1
|
Zeng H, Zeng X, Wang C, Wang G, Tian Q, Zhao J, Zhao L, Li R, Luo Y, Peng H, Zhang Z, Li X, Wu X. Combination therapy using Cel-CSO/Taxol NPs for reversing drug resistance in breast cancer through inhibiting PI3K/AKT/NF-κB/HIF-1α pathway. Drug Deliv Transl Res 2025; 15:992-1010. [PMID: 38922561 DOI: 10.1007/s13346-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
The resistance of malignant tumors to multiple drugs is a significant obstacle in cancer treatment and prognosis. Accordingly, we synthesized a celastrol (Cel) prodrug (Cel-CSO) by conjugating chitosan oligosaccharides (CSO) to Cel for reversing Taxol resistance in chemotherapy, followed by self-assembly with Taxol into a novel nanoplatform of Cel-CSO/Taxol nanoparticles (termed NPs). NPs showed a suitable size (about 153 nm), excellent stability and prolonged release of Cel and Taxol in a manner that depended on both pH and time. NPs effectively inhibited the overexpression of multidrug resistance-related protein P-gp, hypoxia inducible factor-1α (HIF-1α), and triggered the MCF-7/Taxol cell apoptosis through inhibiting the PI3K/AKT/NF-κB/HIF-1α pathway. In tumor-bearing mice, NPs exhibited significant curative effects in inducing apoptosis of MCF-7/Taxol tumors which showed a low expression level of P-gp, microtubule-related proteins TUBB3 and Tau. The results indicated that NPs may be a promising strategy to overcome drug resistance caused by P-gp, which improve the antitumor effects in drug-resistant breast cancer.
Collapse
Affiliation(s)
- Huahui Zeng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Xiaohu Zeng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Can Wang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Guoqiang Wang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qikang Tian
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junwei Zhao
- Department of Clinical Laboratory, Core Unit of National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450046, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ruiqin Li
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Luo
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China
| | - Haotian Peng
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiaofang Li
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Xiangxiang Wu
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Abdel-Bakky MS, Mohammed HA, Mahmoud NI, Amin E, Alsharidah M, Al Rugaie O, Ewees MG. Targeting the PI3K/pAKT/mTOR/NF-κB/FOXO3a signaling pathway for suppressing the development of hepatocellular carcinoma in rats: Role of the natural remedic Suaeda vermiculata forssk. ENVIRONMENTAL TOXICOLOGY 2024; 39:3666-3678. [PMID: 38506534 DOI: 10.1002/tox.24217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Egypt
| | - Nesreen I Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Egypt
| |
Collapse
|
3
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
4
|
Jodeiry Zaer S, Aghamaali M, Amini M, Doustvandi MA, Hosseini SS, Baradaran B, Najafi S, Baghay Esfandyari Y, Mokhtarzadeh A. Cooperatively inhibition effect of miR-143-5p and miR-145-5p in tumorigenesis of glioblastoma cells through modulating AKT signaling pathway. BIOIMPACTS : BI 2023; 14:29913. [PMID: 38938754 PMCID: PMC11199930 DOI: 10.34172/bi.2023.29913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 06/29/2024]
Abstract
Introduction As the most common aggressive primary brain tumor, glioblastoma is inevitably a recurrent malignancy whose patients' prognosis is poor. miR-143 and miR-145, as tumor suppressor miRNAs, are downregulated through tumorigenesis of multiple human cancers, including glioblastoma. These two miRNAs regulate numerous cellular processes, such as proliferation and migration. This research was intended to explore the simultaneous replacement effect of miR-143, and miR-145 on in vitro tumorgenicity of U87 glioblastoma cells. Methods U87 cells were cultured, and transfected with miR-143-5p and miR-145-5p. Afterward, the changes in cell viability, and apoptosis induction were determined by MTT assay and Annexin V/PI staining. The accumulation of cells at the cell cycle phases was assessed using the flow cytometry. Wound healing and colony formation assays were performed to study cell migration. qRT-PCR and western blot techniques were utilized to quantify gene expression levels. Results Our results showed that miR-143-5p and 145-5p exogenous upregulation cooperatively diminished cell viability, and enhanced U-87 cell apoptosis by modulating Caspase-3/8/9, Bax, and Bcl-2 protein expression. The combination therapy increased accumulation of cells at the sub-G1 phase by modulating CDK1, Cyclin D1, and P53 protein expression. miR-143/145-5p significantly decreased cell migration, and reduced colony formation ability by the downregulation of c-Myc and CD44 gene expression. Furthermore, the results showed the combination therapy of these miRNAs could remarkably downregulate phosphorylated-AKT expression levels. Conclusion In conclusion, miR-143 and miR-145 were indicated to show cooperative anti- cancer effects on glioblastoma cells via modulating AKT signaling as a new therapeutic approach.
