1
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
2
|
Wang MJ, Jing XY, Wang YZ, Yang BR, Lu Q, Hu H, Kang L. Exercise, Spinal Microglia and Neuropathic Pain: Potential Molecular Mechanisms. Neurochem Res 2024; 49:29-37. [PMID: 37725293 PMCID: PMC10776684 DOI: 10.1007/s11064-023-04025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
As one of the most common neuropathic disorders, neuropathic pain often has a negative impact on patients with persistent pain, mood disorders and sleep disturbances. Currently, neuropathic pain is not treated with any specific drug, instead, drugs for other diseases are used as replacements in clinics, but most have adverse effects. In recent years, the role of spinal cord microglia in the pathogenesis of neuropathic pain has been widely recognized, and they are being explored as potential therapeutic targets. Spinal microglia are known to be involved in the pathogenic mechanisms of neuropathic pain through purine signaling, fractalkine signaling, and p38 MAPK signaling. Exercise is a safe and effective treatment, and numerous studies have demonstrated its effectiveness in improving neurological symptoms. Nevertheless, it remains unclear what the exact molecular mechanism is. This review summarized the specific molecular mechanisms of exercise in alleviating neuropathic pain by mediating the activity of spinal microglia and maintaining the phenotypic homeostasis of spinal microglia through purine signaling, fractalkine signaling and p38 MAPK signaling. In addition, it has been proposed that different intensities and types of exercise affect the regulation of the above-mentioned signaling pathways differently, providing a theoretical basis for the improvement of neuropathic pain through exercise.
Collapse
Affiliation(s)
- Min-Jia Wang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Xin-Yu Jing
- Department of Postpartum Rehabilitation, Sichuan Jinxin Women and Children Hospital, Chengdu, 610041, China
| | - Yao-Zheng Wang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Bi-Ru Yang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Qu Lu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Hao Hu
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
4
|
Pawlik K, Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023; 28:5766. [PMID: 37570736 PMCID: PMC10421203 DOI: 10.3390/molecules28155766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Cracow, Poland;
| |
Collapse
|
5
|
Kocot-Kępska M, Pawlik K, Ciapała K, Makuch W, Zajączkowska R, Dobrogowski J, Przeklasa-Muszyńska A, Mika J. Phenytoin Decreases Pain-like Behaviors and Improves Opioid Analgesia in a Rat Model of Neuropathic Pain. Brain Sci 2023; 13:858. [PMID: 37371338 DOI: 10.3390/brainsci13060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Neuropathic pain remains a clinical challenge due to its complex and not yet fully understood pathomechanism, which result in limited analgesic effectiveness of the management offered, particularly for patients with acute, refractory neuropathic pain states. In addition to the introduction of several modern therapeutic approaches, such as neuromodulation or novel anti-neuropathic drugs, significant efforts have been made in the repurposing of well-known substances such as phenytoin. Although its main mechanism of action occurs at sodium channels in excitable and non-excitable cells and is well documented, how the drug affects the disturbed neuropathic interactions at the spinal cord level and how it influences morphine-induced analgesia have not been clarified, both being crucial from a clinical perspective. We demonstrated that single and repeated systemic administrations of phenytoin decreased tactile and thermal hypersensitivity in an animal model of neuropathic pain. Importantly, we observed an increase in the antinociceptive effect on thermal stimuli with repeated administrations of phenytoin. This is the first study to report that phenytoin improves morphine-induced antinociceptive effects and influences microglia/macrophage activity at the spinal cord and dorsal root ganglion levels in a neuropathic pain model. Our findings support the hypothesis that phenytoin may represent an effective strategy for neuropathic pain management in clinical practice, particularly when combination with opioids is needed.
