1
|
Jagleniec D, Kopeć A, Dobrzycki Ł, Romański J. A Squaramide-Crown Ether-Based Receptor and Polymer for Enhanced Lithium Chloride Extraction. Inorg Chem 2024. [PMID: 39692038 DOI: 10.1021/acs.inorgchem.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A non-mulitmacrocyclic ion pair receptor with the ability to cooperatively bind lithium cations and halide anions is presented. These receptors feature a squaramide function for anion binding and are directly linked to a benzo-4-crown-12 unit to achieve selectivity toward lithium salts. Ion pair receptors 1 and 3 demonstrated stronger anion binding in the presence of cobound cations, while anion receptor 2 lacks this property. X-ray measurements supported the simultaneous binding capability of ion pair receptors for both cations and anions. Under solid-liquid extraction (SLE) conditions in acetonitrile, ion pair receptors 1 and 3 selectively extract lithium salts. The more lipophilic receptor 1 can extract LiCl in liquid-liquid extraction (LLE) and SLE, with the latter process notably more selective and effective. Improved LLE extraction of lithium chloride was achieved using copolymer 5 containing receptor units in the structure. The inability of receptor 2 or benzo-12-crown-4 ether to extract salts is attributed to the absence of a heteroditopic binding domain in their structures. This underscores the significant influence of both anion and cation binding domains in the receptor structures on the effective and selective extraction of lithium halide salts. The selectivity of these receptors and the polymeric material toward lithium salts suggests significant potential for extracting lithium from brine solutions with elevated halide content.
Collapse
Affiliation(s)
- Damian Jagleniec
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland
| | - Aleksandra Kopeć
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland
| | - Jan Romański
- Faculty of Chemistry, University of Warsaw, Pasteura 1, PL 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Boge F, Mosig A. Causality and scientific explanation of artificial intelligence systems in biomedicine. Pflugers Arch 2024:10.1007/s00424-024-03033-9. [PMID: 39470762 DOI: 10.1007/s00424-024-03033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
With rapid advances of deep neural networks over the past decade, artificial intelligence (AI) systems are now commonplace in many applications in biomedicine. These systems often achieve high predictive accuracy in clinical studies, and increasingly in clinical practice. Yet, despite their commonly high predictive accuracy, the trustworthiness of AI systems needs to be questioned when it comes to decision-making that affects the well-being of patients or the fairness towards patients or other stakeholders affected by AI-based decisions. To address this, the field of explainable artificial intelligence, or XAI for short, has emerged, seeking to provide means by which AI-based decisions can be explained to experts, users, or other stakeholders. While it is commonly claimed that explanations of artificial intelligence (AI) establish the trustworthiness of AI-based decisions, it remains unclear what traits of explanations cause them to foster trustworthiness. Building on historical cases of scientific explanation in medicine, we here propagate our perspective that, in order to foster trustworthiness, explanations in biomedical AI should meet the criteria of being scientific explanations. To further undermine our approach, we discuss its relation to the concepts of causality and randomized intervention. In our perspective, we combine aspects from the three disciplines of biomedicine, machine learning, and philosophy. From this interdisciplinary angle, we shed light on how the explanation and trustworthiness of artificial intelligence relate to the concepts of causality and robustness. To connect our perspective with AI research practice, we review recent cases of AI-based studies in pathology and, finally, provide guidelines on how to connect AI in biomedicine with scientific explanation.
Collapse
Affiliation(s)
- Florian Boge
- Institute for Philosophy and Political Science, Technical University Dortmund, Emil-Figge-Str. 50, 44227, Dortmund, Germany
| | - Axel Mosig
- Bioinformatics Group, Department for Biology and Biotechnology, Ruhr-University Bochum (RUB), Gesundheitscampus 4, 44801, Bochum, NRW, Germany.
- Center for Protein Diagnostics, Ruhr University Bochum, Gesundheitscampus 4, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Kasatova AI, Razumov IA, Taskaev SY, Taskaeva IS. Comparative Study of Cytotoxicity and Accumulation of Boron and Lithium-Containing Drugs in Skin Melanoma Cells In Vitro. Bull Exp Biol Med 2024; 177:736-740. [PMID: 39441439 DOI: 10.1007/s10517-024-06260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/25/2024]
Abstract
We studied cytotoxicity and accumulation of boron and lithium by cultured human fibroblasts and human and mouse skin melanoma cell cultures. The cytotoxicity of boron and lithium drugs was assessed by MTT tests in the boron and lithium concentration range of 10-640 μg/ml. Cell viability was significantly reduced after incubation with boron and lithium at concentrations >160 μg/ml. To assess accumulation of boron and lithium, the concentration of elements was measured using inductively coupled plasma atomic emission spectrometry. Melanoma cells more intensively accumulated lithium in comparison with boron. The results indicate the possibility of safe application of lithium salts in concentrations minimally required for successful neutron capture therapy.
Collapse
Affiliation(s)
- A I Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - I A Razumov
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S Yu Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Iu S Taskaeva
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Iordache AM, Voica C, Roba C, Nechita C. Evaluation of potential human health risks associated with Li and their relationship with Na, K, Mg, and Ca in Romania's nationwide drinking water. Front Public Health 2024; 12:1456640. [PMID: 39377005 PMCID: PMC11456539 DOI: 10.3389/fpubh.2024.1456640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Background Increasing lithium (Li) demand worldwide due to its properties and role in renewable energy will raise water reservoir pollution and side effects on human health. Divergent results regarding Li concentration in water and affective disorders are found in the literature, which is why regional reports are expected. Objective The present study evaluated the occurrence and human health risks resulting from oral exposure, respectively, and the relationship between alkali metals (Li, Na, and K) and minerals (Mg, Ca) in balanced purified water (bottled) and spring water. Methods The ICP-MS technique was used to measure a national database with 53 bottled and 42 spring water samples randomly selected. One-way ANOVA, Pearson correlation, and HCA analysis were applied to assess the possible relationship between metals in water. The possible side effects of Li poisoning of water resources on human health have been evaluated using the Estimated Daily Intake Index (EDI) and Total Hazard Quotient (THQ). Results The toxic metals (As, Hg, and Pb) were measured, and the results indicate values above the detection limit of 22.3% of samples in the case of lead but not exceeding the safety limits. Depending on the water sources, such as bottled and spring water, the Li concentration varied between 0.06-1,557 and 0.09-984% μg/L. We found a strong positive correlation between Li and Na and Mg, varying between bottled and spring waters (p% <%0.001). Li exceeded the limit set by the Health-Based Screening Level (HBSL) in 41.37 and 19% of bottled and spring water samples. The oral reference doses (p-RfDs) for the noncancer assessment of daily oral exposure effects for a human lifetime exceeded threshold values. The THQ index shows potential adverse health effects, requiring further investigations and remedial actions in 27.58% of approved bottled waters and 2.38% of spring waters. Conclusion We can conclude that water is safe based on the Li concentration found in drinking water and supported by a gap in strict regulations regarding human Li ingestion. The present study can serve decision-makers and represent a starting database with metals of interest for further clinical studies. Decision-makers can also use it to find solutions for sustainable management of clean and safe drinking water.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, Râmnicu Vâlcea, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Carmen Roba
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Constantin Nechita
- Department of Biometry, National Research Institute in Forestry Marin Dracea – ICAS, Bucharest, Voluntari, Romania
| |
Collapse
|
5
|
Sofía-Avendaño-Lopez S, Rodríguez-Marín AJ, Lara-Castillo M, Agresott-Carrillo J, Lara-Cortés LE, Sánchez-Almanzar JF, Villamil-Cruz S, Rojas-Rodríguez LC, Ariza-Salamanca DF, Gaviria-Carrillo M, Calderon-Ospina CA, Rodríguez-Quintana J. Molecular, Pathophysiological, and Clinical Aspects of Corticosteroid-Induced Neuropsychiatric Effects: From Bench to Bedside. Biomedicines 2024; 12:2131. [PMID: 39335644 PMCID: PMC11429036 DOI: 10.3390/biomedicines12092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Corticosteroids are frequently prescribed across medical disciplines, yet they are associated with various adverse effects, including neuropsychiatric symptoms, documented since their introduction over 60 years ago. The cellular mechanisms underlying neuropsychiatric symptoms are complex and somewhat obscure, involving multiple pathways. Notably, they include changes in excitability, cellular death of hippocampal and striatal neurons, and increased inflammation and oxidative stress. Clinical presentation varies, encompassing affective disorders (anxiety, euphoria, depression), psychotic episodes, and cognitive deficits. It is crucial to note that these manifestations often go unnoticed by treating physicians, leading to delayed detection of severe symptoms, complications, and underreporting. Discontinuation of corticosteroids constitutes the cornerstone of treatment, resolving symptoms in up to 80% of cases. Although the literature on this topic is scant, isolated cases and limited studies have explored the efficacy of psychotropic medications for symptomatic control and prophylaxis. Pharmacological intervention may be warranted in situations where corticosteroid reduction or withdrawal is not feasible or beneficial for the patient.
