1
|
Romero-Martínez BS, Flores-Soto E, Sommer B, Reyes-García J, Arredondo-Zamarripa D, Solís-Chagoyán H, Lemini C, Rivero-Segura NA, Santiago-de-la-Cruz JA, Pérez-Plascencia C, Montaño LM. 17β-estradiol induces hyperresponsiveness in guinea pig airway smooth muscle by inhibiting the plasma membrane Ca 2+-ATPase. Mol Cell Endocrinol 2024; 590:112273. [PMID: 38763427 DOI: 10.1016/j.mce.2024.112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17β-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17β-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, CP 14080, CDMX, México
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - David Arredondo-Zamarripa
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma Del Estado de Morelos, CP 62209, Morelos, México
| | - Cristina Lemini
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México
| | - Nadia A Rivero-Segura
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México, CP 10200, México
| | | | - Carlos Pérez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA, Av. San Fernando 22, Alcaldía de Tlalpan, CP 14080, CDMX, México; Facultad de Estudios Superiores Iztacala, Av. de Los Barrios S/N Los Reyes Ixtacala Tlalnepantla de Baz, Edo. de México, CP 54090, Tlalnepantla de Baz, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Alcaldía de Coyoacán, CP 04510, CDMX, México.
| |
Collapse
|
2
|
Flores-Soto E, Romero-Martínez BS, Solís-Chagoyán H, Estrella-Parra EA, Avila-Acevedo JG, Gomez-Verjan JC, Reyes-García J, Casas-Hernández MF, Sommer B, Montaño LM. Chamaecyparis lawsoniana and Its Active Compound Quercetin as Ca 2+ Inhibitors in the Contraction of Airway Smooth Muscle. Molecules 2024; 29:2284. [PMID: 38792145 PMCID: PMC11123793 DOI: 10.3390/molecules29102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.
Collapse
Affiliation(s)
- Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, C.P., Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (J.R.-G.); (M.F.C.-H.)
| | - Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, C.P., Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (J.R.-G.); (M.F.C.-H.)
| | - Héctor Solís-Chagoyán
- Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, C.P., Cuernavaca 62209, Mexico;
| | - Edgar A. Estrella-Parra
- Laboratorio de Fitoquímica, Unidad de Biología Tecnología y Prototipos, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, C.P., Tlalnepantla 54090, Mexico; (E.A.E.-P.); (J.G.A.-A.)
| | - Jose G. Avila-Acevedo
- Laboratorio de Fitoquímica, Unidad de Biología Tecnología y Prototipos, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, C.P., Tlalnepantla 54090, Mexico; (E.A.E.-P.); (J.G.A.-A.)
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Anillo Periférico. 2767, San Jerónimo Lídice, La Magdalena, C.P., Mexico City 10200, Mexico;
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, C.P., Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (J.R.-G.); (M.F.C.-H.)
| | - María F. Casas-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, C.P., Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (J.R.-G.); (M.F.C.-H.)
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Calz. De Tlalpan 4502, Col. Sección XVI, Alcaldía de Tlalpan, C.P., Mexico City 14080, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, C.P., Mexico City 04510, Mexico; (E.F.-S.); (B.S.R.-M.); (J.R.-G.); (M.F.C.-H.)
| |
Collapse
|
3
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
4
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Marchetti B, Bilel S, Tirri M, Corli G, Roda E, Locatelli CA, Cavarretta E, De-Giorgio F, Marti M. Acute Cardiovascular and Cardiorespiratory Effects of JWH-018 in Awake and Freely Moving Mice: Mechanism of Action and Possible Antidotal Interventions? Int J Mol Sci 2023; 24:7515. [PMID: 37108687 PMCID: PMC10142259 DOI: 10.3390/ijms24087515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
JWH-018 is the most known compound among synthetic cannabinoids (SCs) used for their psychoactive effects. SCs-based products are responsible for several intoxications in humans. Cardiac toxicity is among the main side effects observed in emergency departments: SCs intake induces harmful effects such as hypertension, tachycardia, chest pain, arrhythmias, myocardial infarction, breathing impairment, and dyspnea. This study aims to investigate how cardio-respiratory and vascular JWH-018 (6 mg/kg) responses can be modulated by antidotes already in clinical use. The tested antidotes are amiodarone (5 mg/kg), atropine (5 mg/kg), nifedipine (1 mg/kg), and propranolol (2 mg/kg). The detection of heart rate, breath rate, arterial oxygen saturation (SpO2), and pulse distention are provided by a non-invasive apparatus (Mouse Ox Plus) in awake and freely moving CD-1 male mice. Tachyarrhythmia events are also evaluated. Results show that while all tested antidotes reduce tachycardia and tachyarrhythmic events and improve breathing functions, only atropine completely reverts the heart rate and pulse distension. These data may suggest that cardiorespiratory mechanisms of JWH-018-induced tachyarrhythmia involve sympathetic, cholinergic, and ion channel modulation. Current findings also provide valuable impetus to identify potential antidotal intervention to support physicians in the treatment of intoxicated patients in emergency clinical settings.
