prevent neuronal cell death in vitro. This process may be related to the activation of the PI3K/Akt/CREB-signalling pathway.
Collapse
Affiliation(s)
- Youlei Wang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Jinjin Zhang
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Meng Han
- b Zibo Occupational Disease Hospital , Zibo , PR China
| | - Bo Liu
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Yulin Gao
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Peng Ma
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| | - Songzi Zhang
- c School of Pharmacy , Taishan Medical College , Taian , PR China
| | - Qingyin Zheng
- a School of Special Education , Binzhou Medical University , Yantai , PR China
- d Department of Otolaryngology - HNS , Case Western Reserve University , Cleveland , OH , USA
| | - Xiaodong Song
- a School of Special Education , Binzhou Medical University , Yantai , PR China
| |
Collapse
|
44
|
Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5739434. [PMID: 27703487 PMCID: PMC5040804 DOI: 10.1155/2016/5739434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.
Collapse
|
45
|
The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 2016; 137:1-16. [DOI: 10.1016/j.pneurobio.2015.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
46
|
Lv H, Wang L, Shen J, Hao S, Ming A, Wang X, Su F, Zhang Z. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 2015; 115:30-6. [PMID: 25981395 DOI: 10.1016/j.brainresbull.2015.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/26/2022]
Abstract
Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Hongdi Lv
- Department of Cardiology, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Ling Wang
- Department of Nursing, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Jinchang Shen
- Department of Interventional Radiology, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China.
| | - Shaojun Hao
- Department of Drugs and Equipment, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Aimin Ming
- Department of Urology, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Xidong Wang
- Department of Drugs and Equipment, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Feng Su
- Department of Cardiology, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| | - Zhengchen Zhang
- Department of Drugs and Equipment, No. 371 Central Hospital of PLA, Xinxiang, Henan 453000, China
| |
Collapse
|
47
|
Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 2015; 85:234-244. [PMID: 25982835 DOI: 10.1016/j.nbd.2015.05.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are specialized and the most abundant cell type in the central nervous system (CNS). They play important roles in the physiology of the brain. Astrocytes are also critically involved in many CNS disorders including focal ischemic stroke, the leading cause of brain injury and death in patients. One of the prominent pathological features of a focal ischemic stroke is reactive astrogliosis and glial scar formation. Reactive astrogliosis is accompanied with changes in morphology, proliferation, and gene expression in the reactive astrocytes. This study provides an overview of the most recent advances in astrocytic Ca(2+) signaling, spatial, and temporal dynamics of the morphology and proliferation of reactive astrocytes as well as signaling pathways involved in the reactive astrogliosis after ischemic stroke based on results from experimental studies performed in various animal models. This review also discusses the therapeutic potential of reactive astrocytes in focal ischemic stroke. As reactive astrocytes exhibit high plasticity, we suggest that modulation of local reactive astrocytes is a promising strategy for cell-based stroke therapy.
Collapse
Affiliation(s)
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA; Department of Bioengineering, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
48
|
Shu T, Pang M, Rong L, Liu C, Wang J, Zhou W, Wang X, Liu B. Protective Effects and Mechanisms of Salvianolic Acid B Against H₂O₂-Induced Injury in Induced Pluripotent Stem Cell-Derived Neural Stem Cells. Neurochem Res 2015; 40:1133-43. [PMID: 25855584 DOI: 10.1007/s11064-015-1573-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into neural lineages. Salvianolic acid B (Sal B) is a commonly used, traditional Chinese medicine for enhancing neuroprotective effects, and has antioxidant, anti-inflammatory, and antiapoptotic properties. Here, we explore the potential mechanism of Sal B in protecting iPSC-derived neural stem cells (NSCs) against H2O2-induced injury. iPSCs were induced into NSCs, iPSC-derived NSCs were treated with 50 μM Sal B for 24.5 h and 500 μM H2O2 for 24 h. The resulting effects were examined by flow cytometry analysis, quantitative reverse-transcription polymerase chain reaction, and western blotting. Upon H2O2 exposure, Sal B significantly promoted cell viability and stabilization of the mitochondrial membrane potential. Sal B also visibly decreased the cell apoptotic ratio. In addition, Sal B markedly reduced expression of matrix metalloproteinase (MMP)-2 and -9, and phosphospecific signal transducer and activator of transcription 3 (p-STAT3), and increased the level of tissue inhibitor of metalloproteinase (TIMP)-2 in iPSC-derived NSCs induced by H2O2. These results suggest that Sal B protects iPSC-derived NSCs against H2O2-induced oxidative stress. The mechanisms of this stress tolerance may be attributed to modulation of the MMP/TIMP system and inhibition of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tao Shu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhou C, Zhou Y, Wang J, Zhu Y, Deng J, Wang MW. Emergence of Chinese drug discovery research: impact of hit and lead identification. ACTA ACUST UNITED AC 2014; 20:318-29. [PMID: 25520370 DOI: 10.1177/1087057114561950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of hits and the generation of viable leads is an early and yet crucial step in drug discovery. In the West, the main players of drug discovery are pharmaceutical and biotechnology companies, while in China, academic institutions remain central in the field of drug discovery. There has been a tremendous amount of investment from the public as well as private sectors to support infrastructure buildup and expertise consolidation relative to drug discovery and development in the past two decades. A large-scale compound library has been established in China, and a series of high-impact discoveries of lead compounds have been made by integrating information obtained from different technology-based strategies. Natural products are a major source in China's drug discovery efforts. Knowledge has been enhanced via disruptive breakthroughs such as the discovery of Boc5 as a nonpeptidic agonist of glucagon-like peptide 1 receptor (GLP-1R), one of the class B G protein-coupled receptors (GPCRs). Most of the original hit identification and lead generation were carried out by academic institutions, including universities and specialized research institutes. The Chinese pharmaceutical industry is gradually transforming itself from manufacturing low-end generics and active pharmaceutical ingredients to inventing new drugs.
Collapse
Affiliation(s)
- Caihong Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Zhou
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yue Zhu
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiejie Deng
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening and the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
50
|
Effect and mechanism of salvianolic acid B on the myocardial ischemia-reperfusion injury in rats. ASIAN PAC J TROP MED 2014; 7:280-4. [PMID: 24507676 DOI: 10.1016/s1995-7645(14)60038-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 03/15/2014] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the effect of salvianolic acid B on rats with myocardial ischemia-reperfusion injury. METHODS SD rats were randomly divided into five groups (n=10 in each group): A sham operation group, B ischemic reperfusion group model group, C low dose salvianolic acid B group, D median dose salvianolic acid B group, E high dose salvianolic acid B group. One hour after establishment of the myocardial ischemia-reperfusion model, the concentration and the apoptotic index of the plasma level of myocardial enzymes (CTn I, CK-MB), SOD, MDA, NO, ET were measured. Heart tissues were obtained and micro-structural changes were observed. RESULTS Compared the model group, the plasma CTn, CK-MB, MDA and ET contents were significantly increased, NO, T-SOD contents were decreased in the treatment group (group C, D, and E) (P<0.05); compared with group E, the plasma CTn I, CK-MB, MDA and ET levels were increased, the NO, T-SOD levels were decreased in groups C and D (P<0.05). Infarct size was significantly reduced, and the myocardial ultrastructural changes were improved significantly in treatment group. CONCLUSIONS Salvianolic acid B has a significant protective effect on myocardial ischemia-reperfusion injury. It can alleviate oxidative stress, reduce calcium overload, improve endothelial function and so on.
Collapse
|