Collapse
Affiliation(s)
- Sara Sofía-Avendaño-Lopez
- Social Epidemiology Research Team, Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM, Sorbonne Université, F 75012 Paris, France
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Angela Johanna Rodríguez-Marín
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Lara-Castillo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juanita Agresott-Carrillo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Luna Estefanía Lara-Cortés
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan Felipe Sánchez-Almanzar
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sophya Villamil-Cruz
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Luis Carlos Rojas-Rodríguez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), National Polytechnic Institute, Mexico City 14300, Mexico
| | - Mariana Gaviria-Carrillo
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Jesús Rodríguez-Quintana
- Fundacion CardioInfantil-Instituto de Cardiología, Bogotá 111156, Colombia
- Hospital Universitario Mayor Mederi, Bogotá 111411, Colombia
| |
Collapse
|
6
|
Shabani M, Jamali Z, Bayrami D, Salimi A. Hesperidin via maintenance of mitochondrial function and antioxidant activity protects lithium toxicity in rat heart isolated mitochondria. Drug Chem Toxicol 2024; 47:597-605. [PMID: 37369581 DOI: 10.1080/01480545.2023.2228521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Lithium is commonly used in the treatment of bipolar disorders (BD) and consumer electronics. It has been reported that lithium exposure is associated with mitochondrial dysfunction and oxidative stress in isolated cardiac mitochondria. Mitochondrial protection has a key role in myocardial tissue homeostasis, cardiomyocyte survival and inhibition of cardiotoxicity. Hesperidin as a flavanone and cardioprotective agent has shown high potential in antioxidant activity and restoration of mitochondrial dysfunction in different models. Therefore, we aimed to evaluate the ameliorative effects of hesperidin against lithium-induced mitochondrial toxicity in rat cardiac mitochondria. Isolated mitochondria were classified into six groups; control, lithium carbonate (125 µM), three groups of lithium + hesperidin-treated received lithium (125 µM) and hesperidin with various concentrations (10, 50, and 100 µM) and hesperidin (100 µM). Succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial glutathione (GSH) and lipid peroxidation (LPO) were measured. The mitochondria received lithium showed a significant reduction of SDH activity, MMP collapse, mitochondrial swelling, induction of ROS formation and lipid peroxidation. However, we observed that the administration of hesperidin (50 and 100 µM) resulted in the increase of SDH activity, improved MMP collapse, mitochondrial swelling, and reduced ROS formation and lipid peroxidation. Also, there were no obvious changes in cardiac mitochondria received of hesperidin. These findings suggest that hesperidin could reduce lithium-induced mitochondrial dysfunction through antioxidant activities in cardiac mitochondria, may be beneficial for prevention and treatment of lithium toxicities, either as a drug to treat BD or as an environmental pollutant.
Collapse
Affiliation(s)
- Mohammad Shabani
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Deniz Bayrami
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Heo NJ, Oh JH, Li A, Lee K, He Q, Sessler JL, Kim SK. Ion pair extractant selective for LiCl and LiBr. Chem Sci 2024; 15:d4sc03760j. [PMID: 39144460 PMCID: PMC11317791 DOI: 10.1039/d4sc03760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Improved methods for achieving the selective extraction of lithium salts from lithium sources, including rocky ores, salt-lake brines, and end-of-life lithium-ion batteries, could help address projected increases in the demand for lithium. Here, we report an ion pair receptor (2) capable of extracting LiCl and LiBr into an organic receiving phase both from the solid state and from aqueous solutions. Ion pair receptor 2 consists of a calix[4]pyrrole framework, which acts as an anion binding site, linked to a phenanthroline cation binding motif via ether linkages. Receptor 2 binds MgBr2 and CaCl2 with high selectivity over the corresponding lithium salts in a nonpolar aprotic solvent. The preference for Mg2+ and Ca2+ salts is reversed in polar protic media, allowing receptor 2 to complex LiCl and LiBr with high selectivity and affinity in organic media containing methanol or water. The effectiveness of receptor 2 as an extractant for LiCl and LiBr under liquid-liquid extraction (LLE) conditions was found to be enhanced by the presence of other potentially competitive salts in the aqueous source phase.
Collapse
Affiliation(s)
- Nam Jung Heo
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Ju Hyun Oh
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Kyounghoon Lee
- Department of Chemistry Education, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street-Stop A5300 Austin Texas 78712-1224 USA
| | - Sung Kuk Kim
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
8
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
9
|
Friesen S, Kruchinin SE, Fedotova MV, Buchner R. Cation-Binding of Glutamate in Aqueous Solution. J Phys Chem B 2024; 128:5746-5755. [PMID: 38832643 PMCID: PMC11182346 DOI: 10.1021/acs.jpcb.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Interactions of the cations Li+, Na+, Mg2+, and Ca2+ with L-glutamate (Glu-) in aqueous solution were studied at room temperature with dielectric relaxation spectroscopy in the gigahertz region. Spectra of ∼0.4 M NaGlu with added LiCl, NaCl, MgCl2, or CaCl2 (c(MCln) ≤ 1.5 M) were evaluated and experiments supplemented by density functional theory and 3D reference interaction site model (3D-RISM) calculations. In addition to the modes found for aqueous NaGlu, namely, the reorientation of free Glu- ions (peaking at ∼1.6 GHz), of moderately retarded H2O molecules hydrating the carboxylate moieties of Glu- (∼8.4 GHz), of the cooperative resettling of the H-bond network of bulk water (∼20 GHz), and its preceding fast H-bond flip (∼400 GHz), an additional low-frequency relaxation at ∼0.4 GHz was detected upon the addition of the four salts. In the case of NaGlu + MgCl2(aq) and NaGlu + CaCl2(aq), this mode could be unequivocally assigned to an ion pair formed by the cation and the side-chain carboxylate moiety of Glu-. For NaGlu + LiCl(aq), either this species or a backbone-[Li+-H2O-Cl--Glu-] triple ion is formed. Binding constants increase in the order Li+
Collapse
Affiliation(s)
- Sergej Friesen
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| | - Sergey E. Kruchinin
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Marina V. Fedotova
- G.
A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, Ivanovo 153045, Russian Federation
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg D-93040, Germany
| |
Collapse
|
10
|
Lien TNT, Mohamed SMM, van den Bogaard B, Touw DJ, Franssen EJF. Effects of Plasmapheresis on Serum Lithium Levels in an ICU Patient with Bipolar Disorder: A Case Study. Ther Drug Monit 2024; 46:281-284. [PMID: 38723114 DOI: 10.1097/ftd.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/13/2023] [Indexed: 07/03/2024]
Abstract
ABSTRACT This is a case description of a patient with bipolar disorder undergoing lithium therapy who received plasmapheresis for neuromyelitis optica spectrum disorder. Plasmapheresis resulted in lower and subtherapeutic serum lithium levels. Using therapeutic drug monitoring, a dose escalation of 80% was necessary to maintain therapeutic serum lithium levels. This underscores the importance of individualized therapy through therapeutic drug monitoring.
Collapse
Affiliation(s)
- Thuy N T Lien
- Hospital Pharmacy Department OLVG, Amsterdam, the Netherlands
| | | | | | - Daan J Touw
- Hospital Pharmacy Department UMCG, Groningen, the Netherlands
| | | |
Collapse
|
11
|
Richard SA. Elucidating the pivotal molecular mechanisms, therapeutic and neuroprotective effects of lithium in traumatic brain injury. Brain Behav 2024; 14:e3595. [PMID: 38874089 PMCID: PMC11177180 DOI: 10.1002/brb3.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) refers to damage to brain tissue by mechanical or blunt force via trauma. TBI is often associated with impaired cognitive abilities, like difficulties in memory, learning, attention, and other higher brain functions, that typically remain for years after the injury. Lithium is an elementary light metal that is only utilized in salt form due to its high intrinsic reactivity. This current review discusses the molecular mechanisms and therapeutic and neuroprotective effects of lithium in TBI. METHOD The "Boolean logic" was used to search for articles on the subject matter in PubMed and PubMed Central, as well as Google Scholar. RESULTS Lithium's therapeutic action is extremely complex, involving multiple effects on gene secretion, neurotransmitter or receptor-mediated signaling, signal transduction processes, circadian modulation, as well as ion transport. Lithium is able to normalize multiple short- as well as long-term modifications in neuronal circuits that ultimately result in disparity in cortical excitation and inhibition activated by TBI. Also, lithium levels are more distinct in the hippocampus, thalamus, neo-cortex, olfactory bulb, amygdala as well as the gray matter of the cerebellum following treatment of TBI. CONCLUSION Lithium attenuates neuroinflammation and neuronal toxicity as well as protects the brain from edema, hippocampal neurodegeneration, loss of hemispheric tissues, and enhanced memory as well as spatial learning after TBI.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Medicine, Princefield University, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
13
|
Taskaeva I, Kasatova A, Razumov I, Bgatova N, Taskaev S. Lithium salts cytotoxicity and accumulation in melanoma cells in vitro. J Appl Toxicol 2024; 44:712-719. [PMID: 38146629 DOI: 10.1002/jat.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Boron neutron capture therapy is a perspective selective technology for the destruction of cancer cells, while the use of lithium instead of boron may represent a new and promising vector for the development of neutron capture therapy (NCT). The aim of the study was a comparative assessment of the cytotoxicity of various lithium salts, as well as an analysis of the accumulation of lithium in tumor cells in vitro to determine the possibility of using lithium in NCT. The cytotoxicity of lithium salts was determined using MTT-test and colony forming assay on human fibroblasts BJ-5ta, human skin melanoma SK-Mel-28, and mouse skin melanoma B16 cell lines. An assessment of lithium concentration in cells was performed using inductively coupled plasma atomic emission spectrometry. Our results showed that three different lithium salts at a concentration of 40 μg/ml are not toxic for both tumor and normal cells. The highest uptake values were obtained on murine melanoma B16 cells when exposed to lithium carbonate (0.8 μg/106 cells); however, human melanoma SK-Mel-28 cells effectively accumulated both lithium carbonate and lithium citrate (about 0.46 μg/106 cells for two salts). Thus, our results demonstrate a range of non-toxic doses of lithium salts and a high uptake of lithium by tumor cells, which indicates the possibility to use the lithium in NCT.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| | - Ivan Razumov
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
| |
Collapse
|
14
|
Taskaeva YS, Kasatova AI, Shatruk AY, Taskaev SY, Bgatova NP. The Expression of Markers of Acute Kidney Injury Kim1 and NGAL after Administration of High Doses of Lithium Carbonate in Mice with Engrafted Skin Melanoma B16. Bull Exp Biol Med 2024; 176:567-571. [PMID: 38724809 DOI: 10.1007/s10517-024-06068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 05/18/2024]
Abstract
The expression of marker proteins of acute kidney injury after administration of high doses of lithium carbonate was assessed to evaluate the possibility of lithium use in neutron capture therapy. In mice with implanted skin melanoma B16, the expression of Kim1 (kidney injury molecule 1) and NGAL (neutrophil gelatinase-associated lipocalin) proteins in the kidneys was evaluated immunohistochemically 15, 30, 90, 180 min, and 7 days after peroral administration of lithium carbonate at single doses of 300 and 400 mg/kg. An increase in the expression of the studied proteins was found in 30 and 90 min after administration of 400 mg/kg lithium carbonate, however, 7 days after the drug administration, the expression returned to the level observed in the control group. It can be suggested that single administration of lithium carbonate in the studied doses effective for lithium neutron capture therapy will not significantly affect the renal function.