Collapse
Affiliation(s)
- Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy; (E.R.); (C.A.L.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Roma, Italy;
- Mediterrranea Cardiocentro, 80122 Napoli, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (B.M.); (S.B.); (M.T.); (G.C.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, 00186 Rome, Italy
| |
Collapse
|
6
|
Salazar-Enciso R, Guerrero-Hernández A, Gómez AM, Benitah JP, Rueda A. Aldosterone-Induced Sarco/Endoplasmic Reticulum Ca2+ Pump Upregulation Counterbalances Cav1.2-Mediated Ca2+ Influx in Mesenteric Arteries. Front Physiol 2022; 13:834220. [PMID: 35360237 PMCID: PMC8963271 DOI: 10.3389/fphys.2022.834220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Rogelio Salazar-Enciso
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Agustín Guerrero-Hernández
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- *Correspondence: Angélica Rueda,
| |
Collapse
|
7
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
8
|
Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis 2021; 7:2807-2815. [PMID: 34498840 PMCID: PMC8442615 DOI: 10.1021/acsinfecdis.1c00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/06/2023]
Abstract
COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.
Collapse
Affiliation(s)
- Marco R. Straus
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
- Master of Public Health Program, Cornell
University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| |
Collapse
|
9
|
Romero-Martínez BS, Montaño LM, Solís-Chagoyán H, Sommer B, Ramírez-Salinas GL, Pérez-Figueroa GE, Flores-Soto E. Possible Beneficial Actions of Caffeine in SARS-CoV-2. Int J Mol Sci 2021; 22:5460. [PMID: 34067243 PMCID: PMC8196824 DOI: 10.3390/ijms22115460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.
Collapse
Affiliation(s)
- Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX CP 04510, Mexico; (B.S.R.-M.); (L.M.M.)
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX CP 04510, Mexico; (B.S.R.-M.); (L.M.M.)
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX CP 14370, Mexico;
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, CDMX CP 14080, Mexico;
| | - Gemma Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX CP 11340, Mexico;
| | - Gloria E. Pérez-Figueroa
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, CDMX CP 06720, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX CP 04510, Mexico; (B.S.R.-M.); (L.M.M.)
| |
Collapse
|
10
|
Lin J, Taggart M, Borthwick L, Fisher A, Brodlie M, Sassano MF, Tarran R, Gray MA. Acute cigarette smoke or extract exposure rapidly activates TRPA1-mediated calcium influx in primary human airway smooth muscle cells. Sci Rep 2021; 11:9643. [PMID: 33953304 PMCID: PMC8100124 DOI: 10.1038/s41598-021-89051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Tobacco smoking is the largest risk factor for developing chronic obstructive pulmonary disease (COPD), and is associated with hyperresponsiveness of airway smooth muscle (ASM). Chronic exposure to cigarette smoke (CS) leads to airway inflammation and remodelling. However, the direct effect of gaseous CS or CS extract (CSE) on human airway smooth muscle cell (hASMC) function remains poorly understood. This study investigated the acute effect of CS/CSE on calcium homeostasis, a key regulator of ASM physiology and pathophysiology. Primary hASMC were isolated from non-smoking donor lungs, and subjected to Ca2+ imaging studies. We found that both CS, and CSE, rapidly elevated cytosolic Ca2+ in hASMC through stimulation of plasmalemmal Ca2+ influx, but excluded store-operated and L-type Ca2+ channels as mediators of this effect. Using a specific pharmacological inhibitor, or shRNA-driven knockdown, we established that both CS and CSE stimulated Ca2+ influx in hASMC through the neurogenic pain receptor channel, transient receptor potential ankyrin 1 (TRPA1). CS/CSE-dependent, TRPA1-mediated Ca2+ influx led to myosin light-chain phosphorylation, a key process regulating ASM contractility. We conclude that TRPA1 is likely an important link between CS/CSE exposure and airway hyperresponsiveness, and speculate that acute CS/CSE-induced Ca2+ influx could lead to exacerbated ASM contraction and potentially initiate further chronic pathological effects of tobacco smoke.