Collapse
Affiliation(s)
- Sheyda Jodeiry Zaer
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Li Z, Zou J, Chen X. In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209529. [PMID: 36445169 DOI: 10.1002/adma.202209529] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Emerging as a potent anticancer treatment, subcellular targeted cancer therapy has drawn increasing attention, bringing great opportunities for clinical application. Here, two targeting strategies for four main subcellular organelles (mitochondria, lysosome, endoplasmic reticulum, and nucleus), including molecule- and nanomaterial (inorganic nanoparticles, micelles, organic polymers, and others)-based targeted delivery or therapeutic strategies, are summarized. Phototherapy, chemotherapy, radiotherapy, immunotherapy, and "all-in-one" combination therapy are among the strategies covered in detail. Such materials are constructed based on the specific properties and relevant mechanisms of organelles, enabling the elimination of tumors by inducing dysfunction in the corresponding organelles or destroying specific structures. The challenges faced by organelle-targeting cancer therapies are also summarized. Looking forward, a paradigm for organelle-targeting therapy with enhanced therapeutic efficacy compared to current clinical approaches is envisioned.
Collapse
Affiliation(s)
- Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
6
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
7
|
Zhao Y, Wang J, Liu L, Wu Y, Hu Q, Zhao R. Vinegar-baked Radix Bupleuri enhances the liver-targeting effect of rhein on liver injury rats by regulating transporters. J Pharm Pharmacol 2022; 74:1588-1597. [PMID: 36181768 DOI: 10.1093/jpp/rgac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aimed to explore whether the liver-targeting enhancing effect of vinegar-baked Radix Bupleuri (VBRB) on rhein was achieved by affecting transporters, metabolism enzymes as well as hepatocyte nuclear factor 1α/4α (HNF1α/HNF4α) in liver injury. METHODS The effect of VBRB on the efficacy of rhein was performed with the LPS-induced acute liver injury rat model. Aspartate aminotransferase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) levels were determined and histopathological examination was taken. Drug concentrations in tissues were determined by high performance liquid chromatography (HPLC). The protein expressions of drug transporters, metabolic enzymes and hepatic nuclear factors were determined by Western blotting and ELISA assays. KEY FINDING VBRB improved the liver protecting effect of rhein, which was consistent with its promoting effect on targeted enrichment of rhein in the liver. VBRB or in combination with rhein inhibited P-glycoprotein (Pgp) and multi-resistance related protein 2 (MRP2), while increased organic anion transporting polypeptide 2 (OATP2), which might be the reason why VBRB promoted liver-targeting effect of rhein. CONCLUSION VBRB enhances the liver-protecting effect of rhein by down-regulating Pgp, MRP2, and up-regulating OATP2.