Collapse
Affiliation(s)
- Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - A I Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Yu Shatruk
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S Yu Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Agrahari S, Singh AK, Gautam RK, Tiwari I. Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from Co-Nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124866-124883. [PMID: 36280636 PMCID: PMC9592539 DOI: 10.1007/s11356-022-23660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Herein, we investigated the electrochemical behaviour of fMWCNTs decorated with Co-Nd bimetallic nanoparticles and alumina nanoparticles (Co-Nd/Al2O3@fMWCNTs). The nanocomposites were synthesised using simple mechanical mixing and characterised by FT-IR, XRD, UV-visible studies, SEM, TEM and EDAX. Moreover, the crystalline size of the synthesised nanoparticles was also calculated using XRD data (Debye-Scherer formula) and was found in the nm range. The electrochemical behaviour of epinephrine (EP) was examined in the presence of Co-Nd/Al2O3@fMWCNTs nanocomposite modified glassy carbon electrode (GCE) using various electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. Among all the above-mentioned techniques, the DPV response of the modified Co-Nd/Al2O3@fMWCNTs/GCE under optimal circumstances revealed a dual linear range (0.2 to 4000 µM and 4000 to 14,000 µM) and LOD of 0.015 µM (S/N = 3). The sensitivities were determined to be 0.00323 µAµM-1 and 0.0004 µAµM-1 in 0.2 to 4000 µM and 4000 to 14,000 µM concentration ranges. Using chronocoulometry, the surface coverage of Co-Nd/Al2O3@fMWCNTs/GCE was calculated to be 1.37 × 10-8 mol cm-2. The fabricated Co-Nd/Al2O3@fMWCNTs/GCE demonstrated remarkable repeatability, with an RSD of 0.09%, and storage stability of 3 weeks, with 89.6% current retention. Lastly, it was found that Co-Nd/Al2O3@fMWCNTs/GCE worked well for EP analysis in a variety of biological fluids.
Collapse
Affiliation(s)
- Shreanshi Agrahari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ankit Kumar Singh
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Ida Tiwari
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
16
|
Lopes LDS, da Silva MDCS, da Silva JS, da Luz JMR, Faustino ADO, Rocha GC, de Oliveira LL, Kasuya MCM. Bioavailability of Li-enriched mushrooms and protection against oxidative stress in pigs: First study in vivo. 3 Biotech 2023; 13:334. [PMID: 37681112 PMCID: PMC10480122 DOI: 10.1007/s13205-023-03731-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Mycelia and mushrooms are able to bioaccumulate minerals. Lithium is the active principle of drugs used in the treatment of psychiatric diseases. However, a dietary source of Li can reduce the side effects of these drugs. Thus, the objective of this study was to evaluate the bioavailability of Li-enriched mushroom of Pleurotus djamor in pigs and the effects of this element on oxidative stress in the animal tissues. Pigs 28-30 days-old were fed with diets containing or not Li for five days. Levels of serum cortisol were related to the Li dosage from diet. Li-enriched mushrooms were more bioavailable source of Li to the body than Li2CO3. These mushrooms also improved the effects of oxidative enzymes and showed less oxidative damage than Li2CO3. These results demonstrate the potential to use Li-enriched P. djamor as a source of Li that is more bioavailable and present protective effects against oxidative stress.
Collapse
Affiliation(s)
- Leandro de Souza Lopes
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Marliane de Cássia Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Juliana Soares da Silva
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - José Maria Rodrigues da Luz
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Alessandra de Oliveira Faustino
- Department of Cell Biology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Leandro Licursi de Oliveira
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| | - Maria Catarina Megumi Kasuya
- Department of Agricultural Microbiology, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, 36570-000, Viçosa, Minas Gerais Brazil
| |
Collapse
|
17
|
Shakoor N, Adeel M, Ahmad MA, Zain M, Waheed U, Javaid RA, Haider FU, Azeem I, Zhou P, Li Y, Jilani G, Xu M, Rinklebe J, Rui Y. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100252. [PMID: 36891261 PMCID: PMC9988428 DOI: 10.1016/j.ese.2023.100252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Zain
- Department of Botany, University of Lakki Marwat, KP, 28420, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary & Animal Sciences, Jhang-campus, Lahore, 54000, Pakistan
| | - Rana Arsalan Javaid
- Crop Science Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Taskaeva I, Kasatova A, Surodin D, Bgatova N, Taskaev S. Study of Lithium Biodistribution and Nephrotoxicity in Skin Melanoma Mice Model: The First Step towards Implementing Lithium Neutron Capture Therapy. Life (Basel) 2023; 13:life13020518. [PMID: 36836875 PMCID: PMC9965240 DOI: 10.3390/life13020518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is one of the promising treatment methods for malignant melanoma. The main issue of this technology is the insufficient selectivity of 10B accumulation in tumor cells. As a result of the neutron absorption by boron, an 84% energy release occurred within the cell by the nuclear reaction 10B (n, α)7Li, which lead to tumor cell death. The use of lithium instead of boron brings a new unique opportunity-local 100% energy release-since all products of the 6Li (n, α)3H reaction have high linear energy transfer characteristics. The aim of this study was to determine the concentrations of Li in the tumor, skin, blood, brain and kidney in experimental animals with B16 melanoma and to analyze the potential Li toxicity after lithium carbonate administration at single doses of 300 and 400 mg/kg. Lithium carbonate was chosen since there is a long-term experience of its use in clinical practice for the treatment of psychiatric disorders. The inductively coupled plasma atomic emission spectrometry was used to evaluate Li concentrations in tissue samples. The accumulation efficiency of Li in the tumor was the highest at a time point of 30 min (22.4 µg/g; at a dose of 400 mg/kg). Despite the high lithium accumulation in the kidneys, the pathological changes in kidney tissues were not found. Thus, lithium may actually be used for the Li-NCT development and future studies can be conducted using 6Li and following irradiation of tumor cells using the schemes of lithium administration tested in this work.
Collapse
Affiliation(s)
- Iuliia Taskaeva
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630060 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(983)-301-52-21
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
| | - Dmitry Surodin
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Nataliya Bgatova
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ruslan A, Okosieme OE. Non-thionamide antithyroid drug options in Graves' hyperthyroidism. Expert Rev Endocrinol Metab 2023; 18:67-79. [PMID: 36740774 DOI: 10.1080/17446651.2023.2167709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The thionamide anti-thyroid drugs namely carbimazole, methimazole, and propylthiouracil, have been the predominant therapy modality for Graves' hyperthyroidism for over 60 years. Although these agents have proven efficacy and favorable side-effect profiles, non-thionamide alternatives are occasionally indicated in patients who are intolerant or unresponsive to thionamides alone. This review examines the available non-thionamide drug options for the control of Graves' hyperthyroidism and summarizes their clinical utility, efficacy, and limitations. AREAS COVERED We reviewed existing literature on mechanisms, therapeutic utility, and side-effect profiles of non-thionamide anti-thyroid drugs. Established non-thionamide agents act on various phases of the synthesis, release, and metabolism of thyroid hormones and comprise historical agents such as iodine compounds and potassium perchlorate as well as drug repurposing candidates like lithium, glucocorticoids, beta-blockers, and cholestyramine. Novel experimental agents in development target key players in Graves' disease pathogenesis including B-cell depletors (Rituximab), CD40 blockers (Iscalimab), TSH-receptor antagonists, blocking antibodies, and immune-modifying peptides. EXPERT OPINION Non-thionamide anti-thyroid drugs are useful alternatives in Graves' hyperthyroidism and more clinical trials are needed to establish their safety and long-term efficacy in hyperthyroidism control. Ultimately, the promise for a cure will lie in novel approaches that target the well-established immunopathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Aliya Ruslan
- Endocrine and Diabetes Department, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, CF47 9DT, UK
| | - Onyebuchi E Okosieme
- Endocrine and Diabetes Department, Prince Charles Hospital, Cwm Taf University Health Board, Merthyr Tydfil, CF47 9DT, UK
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
21
|
Hu W, Zhao M, Lian J, Li D, Wen J, Tan J. Lithium Cholesterol Sulfate: A Novel and Potential Drug for Treating Alzheimer's Disease and Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1250-1258. [PMID: 36028968 DOI: 10.2174/1871527321666220825114236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent studies have shown that lithium treatment can reduce symptoms of Alzheimer's disease (AD) and Autism Spectrum Disorder (ASD). However, the present lithium salts clinically available have serious short-term and long-term side effects, requiring frequent monitoring of blood chemistry and plasma lithium levels to avoid toxicity. Consequently, there is a demand for a safer and more effective lithium formulation to treat these diseases. METHODS Hence, we firstly synthesized lithium cholesterol sulfate (LiCS) and compared its pharmacological effects with that of lithium chloride (LiCl) and sodium cholesterol sulfate (NaCS) on markers of neurodegenerative disease in cell cultures. RESULTS LiCS was more potent than LiCl in increasing inhibitory GSK3β (Ser9) phosphorylation (pGSK3β) in both CHO and SH-SY5Y cells. These agents dose-dependently increased pGSK3β, starting at 10 μM for LiCS and 60 μM for LiCl and maximally by approximately 100% at 60 μM for LiCS and 1.25 mM for LiCl, without altering total GSK3β levels. In HEK293/tau cells, LiCS reduced tau (Thr231) phosphorylation (ptau) starting at 10 μM and maximally by 63% at 40 μM without altering total tau levels, but ptau levels were not altered by LiCl at any dose between 60 μM and 1.25 mM. In BV2 cells, LiCS and LiCl decreased LPS-induced TNFα levels, starting at 20 μM for LiCS and 5 mM for LiCl, and maximally by approximately 30% at 80 μM for LiCS and 20 mM for LiCl. NaCS at any dose between 5 and 90 μM did not alter pGSK3β, ptau or LPS-induced TNFα. CONCLUSION LiCS may become a new drug with good pharmacological potential for the treatment of neurodegenerative disorders, such as AD and ASD, by allowing lithium to more readily access intracellular pathological processes.