Collapse
Affiliation(s)
- JinHeng Lin
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Michael Taggart
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Lee Borthwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Andrew Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | - M Flori Sassano
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK.
| |
Collapse
|
11
|
Montaño LM, Flores-Soto E, Sommer B, Solís-Chagoyán H, Perusquía M. Androgens are effective bronchodilators with anti-inflammatory properties: A potential alternative for asthma therapy. Steroids 2020; 153:108509. [PMID: 31586608 DOI: 10.1016/j.steroids.2019.108509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Changes in plasma androgen levels in asthmatic men may be linked to asthma severity, seemingly acting through nongenomic and genomic effects. Nongenomic effects include rapid relaxation of carbachol or antigenic challenge pre-contracted guinea pig airway smooth muscle (ASM) in vitro: testosterone (TES) blocks l-type voltage dependent Ca2+ channels, stored operated Ca2+ channels, inositol 1,4,5-trisphosphate receptors and promotes prostaglandin E2 biosynthesis. In ASM at rest, TES lowers basal intracellular Ca2+ concentration and tension, maintaining a proper airway patency keeping steady smooth muscle tension and basal intracellular Ca2+ concentration at rest. Moreover, the bronchospasm in sensitized guinea-pigs was ablated by dehydroepiandrosterone (DHEA), a precursor of steroids, TES and its metabolites 5α- and 5β-dihydrotestosterone (DHT). On the other hand, genomic effects related to androgens' anti-inflammatory properties in asthma have been recently studied. Briefly, TES negatively regulates type 2 immune response sustained by CD4+ Th2 and group 2 innate lymphoid cells, diminishing allergic airway inflammation in males. Also, novel findings establish that TES decreases interleukin (IL)-17A protein expression produced by CD4+ Th17 cells and therefore neutrophilic airway inflammation. Clearly, DHEA, TES or its 5β-reduced metabolite that possesses minimal androgenic effect, might have potential therapeutic capacities in the treatment of severe asthma via mechanisms distinct from corticosteroid treatment.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, CDMX, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, CDMX, Mexico.
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico.
| |
Collapse
|
12
|
Bhallamudi S, Connell J, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially regulate intracellular calcium handling in human nonasthmatic and asthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L112-L124. [PMID: 31617730 DOI: 10.1152/ajplung.00206.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asthma is defined as chronic inflammation of the airways and is characterized by airway remodeling, hyperresponsiveness, and acute bronchoconstriction of airway smooth muscle (ASM) cells. Clinical findings suggest a higher incidence and severity of asthma in adult women, indicating a concrete role of sex steroids in modulating the airway tone. Estrogen, a major female sex steroid mediates its role through estrogen receptors (ER) ERα and ERβ, which are shown to be expressed in human ASM, and their expression is upregulated in lung inflammation and asthma. Previous studies suggested rapid, nongenomic signaling of estrogen via ERs reduces intracellular calcium ([Ca2+]i), thereby promoting relaxation of ASM. However, long-term ER activation on [Ca2+]i regulation in human ASM during inflammation or in asthma is still not known. In Fura-2-loaded nonasthmatic and asthmatic human ASM cells, we found that prolonged (24 h) exposure to ERα agonist (PPT) increased [Ca2+]i response to histamine, whereas ERβ activation (WAY) led to decreased [Ca2+] compared with vehicle. This was further confirmed by ER overexpression and knockdown studies using various bronchoconstrictor agents. Interestingly, ERβ activation was more effective than 17β-estradiol in reducing [Ca2+]i responses in the presence of TNF-α or IL-13, while no observable changes were noticed with PPT in the presence of either cytokine. The [Ca2+]i-reducing effects of ERβ were mediated partially via L-type calcium channel inhibition and increased Ca2+ sequestration by sarcoplasmic reticulum. Overall, these data highlight the differential signaling of ERα and ERβ in ASM during inflammation. Specific ERβ activation reduces [Ca2+]i in the inflamed ASM cells and is likely to play a crucial role in regulating ASM contractility, thereby relaxing airways.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Jennifer Connell
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
13
|
Ding S, Zhang J, Yin S, Lu J, Hu M, Du J, Huang J, Shen B. Inflammatory cytokines tumour necrosis factor-α and interleukin-8 enhance airway smooth muscle contraction by increasing L-type Ca 2+ channel expression. Clin Exp Pharmacol Physiol 2018; 46:56-64. [PMID: 30203559 DOI: 10.1111/1440-1681.13030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022]
Abstract
Inflammation elevates intracellular calcium concentrations ([Ca2+ ]i ) in airway smooth muscle (ASM). The L-type Ca2+ channel (L-VDCC) plays an important role in regulating Ca2+ influx in ASM. However, the role of L-VDCC in the inflammatory cytokine-induced pathology of ASM remains unclear. In the present study, we used calcium imaging and isometric tension measurements to assess the role of L-VDCC in agonist-induced [Ca2+ ]i rise and the associated contractions in mouse ASM, and we used immunoblotting to identify L-VDCC protein expression levels in mouse ASM after exposure to tumour necrosis factor alpha (TNF-α) or interleukin-8 (IL-8). Our results showed that high-K+ - or carbachol-induced contractions of mouse ASM were significantly greater after pretreatment with TNF-α or IL-8 for 24 hours. Both verapamil and nifedipine, L-VDCC inhibitors, abolished this increased contraction induced by TNF-α or IL-8 pretreatment. Moreover, TNF-α treatment enhanced carbachol-induced Ca2+ influx in ASM cells, and this effect was abrogated by verapamil. Additionally, immunoblotting results showed that preincubation of mouse ASM with TNF-α or IL-8 also enhanced L-VDCC protein expression. On the basis of these findings, we concluded that proinflammatory cytokines, such as TNF-α and IL-8, increase the expression level of L-VDCC, which in turn contributes to augmented agonist-induced ASM contractions. This effect of inflammation on L-VDCC expression in ASM may be associated with airway hyper-responsiveness and involved in the development of asthma.