Collapse
Affiliation(s)
- Ya Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jinqiu Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yayun Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiaohong Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Waihuan Donglu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
8
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
9
|
Zhu L, Meng D, Wang X, Chen X. Ferroptosis-Driven Nanotherapeutics to Reverse Drug Resistance in Tumor Microenvironment. ACS APPLIED BIO MATERIALS 2022; 5:2481-2506. [PMID: 35614872 DOI: 10.1021/acsabm.2c00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis, characterized by iron-dependent lipid reactive oxygen species (ROS) accumulation, is non-apoptotic programmed cell death highly relevant to tumor development. It was found to manipulate oncogenes and resistant mutations of cancer cells via lipid metabolism pathways converging on phospholipid glutathione peroxidase (GPX4) that squanders lipid peroxides (L-OOH) to block the iron-mediated reactions of peroxides, thus rendering resistant cancer cells vulnerable to ferroptotic cell death. By accumulating ROS and lipid peroxidation (LPO) products to lethal levels in tumor microenvironment (TME), ferroptosis-driven nanotherapeutics show a superior ability of eradicating aggressive malignancies than traditional therapeutic modalities, especially for the drug-resistant tumors with high metastasis tendency. Moreover, Fenton reaction, inhibition of GPX-4, and exogenous regulation of LPO are three major therapeutic strategies to induce ferroptosis in cancer cells, which were generally applied in ferroptosis-driven nanotherapeutics. In this review, we elaborate current trends of ferroptosis-driven nanotherapeutics to reverse drug resistance of tumors in anticancer fields at the intersection of cancer biology, materials science, and chemistry. Finally, their challenges and perspectives toward feasible translational studies are spotlighted, which would ignite the hope of anti-resistant cancer treatment.
Collapse
Affiliation(s)
- Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Poku VO, Iram SH. A critical review on modulators of Multidrug Resistance Protein 1 in cancer cells. PeerJ 2022; 10:e12594. [PMID: 35036084 PMCID: PMC8742536 DOI: 10.7717/peerj.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux transporter, and responsible for the transport of a broad spectrum of xenobiotics, toxins, and physiological substrates across the plasma membrane. As an efflux pump, it plays a significant role in the absorption and disposition of drugs including anticancer drugs, antivirals, antimalarials, and antibiotics and their metabolites across physiological barriers in cells. MRP1 is also known to aid in the regulation of several physiological processes such as redox homeostasis, steroid metabolism, and tissue defense. However, its overexpression has been reported to be a key clinical marker associated with multidrug resistance (MDR) of several types of cancers including lung cancer, childhood neuroblastoma, breast and prostate carcinomas, often resulting in a higher risk of treatment failure and shortened survival rates in cancer patients. Aside MDR, overexpression of MRP1 is also implicated in the development of neurodegenerative and cardiovascular diseases. Due to the cellular importance of MRP1, the identification and biochemical/molecular characterization of modulators of MRP1 activity and expression levels are of key interest to cancer research and beyond. This review primarily aims at highlighting the physiological and pharmacological importance of MRP1, known MRP1 modulators, current challenges encountered, and the potential benefits of conducting further research on the MRP1 transporter.
Collapse
Affiliation(s)
- Vivian Osei Poku
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America
| | - Surtaj Hussain Iram
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States of America,American University of Iraq, Sulaimaniya, Sulaimani, KRG, Iraq
| |
Collapse
|
11
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
12
|
Zhang W, Gao J, Lu L, Bold T, Li X, Wang S, Chang Z, Chen J, Kong X, Zheng Y, Zhang M, Tang J. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NANOIMPACT 2021; 23:100338. [PMID: 35559839 DOI: 10.1016/j.impact.2021.100338] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 05/14/2023]
Abstract
Glutathione (GSH) and glutathione-S-transferases (GSTs) are two frontlines of cellular defense against both acute and chronic toxicity of xenobiotics-induced oxidative stress. The contribution of GSH and GST enzymes to signaling pathways and the regulation of GSH homeostasis play a central role in the detoxification of numerous environmental toxins and impurities. Iron oxide nanoparticles stemmed from traffic exhaust, steel manufacturing, or welding as a potential environmental pollution can lead to adverse respiratory outcomes and aggravate the risk of chronic health conditions via persistent oxidative stress. In this work, two kinds of acute exposure experiments of iron oxide (Fe2O3 and Fe3O4) nanoparticles in cells and in vivo were conducted to evaluate the GSH levels and GST activity. Our current research presented Fe3O4 nanoparticles at lower concentrations (≤100 μg/ml) seem to be more toxic to the human bronchial epithelial cells as their consumption of GSH and decrease of GST activity. The catalysis activity of Fe3O4 nanoparticles per se may contribute to the intracellular GSH consumption along with inhibition of glutathione-S-transferase class mu 1 and P (GSTM1 and GSTP1) active site and expression decrease of GSTM1 and GSTP1. Accordingly, the GSH consumption and decrease in GST activity directed to the further lipid peroxidation regarded as an earlier marker for toxicity evaluation of iron oxide nanoparticles, and relevant intervention may be effective for prevention of respiratory exposure induced damage from iron oxide nanoparticles.