Collapse
Affiliation(s)
- Weiqiang Hu
- Department of GCP/Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Menghua Zhao
- Department of GCP/Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junrong Lian
- Huankui College, Nanchang University, Nanchang 330006, China
| | - Dandan Li
- Huankui College, Nanchang University, Nanchang 330006, China
| | - Jinhua Wen
- Department of GCP/Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, the Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
22
|
Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson RE, Fajardo VA. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Curr Neuropharmacol 2023; 21:891-910. [PMID: 35236261 PMCID: PMC10227915 DOI: 10.2174/1570159x20666220302151224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium's potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer's disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium's actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.
Collapse
Affiliation(s)
- Sophie I. Hamstra
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Peter Tiidus
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E.K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
23
|
Boikov SI, Sibarov DA, Stepanenko YD, Karelina TV, Antonov SM. Calcium-Dependent Interplay of Lithium and Tricyclic Antidepressants, Amitriptyline and Desipramine, on N-methyl-D-aspartate Receptors. Int J Mol Sci 2022; 23:ijms232416177. [PMID: 36555818 PMCID: PMC9787943 DOI: 10.3390/ijms232416177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The facilitated activity of N-methyl-D-aspartate receptors (NMDARs) in the central and peripheral nervous systems promotes neuropathic pain. Amitriptyline (ATL) and desipramine (DES) are tricyclic antidepressants (TCAs) whose anti-NMDAR properties contribute to their analgetic effects. At therapeutic concentrations <1 µM, these medicines inhibit NMDARs by enhancing their calcium-dependent desensitization (CDD). Li+, which suppresses the sodium−calcium exchanger (NCX) and enhances NMDAR CDD, also exhibits analgesia. Here, the effects of different [Li+]s on TCA inhibition of currents through native NMDARs in rat cortical neurons recorded by the patch-clamp technique were investigated. We demonstrated that the therapeutic [Li+]s of 0.5−1 mM cause an increase in ATL and DES IC50s of ~10 folds and ~4 folds, respectively, for the Ca2+-dependent NMDAR inhibition. The Ca2+-resistant component of NMDAR inhibition by TCAs, the open-channel block, was not affected by Li+. In agreement, clomipramine providing exclusively the NMDAR open-channel block is not sensitive to Li+. This Ca2+-dependent interplay between Li+, ATL, and DES could be determined by their competition for the same molecular target. Thus, submillimolar [Li+]s may weaken ATL and DES effects during combined therapy. The data suggest that Li+, ATL, and DES can enhance NMDAR CDD through NCX inhibition. This ability implies a drug−drug or ion−drug interaction when these medicines are used together therapeutically.
Collapse
|
24
|
Farmani AR, Salmeh MA, Golkar Z, Moeinzadeh A, Ghiasi FF, Amirabad SZ, Shoormeij MH, Mahdavinezhad F, Momeni S, Moradbeygi F, Ai J, Hardy JG, Mostafaei A. Li-Doped Bioactive Ceramics: Promising Biomaterials for Tissue Engineering and Regenerative Medicine. J Funct Biomater 2022; 13:162. [PMID: 36278631 PMCID: PMC9589997 DOI: 10.3390/jfb13040162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) is a metal with critical therapeutic properties ranging from the treatment of bipolar depression to antibacterial, anticancer, antiviral and pro-regenerative effects. This element can be incorporated into the structure of various biomaterials through the inclusion of Li chloride/carbonate into polymeric matrices or being doped in bioceramics. The biocompatibility and multifunctionality of Li-doped bioceramics present many opportunities for biomedical researchers and clinicians. Li-doped bioceramics (capable of immunomodulation) have been used extensively for bone and tooth regeneration, and they have great potential for cartilage/nerve regeneration, osteochondral repair, and wound healing. The synergistic effect of Li in combination with other anticancer drugs as well as the anticancer properties of Li underline the rationale that bioceramics doped with Li may be impactful in cancer treatments. The role of Li in autophagy may explain its impact in regenerative, antiviral, and anticancer research. The combination of Li-doped bioceramics with polymers can provide new biomaterials with suitable flexibility, especially as bio-ink used in 3D printing for clinical applications of tissue engineering. Such Li-doped biomaterials have significant clinical potential in the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa 74615-168, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Mohammad Ali Salmeh
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14155-6619, Iran
| | - Zahra Golkar
- Department of Midwifery, Firoozabad Branch, Islamic Azad University, Firoozabad 74715-117, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Farzaneh Farid Ghiasi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Sara Zamani Amirabad
- Department of Chemical Engineering, Faculty of Engineering, Yasouj University, Yasouj 75918-74934, Iran
| | - Mohammad Hasan Shoormeij
- Emergency Medicine Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Forough Mahdavinezhad
- Anatomy Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
- Department of Infertility, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin 34199-15315, Iran
| | - Simin Momeni
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - John G. Hardy
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
| | - Amir Mostafaei
- Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, 10 W 32nd Street, Chicago, IL 60616, USA
| |
Collapse
|
25
|
Li S, Lu X, Chen X, Huang Z, Zhou H, Li Z, Ning Y. The prevalence and associated clinical correlates of hyperuricemia in patients with bipolar disorder. Front Neurosci 2022; 16:998747. [PMID: 36188459 PMCID: PMC9523783 DOI: 10.3389/fnins.2022.998747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The prevalence and clinically associated factors of hyperuricemia (HUA) have been widely studied in the general population but rarely in patients with bipolar disorder (BPD) co-morbid with HUA. This study attempted to investigate the prevalence of HUA in BPD patients and analyze the associated correlates of HUA. Materials and methods In this study, 182 outpatients with BPD and 182 healthy controls participated. The demographic and clinical information were collected. The body weight, height, waist circumference (WC), hip circumference (HC), and blood pressure (BP) were measured. The levels of serum uric acid (UA), triglyceride (TG), high-density lipoprotein (HDL-C), and fasting blood glucose (FBG) were also determined. Results BPD patients had a significantly higher prevalence of HUA (40.7%) compared to healthy controls (30.2%) (χ2 = 4.335, P = 0.037). The systolic blood pressure (SBP), pulse pressure (PP), FBG, UA, and body mass index (BMI) were higher in the BPD group compared with those in the control group, while the diastolic blood pressure (DBP) and HDL-C level were lower (P < 0.05) in BPD patients. The prevalence of HUA was higher in BPD patients who used antipsychotics combined with mood stabilizers than that in BPD subjects receiving the mood stabilizers alone (P < 0.001). The prevalence of HUA and increased serum UA levels were higher in the manic group (62.1%) than in the depressive (34.3%) or euthymia group (17.0%) (P < 0.001). Additionally, the severity of mania was positively correlated with the UA level (r = 0.410, P < 0.001). There were significant differences in terms of MetS (29.7% vs. 14.8%), BMI, HC, WC, TG, and HDL-C between the HUA and the non-HUA groups (P < 0.05). The unconditional logistic regression analysis revealed that high BMI (OR = 1.210; 95%CI: 1.100–1.331) and high TG level (OR = 1.652; 95%CI: 1.058–2.580) were the major risk factorids for HUA in BPD patients. Conclusion Our study suggests that patients with BPD are prone to metabolic diseases such as HUA. Higher serum levels of TG and high BMI could be associated with HUA development. Clinicians need to regularly monitor and evaluate BPD patients for their serum UA levels, especially for BPD patients with manic/hypomanic episodes and/or under the treatment of antipsychotics combined with mood stabilizers.