Collapse
Affiliation(s)
- Shengang Ding
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.,Department of Physiology, Third Military Medical University, Chongqing, China
| | - Sheng Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jingsen Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Hu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Sports and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
15
|
Montaño LM, Flores-Soto E, Reyes-García J, Díaz-Hernández V, Carbajal-García A, Campuzano-González E, Ramírez-Salinas GL, Velasco-Velázquez MA, Sommer B. Testosterone induces hyporesponsiveness by interfering with IP 3 receptors in guinea pig airway smooth muscle. Mol Cell Endocrinol 2018; 473:17-30. [PMID: 29275169 DOI: 10.1016/j.mce.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Asthma symptoms have been associated with sex steroids. During childhood, this illness seems more frequent in boys than in girls and this tendency reverts in puberty when it is more severe in women. Testosterone (TES), at supraphysiological concentrations, relaxed pre-contracted airway smooth muscle, but its effects at physiological concentrations have not been thoroughly studied. We explored this possibility in guinea pig tracheal smooth muscle. In myocytes TES (10 nM) abolished carbachol (CCh)-induced intracellular Ca2+ concentration ([Ca2+]i) increment. Ca2+ responses to ATP were partially modified by TES while histamine's were not. These results indicate that inositol 1,4,5-trisphosphate (IP3) signaling pathway might be involved. Photolysis of caged-IP3 increased [Ca2+]i and TES abolished this effect. TES diminished reactivity of the smooth muscle to CCh and this effect was non-genomic since it was unchanged by flutamide. In tracheal smooth muscle, mRNA for each IP3 receptor (ITPR) isoform was found and, by immunofluorescence, ITPR1 and ITPR3 seems to be the main isoforms observed while ITPR2 was less prominent. Comparing the amino acid sequence of ITPR1 and the sequence of the TES binding site on the androgen receptor, we found that they share a short sequence. This domain could be responsible for the TES binding to the ITPR1 and probably for its blocking effect. We conclude that TES modifies ITPR1 function in airway smooth muscle, turning this tissue less reactive to contractile agonists that act through PLCβ-IP3 signaling cascade. These results might be related to the low asthma prevalence in males from puberty to adulthood.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Carbachol/pharmacology
- Genome
- Guinea Pigs
- Histamine/pharmacology
- Humans
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Intracellular Space/metabolism
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Protein Isoforms/metabolism
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Signal Transduction/drug effects
- Testosterone/pharmacology
- Trachea/drug effects
- Trachea/physiology
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Verónica Díaz-Hernández
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Elías Campuzano-González
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - G Lizbeth Ramírez-Salinas
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Cátedras CONACYT, Mexico; Unidad Periférica de Biomedicina Traslacional, (CMN 20 de Noviembre, ISSSTE) Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Marco A Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Unidad Periférica de Biomedicina Traslacional, (CMN 20 de Noviembre, ISSSTE) Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, 14080, Ciudad de México, Mexico
| |
Collapse
|
16
|
Sommer B, Flores-Soto E, Gonzalez-Avila G. Cellular Na+ handling mechanisms involved in airway smooth muscle contraction (Review). Int J Mol Med 2017; 40:3-9. [PMID: 28534960 PMCID: PMC5466399 DOI: 10.3892/ijmm.2017.2993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
A decrease in bronchial diameter is designated as bronchoconstriction (BC) and impedes the flow of air through the airway. Asthma is characterized by inflammation of the airways, reversible BC and nonspecific hyperreactivity. These last two symptoms are dependent on airway smooth muscle. Stimuli that trigger contraction can be characterized as chemical (neurotransmitters, cytokines and terpenoids) and physical (volume inspired, air pressure). Both stimuli activate signaling pathways by acting on membrane proteins and facilitating the passage of ions through the membrane, generating a voltage change and a subsequent depolarization. Na+ plays an important role in preserving the resting membrane potential; this ion is extracted from the cells by the Na+/K+ ATPase (NKA) or introduced into the cytoplasm by the Na+/Ca2+ exchanger (NCX). During depolarization, Na+ appears to accumulate in specific regions beneath the plasma membrane, generating local concentration gradients which determine the handling of Ca2+. At rest, the smooth muscle has a basal tone that is preserved by the continuous adjustment of intracytoplasmic concentrations of Ca2+ and Na+. At homeostasis, the Na+ concentration is primarily dependent on three structures: the NKA, the NCX and non-specific cation channels (NSCC). These three structures, their functions and the available evidence of the probable role of Na+ in asthma are described in the present review.