Collapse
Affiliation(s)
- Wanjun Zhang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinling Gao
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China; Department of Infection Management Service, Dushu Lake Hospital Affiliated of Soochow University, Suzhou 215000, China
| | - Lin Lu
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Tsendmaa Bold
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xin Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuo Wang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhishang Chang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Chen
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiao Kong
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingliang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China.
| | - Jinglong Tang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
13
|
Olech M, Ziemichód W, Nowacka-Jechalke N. The Occurrence and Biological Activity of Tormentic Acid-A Review. Molecules 2021; 26:molecules26133797. [PMID: 34206442 PMCID: PMC8270333 DOI: 10.3390/molecules26133797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.
Collapse
|
14
|
Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang K, Tang N. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis 2021; 12:426. [PMID: 33931597 PMCID: PMC8087704 DOI: 10.1038/s41419-021-03718-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence supports that ferroptosis plays an important role in tumor growth inhibition. Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, has been shown to induce ferroptosis in hepatocellular carcinoma (HCC). However, some hepatoma cell lines are less sensitive to sorafenib-induced ferroptotic cell death. Glutathione S-transferase zeta 1 (GSTZ1), an enzyme in the catabolism of phenylalanine, suppresses the expression of the master regulator of cellular redox homeostasis nuclear factor erythroid 2-related factor 2 (NRF2). This study aimed to investigate the role and underlying molecular mechanisms of GSTZ1 in sorafenib-induced ferroptosis in HCC. GSTZ1 was significantly downregulated in sorafenib-resistant hepatoma cells. Mechanistically, GSTZ1 depletion enhanced the activation of the NRF2 pathway and increased the glutathione peroxidase 4 (GPX4) level, thereby suppressing sorafenib-induced ferroptosis. The combination of sorafenib and RSL3, a GPX4 inhibitor, significantly inhibited GSTZ1-deficient cell viability and promoted ferroptosis and increased ectopic iron and lipid peroxides. In vivo, the combination of sorafenib and RSL3 had a synergic therapeutic effect on HCC progression in Gstz1-/- mice. In conclusion, this finding demonstrates that GSTZ1 enhanced sorafenib-induced ferroptosis by inhibiting the NRF2/GPX4 axis in HCC cells. Combination therapy of sorafenib and GPX4 inhibitor RSL3 may be a promising strategy in HCC treatment.