Collapse
Affiliation(s)
- Shuyun Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaobing Lu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaodong Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zebin Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Zezhi Li,
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Yuping Ning,
| |
Collapse
|
26
|
Huehnchen P, Bangemann N, Lischewski S, Märschenz S, Paul F, Schmitz-Hübsch T, Blohmer JU, Eberhardt C, Rauch G, Flöel A, Adam S, Schwenkenbecher P, Meinhold-Heerlein I, Hoffmann O, Ziemssen T, Endres M, Boehmerle W. Rationale and design of the prevention of paclitaxel-related neurological side effects with lithium trial - Protocol of a multicenter, randomized, double-blind, placebo- controlled proof-of-concept phase-2 clinical trial. Front Med (Lausanne) 2022; 9:967964. [PMID: 36035422 PMCID: PMC9403739 DOI: 10.3389/fmed.2022.967964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Chemotherapy-induced polyneuropathy (CIPN) and post-chemotherapy cognitive impairment (PCCI) are frequent side effects of paclitaxel treatment. CIPN/PCCI are potentially irreversible, reduce quality of life and often lead to treatment limitations, which affect patients' outcome. We previously demonstrated that paclitaxel enhances an interaction of the Neuronal calcium sensor-1 protein (NCS-1) with the Inositol-1,4,5-trisphosphate receptor (InsP3R), which disrupts calcium homeostasis and triggers neuronal cell death via the calcium-dependent protease calpain in dorsal root ganglia neurons and neuronal precursor cells. Prophylactic treatment of rodents with lithium inhibits the NCS1-InsP3R interaction and ameliorates paclitaxel-induced polyneuropathy and cognitive impairment, which is in part supported by limited retrospective clinical data in patients treated with lithium carbonate at the time of chemotherapy. Currently no data are available from a prospective clinical trial to demonstrate its efficacy. Methods and analysis The PREPARE study will be conducted as a multicenter, randomized, double-blind, placebo-controlled phase-2 trial with parallel group design. N = 84 patients with breast cancer will be randomized 1:1 to either lithium carbonate treatment (targeted serum concentration 0.5-0.8 mmol/l) or placebo with sham dose adjustments as add-on to (nab-) paclitaxel. The primary endpoint is the validated Total Neuropathy Score reduced (TNSr) at 2 weeks after the last (nab-) paclitaxel infusion. The aim is to show that the lithium carbonate group is superior to the placebo group, meaning that the mean TNSr after (nab-) paclitaxel is lower in the lithium carbonate group than in the placebo group. Secondary endpoints include: (1) severity of CIPN, (2) amount and dose of pain medication, (3) cumulative dose of (nab-) paclitaxel, (4) patient-reported symptoms of CIPN, quality of life and symptoms of anxiety and depression, (5) severity of cognitive impairment, (6) hippocampal volume and changes in structural/functional connectivity and (7) serum Neurofilament light chain protein concentrations. Ethics and dissemination The study protocol was approved by the Berlin ethics committee (reference: 21/232 - IV E 10) and the respective federal agency (Bundesinstitut für Arzneimittel und Medizinprodukte, reference: 61-3910-4044771). The results of the study will be published in peer-reviewed medical journals as well as presented at relevant (inter)national conferences. Clinical trial registration [https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00027165], identifier [DRKS00027165].
Collapse
Affiliation(s)
- Petra Huehnchen
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Bangemann
- Carl-Thiem-Klinikum Cottbus, Klinik für Senologie und Systemische Gynäkoonkologie mit Brustzentrum, Cottbus, Germany
| | - Sandra Lischewski
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Stefanie Märschenz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jens-Uwe Blohmer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Klinik für Gynäkologie und Brustzentrum, Berlin, Germany
| | - Cornelia Eberhardt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Pharmacy, Berlin, Germany
| | - Geraldine Rauch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institut für Biometrie und Klinische Epidemiologie, Berlin, Germany
| | - Agnes Flöel
- Universitätsmedizin Greifswald, Department of Neurology, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | | | | | - Ivo Meinhold-Heerlein
- Universitätsklinikum Giessen, Klinik für Gynäkologie und Geburtshilfe, Giessen, Germany
| | - Oliver Hoffmann
- Universitätsklinikum Essen, Klinik für Frauenheilkunde und Geburtshilfe, Essen, Germany
| | - Tjalf Ziemssen
- Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Neurologie, Dresden, Germany
| | - Matthias Endres
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Carl-Thiem-Klinikum Cottbus, Klinik für Senologie und Systemische Gynäkoonkologie mit Brustzentrum, Cottbus, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Wolfgang Boehmerle
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Klinik und Hochschulambulanz für Neurologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Tris(pyridin‐2‐ylmethyl)amine‐Based Ion Pair Receptors for Selective Lithium Salt Recognition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Distribution and Bioaccumulation of Essential and Toxic Metals in Tissues of Thaila (Catla catla) from a Natural Lake, Pakistan and Its Possible Health Impact on Consumers. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Although fish are often recommended as a component of a healthy diet, the environmental accumulation of heavy metals in many fish species has been of considerable concern for those weighing the nutritional health benefits against adverse toxic outcome of excess intake of toxic metals. This study aimed to determine the concentration of essential and toxic metals in the tissues of Catla catla in Mangla Lake and to assess the possible risk to the consumers. Fifty samples of Catla catla were collected from Mangla Lake, Mirpur, Azad Jammu and Kashmir, Pakistan and analyzed for eighteen metals including essential and trace metals. The measured range concentrations (µg/g, wet weight) in muscle tissues, in decreasing order, were: K (955–1632), Ca (550–2081), Na (449–896), Mg (129–312), Zn (61.2–215), Fe (11.6–26.8), Sr (2.60–9.27), Pb (1.72–7.81), Se (1.55–3.55), Co (0.12–4.08), Mn (1.04–4.33), Ni (0.69–3.06), Cu (0.88–2.78), Cr (0.45–1.88), As (0.67–1.58), Cd (0.28–0.56), Hg (0.17–0.57) and Li (0.12–0.38). The metal concentrations found in this study were comparatively higher than those reported in literature. A majority of the metals exhibited higher accumulation in gills compared with those in scales and muscles. Mean levels of Pb, As, Co, Mn, Cd, Cr and Zn in Catla catla muscle were found to be exceeding the international permissible limits for the safe human consumption. The condition factor (K), as an indicator of fish health status, indicated that Catla catla of Mangla Lake are in good health condition. The metal pollution index (MPI) of gills (27.9), scales (12.5) and muscle (7.57) indicated low contamination. Moreover, human health risk was evaluated using estimated weekly intake (EWI) and daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and target cancer risk (TCR). Estimated weekly and daily intake values for As, Cd, Cr, Hg, Ni and Pb were higher than provisional permissible tolerable weekly intake and permissible tolerable daily intake while THQ for As, Cd, Cr, Hg, Pb, Se and Zn was higher than 1. The THQ for As, Hg and Pb was several folds higher than 1, indicative of lifetime non-carcinogenic health risks to the consumers. The hazard index indicated cumulative risk, which greatly increased with increasing fish consumption. Target cancer risk indicated that the people eating the Catla catla from Mangla Lake were exposed to As, Cd, Cr, Ni and Pb with a significant lifetime carcinogenic risk. In summary, consumption of Catla catla from this lake was found to be associated with an increased lifetime risk to the general health of the consumers.
Collapse
|
29
|
Araya P, Martínez C, Barros J. Lithium in Drinking Water as a Public Policy for Suicide Prevention: Relevance and Considerations. Front Public Health 2022; 10:805774. [PMID: 35252091 PMCID: PMC8891154 DOI: 10.3389/fpubh.2022.805774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/07/2022] Open
Abstract
Although suicide is considered a major preventable cause of mortality worldwide, we do not have effective strategies to prevent it. Lithium has been consistently associated with lowering risk of suicide. This effect could occur at very low concentrations, such as trace doses of lithium in tap water. Several ecological studies and recent meta-analysis have suggested an inverse association between lithium in water and suicide in the general population, with a lack of knowledge of clinically significant side effects. This paper is aimed as a proposal to discuss the addition of lithium to drinking water to decrease the suicide rate. For this, we review the evidence available, use previous experiences, such as water fluoridation to prevent dental caries, and discuss the complexity involved in such a public policy. Considering the limited data available and the controversies contained in this proposal, we suggest that a consensus on lithium concentration in water is needed, where the suicide rates start to reduce, as happened with water fluoridation. This measure will require to develop community-controlled trials with strict monitoring of any side effects, where democratic procedures would constitute one of the most appropriate ways to validate its implementation according to the reality of each community.
Collapse
Affiliation(s)
- Pablo Araya
- Department of Escuela de Medicina PUC School of Medicine, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Martínez
- Department of Escuela de Medicina PUC School of Medicine, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Barros
- Departamento de Psiquiatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Jorge Barros
| |
Collapse
|
30
|
de Souza Lopes L, de Casssia Silva M, de Oliveira Faustino A, Licursi de Oliveira L, Kasuya MCM. Bioaccessibility, oxidizing activity and co-accumulation of minerals in Li-enriched mushrooms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Lithium and Erectile Dysfunction: An Overview. Cells 2022; 11:cells11010171. [PMID: 35011733 PMCID: PMC8750948 DOI: 10.3390/cells11010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lithium has been a mainstay of therapy for patients with bipolar disorders for several decades. However, it may exert a variety of adverse effects that can affect patients' compliance. Sexual and erectile dysfunction has been reported in several studies by patients who take lithium as monotherapy or combined with other psychotherapeutic agents. The exact mechanisms underlying such side effects of lithium are not completely understood. It seems that both central and peripheral mechanisms are involved in the lithium-related sexual dysfunction. Here, we had an overview of the epidemiology of lithium-related sexual and erectile dysfunction in previous clinical studies as well as possible pathologic pathways that could be involved in this adverse effect of lithium based on the previous preclinical studies. Understanding such mechanisms could potentially open a new avenue for therapies that can overcome lithium-related sexual dysfunction and improve patients' adherence to the medication intake.