Collapse
Affiliation(s)
- Bettina Sommer
- Department of Bronchial Hyperreactivity, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| | - Edgar Flores-Soto
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico, CP 04510 Mexico City, Mexico
| | - Georgina Gonzalez-Avila
- Biomedical Oncology Laboratory, Department of Chronic‑Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
17
|
Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca2+]i overload and NF-κB activation. PLoS One 2017; 12:e0176910. [PMID: 28475602 PMCID: PMC5419567 DOI: 10.1371/journal.pone.0176910] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
Prolactin (PRL) is a peptidic hormone that displays pleiotropic functions in the organism including different actions in the brain. PRL exerts a neuroprotective effect against excitotoxicity produced by glutamate (Glu) or kainic acid in both in vitro and in vivo models. It is well known that Glu excitotoxicity causes cell death through apoptotic or necrotic pathways due to intracellular calcium ([Ca2+] i) overload. Therefore, the aim of the present study was to assess the molecular mechanisms by which PRL maintains cellular viability of primary cultures of rat hippocampal neurons exposed to Glu excitotoxicity. We determined cell viability by monitoring mitochondrial activity and using fluorescent markers for viable and dead cells. The intracellular calcium level was determined by a fluorometric assay and proteins involved in the apoptotic pathway were determined by immunoblot. Our results demonstrated that PRL afforded neuroprotection against Glu excitotoxicity, as evidenced by a decrease in propidium iodide staining and by the decrease of the LDH activity. In addition, the MTT assay shows that PRL maintains normal mitochondrial activity even in neurons exposed to Glu. Furthermore, the Glu-induced intracellular [Ca2+]i overload was attenuated by PRL. These data correlate with the reduction found in the level of active caspase-3 and the pro-apoptotic ratio (Bax/Bcl-2). Concomitantly, PRL elicited the nuclear translocation of the transcriptional factor NF-κB, which was detected by immunofluorescence and confocal microscopy. To our knowledge, this is the first report demonstrating that PRL prevents Glu excitotoxicity by a mechanism involving the restoration of the intracellular calcium homeostasis and mitochondrial activity, as well as an anti-apoptotic action possibly mediated by the activity of NF-κB. Overall, the current results suggest that PRL could be of potential therapeutic advantage in the treatment of neurodegenerative diseases.
Collapse
|
18
|
Yocum GT, Chen J, Choi CH, Townsend EA, Zhang Y, Xu D, Fu XW, Sanderson MJ, Emala CW. Role of transient receptor potential vanilloid 1 in the modulation of airway smooth muscle tone and calcium handling. Am J Physiol Lung Cell Mol Physiol 2017; 312:L812-L821. [PMID: 28336810 DOI: 10.1152/ajplung.00064.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Asthma is a common disorder characterized, in part, by airway smooth muscle (ASM) hyperresponsiveness. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed on airway nerve fibers that modulates afferent signals, resulting in cough, and potentially bronchoconstriction. In the present study, the TRPV1 transcript was detected by RT-PCR in primary cultured human ASM cells, and the TRPV1 protein was detected in ASM of human trachea by immunohistochemistry. Proximity ligation assays suggest that TRPV1 is expressed in the sarcoplasmic reticulum membrane of human ASM cells in close association with sarco/endoplasmic reticulum Ca2+-ATPase-2. In guinea pig tracheal ring organ bath experiments, the TRPV1 agonist capsaicin led to ASM contraction, but this contraction was significantly attenuated by the sodium channel inhibitor bupivacaine (n = 4, P < 0.05) and the neurokinin-2 receptor antagonist GR-159897 (n = 4, P < 0.05), suggesting that this contraction is neutrally mediated. However, pretreatment of guinea pig and human ASM in organ bath experiments with the TRPV1 antagonist capsazepine inhibited the maintenance phase of an acetylcholine-induced contraction (n = 4, P < 0.01 for both species). Similarly, capsazepine inhibited methacholine-induced contraction of peripheral airways in mouse precision-cut lung slice (PCLS) experiments (n = 4-5, P < 0.05). Although capsazepine did not inhibit store-operated calcium entry in mouse ASM cells in PCLS (n = 4-7, P = nonsignificant), it did inhibit calcium oscillations (n = 3, P < 0.001). These studies suggest that TRPV1 is expressed on ASM, including the SR, but that ASM TRPV1 activation does not play a significant role in initiation of ASM contraction. However, capsazepine does inhibit maintenance of contraction, likely by inhibiting calcium oscillations.