Collapse
Affiliation(s)
- Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Bin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiang Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
16
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
17
|
Guo Q, Li X, Cui MN, Sun JL, Ji HY, Ni BB, Yan MX. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res 2020; 28:533-540. [PMID: 32532363 PMCID: PMC7751223 DOI: 10.3727/096504020x15919605976853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Meng-Na Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Jia-Lin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Hong-Yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Bei-Bei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Mei-Xing Yan
- Department of Pharmacy, Qingdao Women and Childrens HospitalQingdao, ShandongP.R. China
| |
Collapse
|
18
|
Rosa HH, Carvalho P, Ortmann CF, Schneider NFZ, Reginatto FH, Simões CMO, Silva IT. Cytotoxic effects of a triterpene‐enriched fraction of Cecropia pachystachya on the human hormone-refractory prostate cancer PC3 cell line. Biomed Pharmacother 2020; 130:110551. [DOI: 10.1016/j.biopha.2020.110551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
|
19
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
20
|
Li Y, Guo Y, Feng Z, Bergan R, Li B, Qin Y, Zhao L, Zhang Z, Shi M. Involvement of the PI3K/Akt/Nrf2 Signaling Pathway in Resveratrol-Mediated Reversal of Drug Resistance in HL-60/ADR Cells. Nutr Cancer 2019; 71:1007-1018. [PMID: 31032633 DOI: 10.1080/01635581.2019.1578387] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yongjun Li
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yukai Guo
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuang Feng
- Legacy Health and Cascade Pathology Services, Portland, Oregon, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Bo Li
- Department of Emergency, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Yongliang Qin
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenzhen Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Deng FL, Li L, Huang ZS. Role of breast cancer resistance protein in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2019; 27:395-401. [DOI: 10.11569/wcjd.v27.i6.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The breast cancer resistance protein, also known as ABCG2, is a member of the drug efflux membrane transporters. As a drug discharge pump, ABCG2 can reduce the concentration of intracellular drugs and protect cells from toxic substances. ABCG2 is not only able to protect normal cells, but also to influence the chemotherapy effect by making tumor cells resistant to various anti-cancer drugs. In order to provide a reference for the basic and clinical research of gastrointestinal tumors, we review the physiological function of ABCG2, factors affecting ABCG2 expression, and its relationship with gastrointestinal tumors.
Collapse
Affiliation(s)
- Feng-Lian Deng
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Li Li
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Guo Q, Jing FJ, Qu HJ, Xu W, Han B, Xing XM, Ji HY, Jing FB. Ubenimex Reverses MDR in Gastric Cancer Cells by Activating Caspase-3-Mediated Apoptosis and Suppressing the Expression of Membrane Transport Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4390839. [PMID: 30915355 PMCID: PMC6402206 DOI: 10.1155/2019/4390839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/09/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is one of the most malignant tumors, accounting for 10% of deaths caused by all cancers. Chemotherapy is often necessary for treatment of GC; the FOLFOX regimen is extensively applied. However, multidrug resistance (MDR) of GC cells prevents wider application of this treatment. Ubenimex, an inhibitor of CD13, is used as an immune adjuvant to treat hematological malignancies. Here, we demonstrate that CD13 expression positively correlates with MDR development in GC cells. Moreover, Ubenimex reverses the MDR of SGC7901/X and MKN45/X cells and enhances their sensitivity to FOLFOX, in part by decreasing CD13 expression, which is accompanied by downregulation of Bcl-xl, Bcl-2, and survivin expression; increased expression of Bax; and activation of the caspase-3-mediated apoptotic cascade. In addition, Ubenimex downregulates expression of membrane transport proteins, such as P-gp and MRP1, by inhibiting phosphorylation in the PI3K/AKT/mTOR pathway to increase intracellular accumulations of 5-fluorouracil and oxaliplatin, a process for which downregulation of CD13 expression is essential. Therefore, the present results reveal a previously uncharacterized function of CD13 in promoting MDR development in GC cells and suggest that Ubenimex is a candidate for reversing the MDR of GC cells.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Fan-jing Jing
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Hai-jun Qu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xiao-min Xing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Hong-yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Fan-Bo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
23
|
Shankaraiah N, Nekkanti S, Ommi O, P.S. LS. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr Med Chem 2019; 26:7059-7080. [DOI: 10.2174/0929867325666180410110729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