Collapse
|
32
|
Kim SH, Yeon Y, Lee A, Lynch VM, He Q, Sessler JL, Kim SK. Tetraamidoindolyl calix[4]arene as a selective ion pair receptor for LiCl. Org Chem Front 2022. [DOI: 10.1039/d2qo01519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A calix[4]arene (1) functionalized with amidoindole groups on the upper rim and with propyl groups on the lower rim extracts LiCl and LiBr selectively.
Collapse
Affiliation(s)
- Seung Hyeon Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Yerim Yeon
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, Texas 78712-1224, USA
| | - Areum Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, Texas 78712-1224, USA
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-Stop A5300, Austin, Texas 78712-1224, USA
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Korea
| |
Collapse
|
33
|
Zhihan G, Fengli S, Wangqiang L, Dong S, Weidong J. Lamotrigine and Lithium Combination for Treatment of Rapid Cycling Bipolar Disorder: Results From Meta-Analysis. Front Psychiatry 2022; 13:913051. [PMID: 35911238 PMCID: PMC9329592 DOI: 10.3389/fpsyt.2022.913051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The objective of this study is to observe the effect of combination of lithium and lamotrigine in treatment of rapid-cycling bipolar disorder (RCBD). METHOD We searched MEDLINE, EMBASE, Cochrane Library in English and CBM, CNKI, WANFANG, and CSSCI in Chinese to find literature from 1 January 2000 to 31 December 2020 related to the combination of lithium carbonate and lamotrigine for treatment of RCBD. RESULTS Five comparison studies with 265 subjects of 131 cases in a study group and 134 cases in a control group met the inclusion criteria and were included for the final meta-analysis. The comprehensive analysis shows that the study group had a significant lower score in mental symptoms than the control group (Z = 2.34, P = 0.02) with a random model (X 2 = 33.02, df = 7, P < 0.01). However, the differences were only shown in PANSS (Z = 5.18, P < 0.01) and BPRS (Z = 3.08, P < 0.01). There was no difference in response rate (54.9 vs. 45.7%; OR = 1.47; 95% CI: 0.79~2.73; Z = 1.21, P > 0.05,) and remission rate (47.9 vs. 45.9%; OR = 1.05; 95% CI: 0.49~2.25; Z = 0.13, P > 0.05,) found between the two groups. The response rate of lamotrigine and lithium combination was significantly higher compare to that of monotherapy of lithium in patients with no treatment resistant (82 vs. 54%; OR = 4.26; 95% CI: 1.65~10.99; Z = 3.99, P < 0.01) with the fixed effect model (X 2 = 0.89, df = 1, P > 0.05, I 2 = 0%). CONCLUSION The combination of lithium and lamotrigine resulted in better improvement of psychotic symptoms and higher response rate in patients with RCBP with no treatment resistant.
Collapse
Affiliation(s)
- Gao Zhihan
- Department of Clinical Psychology, Hangzhou First Hospital, Hangzhou, China
| | - Sun Fengli
- Department of Psychiatry, Zhejiang Province Mental Health Center, Hangzhou, China
| | - Lv Wangqiang
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, China
| | - Shen Dong
- Department of Psychiatry, Jiaxing Kangci Hospital, Jiaxing, China
| | - Jin Weidong
- Department of Psychiatry, Zhejiang Province Mental Health Center, Hangzhou, China.,Department of Psychiatry, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Chiou SYS, Kysenius K, Huang Y, Habgood MD, Koehn LM, Qiu F, Crouch PJ, Varshney S, Ganio K, Dziegielewska KM, Saunders NR. Lithium administered to pregnant, lactating and neonatal rats: entry into developing brain. Fluids Barriers CNS 2021; 18:57. [PMID: 34876168 PMCID: PMC8650431 DOI: 10.1186/s12987-021-00285-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Background Little is known about the extent of drug entry into developing brain, when administered to pregnant and lactating women. Lithium is commonly prescribed for bipolar disorder. Here we studied transfer of lithium given to dams, into blood, brain and cerebrospinal fluid (CSF) in embryonic and postnatal animals as well as adults. Methods Lithium chloride in a clinically relevant dose (3.2 mg/kg body weight) was injected intraperitoneally into pregnant (E15–18) and lactating dams (birth-P16/17) or directly into postnatal pups (P0–P16/17). Acute treatment involved a single injection; long-term treatment involved twice daily injections for the duration of the experiment. Following terminal anaesthesia blood plasma, CSF and brains were collected. Lithium levels and brain distribution were measured using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry and total lithium levels were confirmed by Inductively Coupled Plasma-Mass Spectrometry. Results Lithium was detected in blood, CSF and brain of all fetal and postnatal pups following lithium treatment of dams. Its concentration in pups’ blood was consistently below that in maternal blood (30–35%) indicating significant protection by the placenta and breast tissue. However, much of the lithium that reached the fetus entered its brain. Levels of lithium in plasma fluctuated in different treatment groups but its concentration in CSF was stable at all ages, in agreement with known stable levels of endogenous ions in CSF. There was no significant increase of lithium transfer into CSF following application of Na+/K+ ATPase inhibitor (digoxin) in vivo, indicating that lithium transfer across choroid plexus epithelium is not likely to be via the Na+/K+ ATPase mechanism, at least early in development. Comparison with passive permeability markers suggested that in acute experiments lithium permeability was less than expected for diffusion but similar in long-term experiments at P2. Conclusions Information obtained on the distribution of lithium in developing brain provides a basis for studying possible deleterious effects on brain development and behaviour in offspring of mothers undergoing lithium therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00285-w.
Collapse
Affiliation(s)
- Shene Yi-Shiuan Chiou
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kai Kysenius
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yifan Huang
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mark David Habgood
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Liam M Koehn
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fiona Qiu
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Peter J Crouch
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Swati Varshney
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Katarzyna Magdalena Dziegielewska
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Norman Ruthven Saunders
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
35
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
36
|
Recart VM, Spohr L, Soares MSP, Luduvico KP, Stefanello FM, Spanevello RM. Therapeutic approaches employing natural compounds and derivatives for treating bipolar disorder: emphasis on experimental models of the manic phase. Metab Brain Dis 2021; 36:1481-1499. [PMID: 34264451 DOI: 10.1007/s11011-021-00776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/06/2021] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a complex psychiatric disease characterized by mood swings that include episodes of mania and depression. Given its cyclical nature, BD is especially hard to model; however, the standard practice has been to mimic manic episodes in animal models. Despite scientific advances, the pathophysiology of BD is not fully understood, and treatment remains limited. In the last years, natural products have emerged as potential neuroprotective agents for the treatment of psychiatric diseases. Thus, the aim of this review was to explore the therapeutic potential of natural compounds and derivatives against BD, taking into account preclinical and clinical studies. Reliable articles indexed in databases such as PubMed, Web of Science and Science Direct were used. In clinical studies, treatment with herbal plants extracts, omega-3, inositol, n-acetylcysteine and vitamin D has been associated with a clinical improvement in symptoms of mania and depression in BD patients. In animal models, it has been shown that red fruits extracts, curcumin, quercetin, gallic acid, alpha-lipoic acid and carvone can modulate many neurochemical pathways involved in the pathophysiology of manic episodes. Thus, this review appointed the advances in the consumption of natural compounds and derivatives as an important therapeutic strategy to mitigate the symptoms of BD.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão Do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
37
|
Simulation-Based Defect Engineering in “α-Spodumene”. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Naturally occurring lithium-rich α-spodumene (α-LiAlSi2O6) is a technologically important mineral that has attracted considerable attention in ceramics, polymer industries, and rechargeable lithium ion batteries (LIBs). The defect chemistry and dopant properties of this material are studied using a well-established atomistic simulation technique based on classical pair-potentials. The most favorable intrinsic defect process is the Al-Si anti-site defect cluster (1.08 eV/defect). The second most favorable defect process is the Li-Al anti-site defect cluster (1.17 eV/defect). The Li-Frenkel is higher in energy by 0.33 eV than the Al-Si anti-site defect cluster. This process would ensure the formation of Li vacancies required for the Li diffusion via the vacancy-assisted mechanism. The Li-ion diffusion in this material is slow, with an activation energy of 2.62 eV. The most promising isovalent dopants on the Li, Al, and Si sites are found to be Na, Ga, and Ge, respectively. The formation of both Li interstitials and oxygen vacancies can be facilitated by doping of Ga on the Si site. The incorporation of lithium is studied using density functional theory simulations and the electronic structures of resultant complexes are discussed.
Collapse
|
38
|
Prisco L, Sarwal A, Ganau M, Rubulotta F. Toxicology of Psychoactive Substances. Crit Care Clin 2021; 37:517-541. [PMID: 34053704 DOI: 10.1016/j.ccc.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A trend in the increasing use of prescription psychoactive drugs (PADs), including antidepressants, antipsychotics, and mood stabilizers, has been reported in the United States and globally. In addition, there has been an increase in the production and usage of illicit PADs and emergence of new psychoactive substances (NPSs) all over the world. PADs pose unique challenges for critical care providers who may encounter toxicology issues due to drug interactions, side effects, or drug overdoses. This article provides a summary of the toxicologic features of commonly used and abused PADs: antidepressants, antipsychotics, mood stabilizers, hallucinogens, NPSs, caffeine, nicotine, and cannabis.