Collapse
Affiliation(s)
- Gene T Yocum
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christine H Choi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Elizabeth A Townsend
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Yi Zhang
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Dingbang Xu
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Xiao W Fu
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York; and
| |
Collapse
|
19
|
Flores-Soto E, Reyes-García J, Carbajal-García A, Campuzano-González E, Perusquía M, Sommer B, Montaño LM. Sex steroids effects on guinea pig airway smooth muscle tone and intracellular Ca 2+ basal levels. Mol Cell Endocrinol 2017; 439:444-456. [PMID: 27717744 DOI: 10.1016/j.mce.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Testosterone (TES), other androgens and female sex steroids induce non-genomic rapid relaxing effects in airway smooth muscle (ASM). In guinea pig ASM, basal tension was relaxed by dehydroepiandrosterone (DHEA) and TES; 17β-estradiol (E2) had a small effect. Blockers of L-type voltage dependent Ca2+ channel (L-VDCC, D-600) and store operated Ca2+ channel (SOC, 2-APB) also relaxed the basal tone. In tracheal myocytes, DHEA and TES diminished intracellular basal Ca2+ concentrations (b[Ca2+]i) as D-600+2-APB but to a higher extend. TES after D-600+2APB or Pyr3, a blocker of canonical transient receptor potential 3 (TRPC3), further decreased b[Ca2+]i rendering this response equal to TES alone. With indomethacin, the b[Ca2+]i decrease induced by the blockade of L-VDCC and TRPC3 was not changed by the addition of TES. PGE2 or forskolin addition after D600+2-APB, decreased b[Ca2+]i resembling TES response. An adenylate cyclase inhibitor followed by D-600+2-APB lowered b[Ca2+]i, TES showed no further effect. Carbachol-induced [Ca2+]i increment was reduced by TES or DHEA. 17β-estradiol diminished KCl-induced contraction and, in tracheal myocytes, the voltage-dependent inward Ca2+ current. CONCLUSION DHEA and TES diminish ASM tone and b[Ca2+]i by blocking L-VDCC and probably a constitutively active TRPC3, and by PGE2 synthesis. E2 lowers ASM basal tone by blocking only L-VDCC.
Collapse
Affiliation(s)
- Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Elías Campuzano-González
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, 14080, Ciudad de México, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
20
|
Rubini A, Catena V, Del Monte D, Bosco G. The effects of nifedipine on respiratory mechanics investigated by theend-inflation occlusion method in the rat. J Enzyme Inhib Med Chem 2016; 32:1-4. [PMID: 27766901 PMCID: PMC6009865 DOI: 10.1080/14756366.2016.1225045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CONTEXT Calcium channel blockers may theoretically exhibit relaxing effects not only on vascular smooth muscle but also on airway smooth muscle. OBJECTIVE To investigate possible effects of nifedipine on respiratory mechanics in the rat. METHODS Respiratory system mechanical parameters were measured by the end-inflation occlusion method in the rat in vivo before and after the intraperitoneal administration of nifedipine. RESULTS We found that nifedipine affects respiratory mechanics, inducing a reduction of airway resistance and of respiratory system elastance, probably because of a relaxing action on airway and parenchimal smooth muscle cells. CONCLUSION Should these results be further confirmed by human investigations, a possible role of nifedipine in pharmacological respiratory system's diseases treatment may be suggested.