:
The efficacy of successful cancer therapies is frequently hindered by the development of drug
resistance in the tumor. The term ‘drug resistance’ is used to illustrate the decreased effectiveness of a
drug in curing a disease or alleviating the symptoms of the patient. This phenomenon helps tumors to survive
the damage caused by a specific drug or group of drugs. In this context, studying the mechanisms of
drug resistance and applying this information to design customized treatment regimens can improve therapeutic
efficacy as well as the curative outcome. Over the years, numerous Multidrug Resistance (MDR)
mechanisms have been recognized and tremendous effort has been put into developing agents to address
them. The integration of data emerging from the elucidation of molecular and biochemical pathways and
specific tumor-associated factors has shown tremendous promise within the oncology community for improving
patient outcomes. In this review, we provide an overview of the utility of these molecular and biochemical
signaling processes as well as tumor-associated factors associated with MDR, for the rational
selection of cancer treatment strategies.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Shalini Nekkanti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ojaswitha Ommi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Lakshmi Soukya P.S.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| |
Collapse
|
24
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
25
|
Zong L, Pi Z, Liu S, Xing J, Liu Z, Song F. Liquid extraction surface analysis nanospray electrospray ionization based lipidomics for in situ analysis of tumor cells with multidrug resistance. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1683-1692. [PMID: 30003601 DOI: 10.1002/rcm.8229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Multidrug resistance (MDR) occurs frequently and is a major challenge in tumor treatment. The lipid composition in the cell membrane and the redox balance are closely associated with the development of MDR. Liquid extraction surface analysis in combination with mass spectrometry (LESA-MS) has the characteristics of minimal sample preparation, rapid analysis, high sensitivity and high throughput, and has obtained wide applications. METHODS LESA-MS was employed to in situ determine the lipids and other specific metabolites of intact MCF-7/ADR cells (adriamycin-resistant breast cancer cells) and its parental MCF-7/S cells grown on a glass slide. In situ atomic force microscopy was used to observe the morphology of tumor cells before and after extraction. Multivariate statistical analysis was used to investigate the potential lipid biomarkers correlated with the MDR. Moreover, the cell membrane fluidity and potential were determined. RESULTS The changes in the level of the lipids were closely correlated with the multidrug resistance of MCF-7/S cells. Moreover, lower cell membrane fluidity and higher cell membrane potential were observed and thus demonstrated the changes in the cell membrane induced by multidrug resistance. Also, the ratios of GSH/GSSG, ATP/ADP and ATP/AMP were significantly higher in MCF-7/ADR cells relative to MCF-7/S cells. CONCLUSIONS Lower cell membrane fluidity and higher cell membrane potential caused by the changes in lipid compositions, enhanced anti-oxidative ability and energy generation were involved in the development of the MDR. The specific alterations identified in this study may provide more information for overcoming MDR.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
26
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|
27
|
Charge reversible calcium phosphate lipid hybrid nanoparticle for siRNA delivery. Oncotarget 2018; 8:42772-42788. [PMID: 28514759 PMCID: PMC5522105 DOI: 10.18632/oncotarget.17484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/15/2017] [Indexed: 11/25/2022] Open
Abstract
Bcl-2 gene is an important target to treat lung cancer. The small interference RNA (siRNA) of Bcl-2 gene (siBcl-2) can specifically silence Bcl-2 gene. However, naked siBcl-2 is difficult to accumulate in the tumor tissue to exert its activity. In this paper, a calcium phosphate lipid hybrid nanoparticle that possessed charge reversible property was prepared to enhance the activity of siBcl-2 in vivo. The average diameter and zeta potential of siBcl-2 loaded calcium phosphate lipid hybrid nanoparticles (LNPS@siBcl-2) were 80 nm and −13 mV at pH7.4 whereas the diameter and zeta potential changed to 1506 nm and +9 mV at pH5.0. LNPS@siBcl-2 could efficiently deliver siBcl-2 to the cytoplasm and significantly decreased the expression of Bcl-2 in A549 cells. Moreover, the in vivo experimental results showed that most of the Cy5-siBcl-2 accumulated in tumor tissue after LNPS@Cy5-siBcl-2 was administered to tumor-bearing mice by tail vein injection. Meanwhile, the expression of Bcl-2 was decreased but the expression of the BAX and Caspase-3 was increased in tumor tissue. LNPS@siBcl-2 significantly inhibited the growth of tumor in tumor-bearing mice without any obvious systemic toxicity. Thus, the charge reversible calcium phosphate lipid hybrid nanoparticle was an excellent siBcl-2 delivery carrier to improve the activity of siBcl-2 in vivo. LNPS@siBcl-2 has potential in the treatment of lung cancer.