Collapse
Affiliation(s)
- Lara Prisco
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Level 1 West Wing, Headley Way, Oxford OX3 9DU, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6 West Wing, Headley Way, Oxford OX3 9DU, UK.
| | - Aarti Sarwal
- Neurocritical Care Unit, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, NC 27157, USA
| | - Mario Ganau
- Neurosciences Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Level 2 West Wing, Headley Way, Oxford OX3 9DU, UK
| | - Francesca Rubulotta
- Critical Care Program Department of Anesthesia, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Department of Anesthesiology and Intensive Care Medicine, Health Centre, Intensive Care Unit, Imperial College NHS Trust, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| |
Collapse
|
39
|
Kalak T, Tachibana Y. Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology. RSC Adv 2021; 11:21964-21978. [PMID: 35480828 PMCID: PMC9036370 DOI: 10.1039/d0ra09092a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Fly ash and slag were produced as a result of the incineration of municipal sewage sludge using the circulating fluidized bed combustion (CFBC) technology and were examined for the simultaneous recovery of lithium and uranium from seawater in batch adsorption experiments. These waste materials have been characterized in terms of their physicochemical properties using several research methods including particle size distribution, bulk density, SEM-EDS analysis, thermogravimetry, SEM and TEM morphology, BET, specific surface area, pore volume distribution by the BJH method, ATR FT-IR, and zeta potential. The fly ash and slag waste materials showed the following research results for Li-ion recovery: adsorption efficiency 12.1% and 6.8%, adsorption capacity 0.55 mg g-1 and 0.15 mg g-1, respectively. Better results were reported for U ion recovery: adsorption efficiency 98.4% and 99.9%, adsorption capacity 21.3 mg g-1 and 56.7 mg g-1 for fly ash and slag, respectively. In conclusion, the conducted research revealed that CFBC fly ash and slag are promising low-cost adsorbents for the effective recovery of Li and U ions from seawater.
Collapse
Affiliation(s)
- Tomasz Kalak
- Poznań University of Economics and Business, Institute of Quality Science, Department of Industrial Products and Packaging Quality Niepodległości 10 61-875 Poznań Poland
| | - Yu Tachibana
- Department of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology 1603-1, Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
40
|
|
41
|
Liang C, Jiang Q, Yu Y, Xu T, Sun H, Deng F, Yu X. Antibacterial Evaluation of Lithium-Loaded Nanofibrous Poly(L-Lactic Acid) Membranes Fabricated via an Electrospinning Strategy. Front Bioeng Biotechnol 2021; 9:676874. [PMID: 33996786 PMCID: PMC8116607 DOI: 10.3389/fbioe.2021.676874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022] Open
Abstract
Lithium (Li) reportedly has anti-bacterial properties. Thus, it is an ideal option to modify barrier membranes used for guided bone regeneration to inhibit the bacterial adhesion. The aims of this study were to fabricate and characterize nanofibrous poly(L-lactic acid) (PLLA) membranes containing Li, and investigate their antibacterial effects on Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in vitro. Li (5%Li, 10%Li, and 15%Li)-loaded nanofibrous PLLA membranes were fabricated using an electrospinning technique, and characterized via scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, a contact angle measuring device, and a universal testing machine. Sustained release of Li ions was measured over a 14-day period and biocompatibility of the Li-PLLA membranes was investigated. Evaluation of bacterial adhesion and antibacterial activity were conducted by bacterial colony counting, LIVE/DEAD staining and inhibition zone method using P.gingivalis and A.actinomycetemcomitans. Of the three Li-loaded membranes assessed, the 10%Li-PLLA membrane had the best mechanical properties and biocompatibility. Adhesion of both P.gingivalis and A.actinomycetemcomitans on Li-PLLA membranes was significantly lower than adhesion on pure PLLA membranes, particularly with regard to the 10%Li and 15%Li membranes. Significant antibacterial activity of Li-PLLA were also observed against according to the inhibition zone test. Given their better mechanical properties, biocompatibility, and antibacterial activity, PLLAs with 10%Li are a better choice for future clinical utilization. The pronounced antibacterial effects of Li-loaded PLLA membranes sets the stage for further application in guided bone regeneration.
Collapse
Affiliation(s)
- Chaoan Liang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiming Jiang
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yi Yu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Hanyu Sun
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Yu
- Guangdong Provincial Key Laboratory of Stomatology, Department of Oral Implantology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Abd-ElGawad M, Abdelmonem M, Ahmed AE, Mohammed OM, Zaazouee MS, Assar A, Gadelkarim M, Afifi AM. Lithium carbonate as add-on therapy to radioiodine in the treatment on hyperthyroidism: a systematic review and meta-analysis. BMC Endocr Disord 2021; 21:64. [PMID: 33840391 PMCID: PMC8040242 DOI: 10.1186/s12902-021-00729-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/26/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The main purpose is to investigate the effect of LiCO3 as an add-on therapy with radioactive iodine in increasing the cure and decreasing the T4 level compared to radioactive iodine alone. The primary outcome is the cure rate as defined by the number of hyperthyroid patients who became euthyroid or hypothyroid. The secondary outcome is the T4 level. METHODS Four databases were searched (PubMed, Scopus, Web of Science, and Cochrane central library). The inclusion criteria were randomized and non-randomized clinical trials of hyperthyroidism patients receiving LiCO3 with radioiodine compared with hyperthyroidism patients receiving radioactive iodine alone. Included studies were appraised with the risk of bias version 2 tool, according to the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. RESULTS Nine studies were eligible for inclusion in the study, six randomized control trials and three non-randomized control trials. There were 477 patients in the intervention group and 451 patients in the control group. The cure rate was not significantly different between the two groups, while it was significantly increased with 5000 to 6500 mg optimized cumulative dose of LiCO3 compared with the control group, P = 0.0001. The T4 level showed no significant difference between the two groups, P = 0.13. CONCLUSIONS LiCO3 adjunct to radioactive iodine did not show significant differences compared with radioactive iodine alone in terms of cure rate or decreasing T4 level. However, the dose of 5000 to 6000 mg of LiCO3 may increase the cure rate.
Collapse
Affiliation(s)
- Mohamed Abd-ElGawad
- Faculty of Medicine, Fayoum University, 5 Al-Touba Street, from Al-Fanya Street, Al-Hadka road, Fayoum, Fayoum, Egypt
| | - Mohamed Abdelmonem
- Faculty of Medicine, Fayoum University, 5 Al-Touba Street, from Al-Fanya Street, Al-Hadka road, Fayoum, Fayoum, Egypt
| | - Ahmed Eissa Ahmed
- Faculty of Medicine, Fayoum University, 5 Al-Touba Street, from Al-Fanya Street, Al-Hadka road, Fayoum, Fayoum, Egypt
| | - Omar Magdy Mohammed
- Faculty of Medicine, Fayoum University, 5 Al-Touba Street, from Al-Fanya Street, Al-Hadka road, Fayoum, Fayoum, Egypt
| | | | - Ahmed Assar
- Faculty of Medicine, Menofia University, Shebin El-Kom, Menofia Egypt
| | | | - Ahmed M. Afifi
- Department of Internal Medicine and Division of Digestive Diseases, College of Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
43
|
Abstract
Depression is among the most prevalent mental disorders worldwide, and a substantial proportion of patients do not respond adequately to standard antidepressants. Our understanding of the pathophysiology of depression is no longer limited to the chemical imbalance of neurotransmitters, but also involves the interplay of proinflammatory modulators in the central nervous system, as well as folate metabolism. Additional factors such as stress and metabolic disorders also may contribute. Multiple inflammatory, metabolic, and genetic markers have been identified and may provide critical information to help clinicians individualize treatments for patients to achieve optimal outcomes. Recent advancements in research have clarified underlying causes of depression and have led to possible new avenues for adjunctive treatment. Among these is L-methylfolate, a medical food that is thought to enhance synthesis of monoamines (serotonin, norepinephrine, and dopamine), suppress inflammation, and promote neural health. Clinical studies that assessed supplemental use of L-methylfolate in patients with usual care-resistant depression found that it resulted in improved outcomes. Patients with selective serotonin reuptake inhibitor-resistant depression, and particularly subgroups with biomarkers of inflammation or metabolic disorders or folate metabolism-related genetic polymorphisms (or ≥2 of these factors), had the best responses. Considering this, the goals of this review are to 1) highlight recent advances in the pathophysiology of major depressive disorder as it pertains to folate and associated biomarkers and 2) establish the profiles of patients with depression who could benefit most from supplemental use of L-methylfolate.
Collapse
|
44
|
Lithium in Portuguese Bottled Natural Mineral Waters-Potential for Health Benefits? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228369. [PMID: 33198207 PMCID: PMC7696288 DOI: 10.3390/ijerph17228369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
There is increasing epidemiologic and experimental evidence that lithium (Li) exhibits significant health benefits, even at concentrations lower than the therapeutic oral doses prescribed as treatment for mental disorders. The aim of this study is to determine the content of Li in 18 brands of bottled natural mineral waters that are available on the Portuguese market and from which the sources are found within the Portuguese territory, to provide data for Li intake from drinking water. Analyses of Li were performed by inductively coupled plasma-mass spectrometry. The results indicate highly different Li concentrations in natural mineral waters: one group with low Li concentrations (up to 11 µg Li/L) and a second group with Li concentrations higher than 100 µg/L. The highest Li concentrations (>1500 µg Li/L) were observed in the highly mineralized Na-HCO3 type waters that are naturally carbonated (>250 mg/L free CO2). As a highly bioavailable source for Li dietary intake these natural mineral waters have potential for Li health benefits but should be consumed in a controlled manner due to its Na and F− contents. The consumption of as little as 0.25 L/day of Vidago natural mineral water (2220 µg Li/L), can contribute up to 50% of the proposed daily requirement of 1 mg Li/day for an adult (70 kg body weight). In future, Li epidemiological studies that concern the potential Li effect or health benefits from Li in drinking water should consider not only the Li intake from tap water but also intake from natural mineral water that is consumed in order to adjust the Li intake of the subjects.