Collapse
Affiliation(s)
- Alessandro Rubini
- a Department of Biological Sciences, Section of Physiology , University of Padova , Padova , Italy
| | - Vincenzo Catena
- b Department of Emergency and Intensive Care , ULSS 2 , Feltre , Italy
| | - Daniele Del Monte
- b Department of Emergency and Intensive Care , ULSS 2 , Feltre , Italy
| | - Gerardo Bosco
- a Department of Biological Sciences, Section of Physiology , University of Padova , Padova , Italy
| |
Collapse
|
21
|
Patai Z, Guttman A, Mikus EG. Potential L-Type Voltage-Operated Calcium Channel Blocking Effect of Drotaverine on Functional Models. J Pharmacol Exp Ther 2016; 359:442-451. [PMID: 27738091 DOI: 10.1124/jpet.116.237271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/12/2016] [Indexed: 11/22/2022] Open
Abstract
Drotaverine is considered an inhibitor of cyclic-3',5'-nucleotide-phophodiesterase (PDE) enzymes; however, published receptor binding data also support the potential L-type voltage- operated calcium channel (L-VOCC) blocking effect of drotaverine. Hence, in this work, we focus on the potential L-VOCC blocking effect of drotaverine by using L-VOCC-associated functional in vitro models. Accordingly, drotaverine and reference agents were tested on KCl-induced guinea pig tracheal contraction. Drotaverine, like the L-VOCC blockers nifedipine or diltiazem, inhibited the KCl-induced inward Ca2+- induced contraction in a concentration- dependent fashion. The PDE inhibitor theophylline had no effect on the KCl-evoked contractions, indicating its lack of inhibition on inward Ca2+ flow. Drotaverine was also tested on the L-VOCC-mediated resting Ca2+ refill model. In this model, the extracellular Ca2+ enters the cells to replenish the emptied intracellular Ca2+ stores. Drotaverine and L-VOCC blocker reference molecules inhibited Ca2+ replenishment of Ca2+-depleted preparations detected by agonist-induced contractions in post-Ca2+ replenishment Ca2+-free medium. Theophylline did not modify the Ca2+ store replenishment after contraction. It seems that drotaverine, but not theophylline, inhibits inward Ca2+ flux. The addition of CaCl2 to Ca2+-free medium containing the agonist induced inward Ca2+ flow and subsequent contraction of Ca2+-depleted tracheal preparations. Drotaverine, similar to the L-VOCC blockers, inhibited inward Ca2+ flow and blunted the slope of CaCl2-induced contraction in agonist containing Ca2+-free medium with Ca2+-depleted tracheal preparations. These results show that drotaverine behaves like L-VOCC blockers but, unlike PDE inhibitors using L-VOCC associated in vitro experimental models.
Collapse
Affiliation(s)
- Zoltán Patai
- LabMagister Training and Science Ltd. Budapest, Hungary (Z.P., E.G.M.), Horvath Csaba Laboratory of Bioseparation Sciences, MMKK, University of Debrecen, Debrecen, Hungary (Z.P., A.G.), MTA-PA Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary (A.G.)
| | - András Guttman
- LabMagister Training and Science Ltd. Budapest, Hungary (Z.P., E.G.M.), Horvath Csaba Laboratory of Bioseparation Sciences, MMKK, University of Debrecen, Debrecen, Hungary (Z.P., A.G.), MTA-PA Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary (A.G.)
| | - Endre G Mikus
- LabMagister Training and Science Ltd. Budapest, Hungary (Z.P., E.G.M.), Horvath Csaba Laboratory of Bioseparation Sciences, MMKK, University of Debrecen, Debrecen, Hungary (Z.P., A.G.), MTA-PA Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprem, Hungary (A.G.)
| |
Collapse
|
22
|
Chen J, Sanderson MJ. Store-operated calcium entry is required for sustained contraction and Ca 2+ oscillations of airway smooth muscle. J Physiol 2016; 595:3203-3218. [PMID: 27396568 DOI: 10.1113/jp272694] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca2+ oscillation frequency. Sustained contraction and Ca2+ oscillations require an influx of extracellular Ca2+ , although the mechanisms and pathways mediating this Ca2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca2+ channels (VGCCs), we show that SOCE, rather than Ca2+ influx via VGCCs, provides the major Ca2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. ABSTRACT Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca2+ oscillations require a Ca2+ influx to replenish Ca2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca2+ oscillations and SOCE-mediated Ca2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca2+ oscillations, in a manner similar to that observed in zero extracellular Ca2+ ([Ca2+ ]e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca2+ ([Ca2+ ]i ) in ASMCs with depleted Ca2+ -stores in response to increased [Ca2+ ]e , demonstrating a response consistent with the inhibition of SOCE. However, GSK7975A and GSK5498A did not reduce Ca2+ release via IP3 receptors stimulated with IP3 released from caged-IP3 . By contrast, nifedipine and nimodipine only partially reduced airway contraction, Ca2+ oscillation frequency and SOCE-mediated Ca2+ influx. These data suggest that SOCE is the major Ca2+ influx pathway for ASMCs with respect to sustaining agonist-induced airway contraction and the underlying Ca2+ oscillations. The mechanisms of SOCE may therefore form novel targets for new bronchodilators.
Collapse
Affiliation(s)
- Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
23
|
Na+ permeates through L-type Ca2+ channel in bovine airway smooth muscle. Eur J Pharmacol 2016; 782:77-88. [DOI: 10.1016/j.ejphar.2016.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
|
24
|
Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway. Mediators Inflamm 2016; 2016:5972302. [PMID: 27445440 PMCID: PMC4944077 DOI: 10.1155/2016/5972302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca2+ channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.
Collapse
|
25
|
Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels. J Physiol Biochem 2015; 71:785-93. [PMID: 26464340 DOI: 10.1007/s13105-015-0442-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.