Collapse
|
28
|
Yan T, Hu G, Wang A, Sun X, Yu X, Jia J. Paris saponin VII induces cell cycle arrest and apoptosis by regulating Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Phytother Res 2018; 32:898-907. [DOI: 10.1002/ptr.6029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/30/2017] [Accepted: 12/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Ting Yan
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Anhua Wang
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Xianduo Sun
- School of Traditional Chinese Medicines; Guangdong Pharmaceutical University; Guangzhou 510006 China
| | - Xiangyong Yu
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Jingming Jia
- School of Traditional Chinese Materia Medica; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
29
|
Zong L, Pi Z, Liu S, Liu Z, Song F. Metabolomics analysis of multidrug-resistant breast cancer cellsin vitrousing methyl-tert-butyl ether method. RSC Adv 2018; 8:15831-15841. [PMID: 35539507 PMCID: PMC9080077 DOI: 10.1039/c7ra12952a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/21/2018] [Indexed: 11/21/2022] Open
Abstract
MTBE-based cellular lipidomics to investigate the mechanisms of multidrug resistance of breast cancer.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
| |
Collapse
|
30
|
Falone S, Santini S, Cordone V, Cesare P, Bonfigli A, Grannonico M, Di Emidio G, Tatone C, Cacchio M, Amicarelli F. Power frequency magnetic field promotes a more malignant phenotype in neuroblastoma cells via redox-related mechanisms. Sci Rep 2017; 7:11470. [PMID: 28904402 PMCID: PMC5597619 DOI: 10.1038/s41598-017-11869-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
In accordance with the classification of the International Agency for Research on Cancer, extremely low frequency magnetic fields (ELF-MF) are suspected to promote malignant progression by providing survival advantage to cancer cells through the activation of critical cytoprotective pathways. Among these, the major antioxidative and detoxification defence systems might be targeted by ELF-MF by conferring cells significant resistance against clinically-relevant cytotoxic agents. We investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field was supported by improved defence towards reactive oxygen species (ROS) and xenobiotics, as well as by reduced vulnerability against both H2O2 and anti-tumor ROS-generating drug doxorubicin. ELF-MF induced a proliferative and survival advantage by activating key redox-responsive antioxidative and detoxification cytoprotective pathways that are associated with a more aggressive behavior of neuroblastoma cells. This was coupled with the upregulation of the major sirtuins, as well as with increased signaling activity of the erythroid 2-related nuclear transcription factor 2 (NRF2). Interestingly, we also showed that the exposure to 50 Hz MF as low as 100 µT may still be able to alter behavior and responses of cancer cells to clinically-relevant drugs.
Collapse
Affiliation(s)
- S Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - S Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - V Cordone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - A Bonfigli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Grannonico
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - C Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Cacchio
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti Scalo (CH), Italy
| | - F Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Institute of Translational Pharmacology (IFT) - CNR, L'Aquila, Italy
| |
Collapse
|
31
|
Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol 2016; 124:10-18. [PMID: 27984000 DOI: 10.1016/j.bcp.2016.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022]
Abstract
MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers. This selective and massive cell death of MRP1-overexpressing cells (both transfected and drug-selected cell lines) is no longer observed either upon catalytic inactivation of MRP1 or its knockdown by siRNA. The best flavonoid dimer, 4e, kills MRP1-overexpressing cells with a selective ratio higher than 1000 compared to control cells and an EC50 value of 0.1 μM, so far unequaled as a collateral sensitivity agent targeting ABC transporters. This result portends the flavonoid dimer 4e as a very promising compound to appraise in vivo the therapeutic potential of collateral sensitivity for eradication of MRP1-overexpressing chemoresistant cancer cells in tumors.