Collapse
|
45
|
Wen J, Sawmiller D, Wheeldon B, Tan J. A Review for Lithium: Pharmacokinetics, Drug Design, and Toxicity. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:769-778. [PMID: 31724518 DOI: 10.2174/1871527318666191114095249] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
Lithium as a mood stabilizer has been used as the standard pharmacological treatment for Bipolar Disorder (BD) for more than 60 years. Recent studies have also shown that it has the potential for the treatment of many other neurodegenerative disorders, including Alzheimer's, Parkinson's and Huntington's disease, through its neurotrophic, neuroprotective, antioxidant and anti-inflammatory actions. Therefore, exploring its pharmacokinetic features and designing better lithium preparations are becoming important research topics. We reviewed many studies on the pharmacokinetics, drug design and toxicity of lithium based on recent relevant research from PubMed, Web of Science, Elsevier and Springer databases. Keywords used for searching references were lithium, pharmacology, pharmacokinetics, drug design and toxicity. Lithium is rapidly and completely absorbed from the gastrointestinal tract after oral administration. Its level is initially highest in serum and then is evidently redistributed to various tissue compartments. It is not metabolized and over 95% of lithium is excreted unchanged through the kidney, but different lithium preparations may have different pharmacokinetic features. Lithium has a narrow therapeutic window limited by various adverse effects, but some novel drugs of lithium may overcome these problems. Various formulations of lithium have the potential for treating neurodegenerative brain diseases but further study on their pharmacokinetics will be required in order to determine the optimal formulation, dosage and route of administration.
Collapse
Affiliation(s)
- Jinhua Wen
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Darrell Sawmiller
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Brendan Wheeldon
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jun Tan
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
46
|
The role of xenobiotics in triggering psoriasis. Arch Toxicol 2020; 94:3959-3982. [PMID: 32833044 DOI: 10.1007/s00204-020-02870-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Psoriasis is a common inflammatory skin disease affecting approximately 2% of the world population. A complex interplay of genetic predisposition and risk factors contributes to the risk of its onset. Several xenobiotics have been implicated in the pathogenesis of psoriasis. Drugs are among the most investigated trigger factors; strong association with disease induction or exacerbation has been reported for β-blockers, lithium, NSAIDs and ACE inhibitors, all of which are commonly used in the management of various comorbidities in psoriasis patients. Furthermore, inhibitors of TNF have a well-documented potential for triggering new-onset psoriasis when used for other indications (e.g. Crohn's disease or rheumatoid arthritis), while post-marketing data have revealed the same association for ustekinumab. Several other drugs have been connected with psoriasis, but the evidence is less compelling. Smoking and alcohol have been reported to increase the risk for occurrence of psoriasis, but can also affect unfavorably the course of the disease and its response to treatment. Furthermore, exposure to secondhand smoke, especially in childhood, also mediates the risk. Emerging data now suggest that air pollution also has a detrimental effect on skin disease, including psoriasis, but this association needs further investigation. Understanding of the toxic effect of xenobiotics on the initiation and clinical course of psoriasis can contribute to its better control, as it can help with the avoidance of triggering factors and, in some cases, influence the success of pharmacological treatment. It, therefore, has an important place in the comprehensive management of psoriasis.
Collapse
|
47
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Brizzee L, Stone A, Palmer MC. False lithium toxicity secondary to lithium heparin test tube: A case report and review. Ment Health Clin 2020; 10:90-94. [PMID: 32420006 PMCID: PMC7213950 DOI: 10.9740/mhc.2020.05.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This case demonstrates a false elevation of serum lithium concentrations that can occur when blood samples are collected using lithium heparin (green-top) tubes. The patient was a 58-year-old female on chronic lithium therapy for bipolar disorder who presented to the emergency department following an overdose of 5 unidentified medications. The patient was overly sedated and exhibited paradoxical laughter, slurred speech, and mild abdominal pain. The recommended maintenance lithium concentration is 0.6 to 1.0 mmol/L, and she had previously been stable within this therapeutic range. The initial lithium concentration drawn upon admission was 2.05 mmol/L. No intervening treatment was made with the exception of intravenous fluids due to a lack of correlation between clinical presentation and the lithium concentration. Six hours later, a repeat lithium concentration of <0.10 mmol/L was obtained. Upon investigation, it was discovered that the initial blood sample was obtained in a lithium heparin green-top tube instead of the recommended plastic tubes with either sodium heparin or dipotassium ethylenediamine tetraacetic acid as the anticoagulant. As this case demonstrates, lithium heparin tubes have the potential to cause falsely elevated lithium concentrations. It is important for health care professionals to be aware of the false elevations that can occur when blood samples are taken in this type of tube.
Collapse
|
49
|
Abstract
Lithium is an effective agent approved for the treatment of bipolar disorder. It has narrow therapeutic window and significant variability in its pharmacokinetic. The aim of this study is to determine the population pharmacokinetics of lithium in patients with bipolar disorder in Saudi Arabia and to identify the factors that explain variability. A retrospective chart review was performed on patients with bipolar disorder who received oral lithium. The population pharmacokinetic models were developed using Monolix 4.4. After the appropriate base model was established, five covariates were tested, namely age, sex, weight, serum creatinine, and creatinine clearance. The analysis included a total of 170 lithium plasma concentrations from 31 patients. The data were adequately described by a two-compartment open model with linear absorption and elimination. The average parameter estimates for lithium CL/F, V1/F, V2/F, and Q/F were estimated. The inter-individual variability (coefficients of variation) in CL was 42%. The most significant covariate on lithium CL was found to be creatinine clearance. The population pharmacokinetic model of lithium in patients with bipolar disorder in Saudi Arabia was established. Our findings showed that creatinine clearance is the most significant covariate on lithium clearance. Further studies are required to understand the factors that may influence the pharmacokinetics of lithium and assist in drug dosage decisions.
Collapse
|
50
|
Raczyńska ED, Gal JF, Maria PC, Kamińska B, Igielska M, Kurpiewski J, Juras W. Purine tautomeric preferences and bond-length alternation in relation with protonation-deprotonation and alkali metal cationization. J Mol Model 2020; 26:93. [PMID: 32248379 PMCID: PMC7256107 DOI: 10.1007/s00894-020-4343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/05/2020] [Indexed: 11/03/2022]
Abstract
Quantum chemical calculations were carried out for deprotonated (P-) and protonated purine (PH+) and for adducts with one alkali metal cation (P-M+ and PM+, where M+ is Li+ or Na+) in the gas phase {B3LYP/6-311+G(d,p)}, a model of perfectly apolar environment, and for selected structures in aqueous solution {PCM(water)//B3LYP/6-311+G(d,p)}, a reference polar medium for biological studies. All potential isomers of purine derivatives were considered, the favored structures indicated, and the preferred sites for protonation/deprotonation and cationization reactions determined. Proton and metal cation basicities of purine in the gas phase were discussed and compared with those of imidazole and pyrimidine. Bond-length alternations in the P, PH+, P-M+, and PM+ forms were quantitatively measured using the harmonic oscillator model of electron delocalization (HOMED) indices and compared with those for P. Variations of the HOMED values when proceeding from the purine structural building blocks, pyrimidine and imidazole, to the bicyclic purine system were also examined. Generally, the isolated NH isomers exhibit a strongly delocalized π-system (HOMED > 0.8). Deprotonation slightly increases the HOMED values, whereas protonation and cationization change the HOMED indices in different way. For bidentate M+-adducts, the HOMED values are larger than 0.9 like for the largely delocalized P-. The HOMED values correlate well in a comprehensive relationship with the relative Gibbs energies (ΔG) calculated for individual isomers whatever the purine form is, neutral, protonated, or cationized. When PCM-DFT model was utilized for P-, PH+, PM+, and P-M+ (M+ = Li+) both electron delocalization and relative stability are different from those for the molecules in vacuo. The solvation effects cause a slight increase in HOMEDs, whereas the ΔEs decrease, but in different ways. Hence, contribution of particular isomers in the isomeric mixtures of PH+, PM+, and P-M+ also varies. HOMED variations for the favored neutral, deprotonated, protonated, and lithiated forms of purine in the gas phase and aqueous solution.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), 02-776, Warszawa, Poland.
| | - Jean-François Gal
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
| | - Pierre-Charles Maria
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
| | - Beata Kamińska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), 02-776, Warszawa, Poland
| | - Małgorzata Igielska
- Department of Biotechnology, Warsaw University of Life Sciences (SGGW), 02-776, Warszawa, Poland
| | - Julian Kurpiewski
- Department of Biotechnology, Warsaw University of Life Sciences (SGGW), 02-776, Warszawa, Poland
| | - Weronika Juras
- Department of Biotechnology, Warsaw University of Life Sciences (SGGW), 02-776, Warszawa, Poland
| |
Collapse
|