Collapse
|
26
|
Leloup AJ, Van Hove CE, De Meyer GR, Schrijvers DM, Fransen P. Basal activity of voltage-gated Ca2+ channels controls the IP3-mediated contraction by α1-adrenoceptor stimulation of mouse aorta segments. Eur J Pharmacol 2015; 760:163-71. [DOI: 10.1016/j.ejphar.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
|
27
|
Montaño LM, Espinoza J, Flores-Soto E, Chávez J, Perusquía M. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm. J Endocrinol 2014; 222:1-13. [PMID: 24781253 DOI: 10.1530/joe-14-0074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in the androgen levels in asthmatic men may be associated with the severity of asthma. Androgens induce a nongenomic relaxation in airway smooth muscle, but the underlying mechanisms remain unclear. The aim of this study was to investigate the potential bronchorelaxing action of testosterone (TES) and its metabolites (5α- and 5β-dihydrotestosterone (DHT). A preventive effect on ovalbumin (OVA)-induced bronchospasm was observed in sensitized guinea pigs for each androgen. Androgens were studied in response to bronchoconstrictors: carbachol (CCh) and KCl in isolated trachea rings with and without epithelium from non-sensitized and sensitized animals as well as on OVA-induced contraction. Androgens concentration-dependently abolished the contraction in response to CCh, KCl, and OVA. There were significant differences in the sensitivity to the relaxation induced by each androgen. 5β-DHT was more potent for relaxing KCl-induced contraction, while TES and 5α-DHT were more potent for CCh- and OVA-induced contraction. No differences were found in preparations with and without epithelium or in the presence of a nitric oxide (NO) synthase inhibitor or an inhibitor of K(+) channels. These data indicate the absence of involvement of the epithelium-, NO- and K(+) channels-dependent pathway in androgen-induced relaxation. However, in dissociated tracheal myocytes loaded with the calcium-binding fluorescent dye Fura -2, physiological concentrations of androgens decreased the KCl-induced [Ca(2+)]i increment. 5β-DHT was the most potent at decreasing KCl-induced [Ca(2+)]i increment and preventing bronchospasm. We suggest that androgen-induced brochorelaxation was mediated via decreased Ca(2+) influx through L-type Ca(2+)channels but additional Ca(2+) entry blockade may be involved. Molecular changes in androgen structure may determine its preferential site of action.
Collapse
Affiliation(s)
- Luis M Montaño
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Julia Espinoza
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Edgar Flores-Soto
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Jaime Chávez
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| | - Mercedes Perusquía
- Departamento de Biología Celular y FisiologíaInstituto de Investigaciones BiomédicasDepartamento de FarmacologíaFacultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Distrito Federal 04510, MexicoDepartamento de Investigación en Hiperreactividad BronquialInstituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico, Distrito Federal, Mexico
| |
Collapse
|
28
|
Perusquía M, Flores-Soto E, Sommer B, Campuzano-González E, Martínez-Villa I, Martínez-Banderas AI, Montaño LM. Testosterone-induced relaxation involves L-type and store-operated Ca2+ channels blockade, and PGE 2 in guinea pig airway smooth muscle. Pflugers Arch 2014; 467:767-77. [PMID: 24872164 DOI: 10.1007/s00424-014-1534-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/14/2022]
Abstract
In vascular smooth muscle, it has been described that testosterone (TES) produces relaxation by blocking L-type Ca(2+) channels. Recently, we found that L-type Ca(2+) and store-operated Ca(2+) (SOC) channels are the main membranal structures that provide extracellular Ca(2+) for carbachol (CCh)-induced contraction in airway smooth muscle (ASM). We studied the possible interactions between L-type and SOC channels in TES-induced relaxation in guinea pig ASM. TES (10, 32, 100, and 178 μM) induced a complete relaxation of CCh-precontracted tracheal smooth muscle, and indomethacin partially inhibited this response. In single myocytes, the KCl-induced intracellular Ca(2+) increase ([Ca(2+)]i) was decreased by 32 and completely blocked by 100 nM TES. This androgen (32 and 100 μM) significantly diminished (~25 and 49 %, respectively) the capacitative Ca(2+) entry. Myocytes stimulated with CCh produced a transient Ca(2+) peak followed by a sustained plateau. D-600 was added during the plateau phase, and a partial diminution (~35 %) was observed. A greater decrease (~78 %) was seen when 2-aminoethyl diphenylborinate (2-APB, SOC antagonist) was used. The combination of both drugs completely abolished the Ca(2+) plateau induced by CCh. TES (100 μM) also completely abolished the CCh-induced Ca(2+) plateau. Indomethacin significantly diminished this effect of TES. PGE2 and butaprost proportionally decreased the Ca(2+) plateau as indomethacin blocked it. Sarcoplasmic reticulum refilling was partially, dependently, and significantly diminished by TES. We concluded that TES-induced relaxation involves blockade of L-type Ca(2+) channels at nanomolar and SOC channels at micromolar concentration and PGE2 seems to be also involved in this phenomenon.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
| | | | | | | | | | | | | |
Collapse
|