Collapse
|
32
|
Shi WJ, Gao JB. Molecular mechanisms of chemoresistance in gastric cancer. World J Gastrointest Oncol 2016; 8:673-681. [PMID: 27672425 PMCID: PMC5027022 DOI: 10.4251/wjgo.v8.i9.673] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/07/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the fourth most common cancer and the second leading cause of cancer deaths worldwide. Chemotherapy is one of the major treatments for gastric cancer, but drug resistance limits the effectiveness of chemotherapy, which results in treatment failure. Resistance to chemotherapy can be present intrinsically before the administration of chemotherapy or it can develop during chemotherapy. The mechanisms of chemotherapy resistance in gastric cancer are complex and multifactorial. A variety of factors have been demonstrated to be involved in chemoresistance, including the reduced intracellular concentrations of drugs, alterations in drug targets, the dysregulation of cell survival and death signaling pathways, and interactions between cancer cells and the tumor microenvironment. This review focuses on the molecular mechanisms of chemoresistance in gastric cancer and on recent studies that have sought to overcome the underlying mechanisms of chemoresistance.
Collapse
|
33
|
Khoogar R, Kim BC, Morris J, Wargovich MJ. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G629-44. [PMID: 26893159 PMCID: PMC4867331 DOI: 10.1152/ajpgi.00201.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.
Collapse
Affiliation(s)
- Roxane Khoogar
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Byung-Chang Kim
- 2Center for Colorectal Center, Center for Cancer Prevention and Detection, Research Institute and Hospital, National Cancer Center, Ilsan-ro, Illsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Jay Morris
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Michael J. Wargovich
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
34
|
Yao J, Wei X, Lu Y. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells. Biochem Biophys Res Commun 2016; 473:867-873. [PMID: 27038543 DOI: 10.1016/j.bbrc.2016.03.141] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023]
Abstract
Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line.
Collapse
Affiliation(s)
- Jingyun Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, PR China
| | - Xing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, PR China
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, PR China.
| |
Collapse
|
35
|
Han B, Wang Y, Wang L, Shang Z, Wang S, Pei J. Preparation of GST Inhibitor Nanoparticle Drug Delivery System and Its Reversal Effect on the Multidrug Resistance in Oral Carcinoma. NANOMATERIALS 2015; 5:1571-1587. [PMID: 28347082 PMCID: PMC5304786 DOI: 10.3390/nano5041571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
During the chemotherapy of cancer, drug resistance is the first issue that chemotherapeutic drugs cannot be effectively used for the treatment of cancers repeatedly for a long term, and the main reason for this is that tumor cell detoxification is mediated by GSH (glutathione) catalyzed by GST (glutathione-S-transferase). In this study, a GST inhibitor, ethacrynic acid (ECA), was designed to be coupled with methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) by disulfide bonds to prepare methoxy poly(ethylene glycol)-poly(lactide)-disulphide bond-mthacrynic acid (MPEG-PLA-SS-ECA) as a carrier material of the nanoparticles. Nanoparticles of pingyangmycin (PYM) and carboplatin (CBP) were prepared, respectively, and their physicochemical properties were investigated. The ECA at the disulfide could be released in the presence of GSH, the pingyangmycin, carboplatin and ECA were all uniformly released, and the nanoparticles could release all the drugs completely within 10 days. The half maximal inhibitory concentration (IC50) of the prepared MPEG-PLA-SS-ECA/CBP and MPEG-PLA-SS-ECA/PYM nanoparticles in drug-resistant oral squamous cell carcinoma cell lines SCC15/CBP and SCC15/PYM cells was 12.68 μg·mL-¹ and 12.76 μg·mL-¹, respectively; the resistant factor RF of them in the drug-resistant cells were 1.51 and 1.24, respectively, indicating that MPEG-PLA-SS-ECA nanoparticles can reverse the drug resistance of these two drug-resistant cells.
Collapse
Affiliation(s)
- Bing Han
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| | - Yanli Wang
- Changchun Women and Children Health Hospital, No. 962 Xinfa Road, Changchun 130061, China.
| | - Lan Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Zuhui Shang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Shuang Wang
- China Japan Union Hospital, Jilin University, No. 126 Xiantai Street, Changchun 130033, China.
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| |
Collapse
|