Collapse
Affiliation(s)
- Magdalena Kocot-Kępska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Renata Zajączkowska
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Anna Przeklasa-Muszyńska
- Department of Pain Research and Treatment, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
6
|
Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J. New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 2022; 13:1058204. [PMID: 36618360 PMCID: PMC9814969 DOI: 10.3389/fimmu.2022.1058204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,*Correspondence: Joanna Mika, ,
| |
Collapse
|
7
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
8
|
Santos DS, Stein DJ, Medeiros HR, Dos Santos Pereira F, de Macedo IC, Fregni F, Caumo W, Torres ILS. Transcranial direct current stimulation alters anxious-like behavior and neural parameters in rats with chronic pain exposed to alcohol. J Psychiatr Res 2021; 144:369-377. [PMID: 34735841 DOI: 10.1016/j.jpsychires.2021.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effects of transcranial direct current stimulation (tDCS) on anxiety-like behavior and neural parameters in rats with chronic pain exposed to alcohol. Thirty-six adult male Wistar rats were randomly assigned to control (CT), neuropathic pain (NP), NPtDCS, NP + alcohol (NPAL), or NPALtDCS groups, subjected to sciatic nerve chronic constriction injury (CCI) and exposed to alcohol (20% v/v solution, 4 g/kg) or vehicle by gavage for 15 days. Afterward, rats were treated using bimodal tDCS (0.5 mA/20 min/8 days) and tested in the open field. Rats were killed 24 h after the last behavioral assessment, and brain and spinal cord tissue samples were collected and processed for NPY immunohistochemistry, expression of Il1a and Il1b in the spinal cord, cerebellum, and hippocampus, and levels of IL-1α and IL-1β in the same brain structures and the striatum. tDCS reverted the anxiety-like behavior induced by CCI and alcohol, and the increased expression of Il1a in the spinal cord induced by alcohol, which increased the expression of Il1b in the cerebellum. In addition, tDCS modulated the hypothalamic NPY-immunoreactivity, increased the levels of IL-1α in the hippocampus (like NP and AL), and increased the expression of Il1b in the spinal cord (like AL). Thus, this study shows that tDCS changes NP and alcohol-induced anxiety-like behavior, possibly through its central modulatory effect of NPY and spinal cord expression of Il1a and Il1b, being considered a treatment option for alcohol and NP-induced anxiety symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Pereira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Isabel Cristina de Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Pawlik K, Ciechanowska A, Ciapała K, Rojewska E, Makuch W, Mika J. Blockade of CC Chemokine Receptor Type 3 Diminishes Pain and Enhances Opioid Analgesic Potency in a Model of Neuropathic Pain. Front Immunol 2021; 12:781310. [PMID: 34795678 PMCID: PMC8593225 DOI: 10.3389/fimmu.2021.781310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Neuropathic pain is a serious clinical issue, and its treatment remains a challenge in contemporary medicine. Thus, dynamic development in the area of animal and clinical studies has been observed. The mechanisms of neuropathic pain are still not fully understood; therefore, studies investigating these mechanisms are extremely important. However, much evidence indicates that changes in the activation and infiltration of immune cells cause the release of pronociceptive cytokines and contribute to neuropathic pain development and maintenance. Moreover, these changes are associated with low efficacy of opioids used to treat neuropathy. To date, the role of CC chemokine receptor type 3 (CCR3) in nociception has not been studied. Similarly, little is known about its endogenous ligands (C-C motif ligand; CCL), namely, CCL5, CCL7, CCL11, CCL24, CCL26, and CCL28. Our research showed that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with upregulation of CCL7 and CCL11 in the spinal cord and dorsal root ganglia (DRG). Moreover, our results provide the first evidence that single and repeated intrathecal administration of the CCR3 antagonist SB328437 diminishes mechanical and thermal hypersensitivity. Additionally, repeated administration enhances the analgesic properties of morphine and buprenorphine following nerve injury. Simultaneously, the injection of SB328437 reduces the protein levels of some pronociceptive cytokines, such as IL-6, CCL7, and CCL11, in parallel with a reduction in the activation and influx of GFAP-, CD4- and MPO-positive cells in the spinal cord and/or DRG. Moreover, we have shown for the first time that an inhibitor of myeloperoxidase-4-aminobenzoic hydrazide may relieve pain and simultaneously enhance morphine and buprenorphine efficacy. The obtained results indicate the important role of CCR3 and its modulation in neuropathic pain treatment and suggest that it represents an interesting target for future investigations.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
10
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
11
|
Kwiatkowski K, Pawlik K, Ciapała K, Piotrowska A, Makuch W, Mika J. Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Front Immunol 2021; 11:615327. [PMID: 33408720 PMCID: PMC7779470 DOI: 10.3389/fimmu.2020.615327] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Clinical management of neuropathic pain is unsatisfactory, mainly due to its resistance to the effects of available analgesics, including opioids. Converging evidence indicates the functional interactions between chemokine and opioid receptors and their influence on nociceptive processes. Recent studies highlight that the CC chemokine receptors type 2 (CCR2) and 5 (CCR5) seem to be of particular interest. Therefore, in this study, we investigated the effects of the dual CCR2/CCR5 antagonist, cenicriviroc, on pain-related behaviors, neuroimmune processes, and the efficacy of opioids in rats after chronic constriction injury (CCI) of the sciatic nerve. To define the mechanisms of action of cenicriviroc, we studied changes in the activation/influx of glial and immune cells and, simultaneously, the expression level of CCR2, CCR5, and important pronociceptive cytokines in the spinal cord and dorsal root ganglia (DRG). We demonstrated that repeated intrathecal injections of cenicriviroc, in a dose-dependent manner, alleviated hypersensitivity to mechanical and thermal stimuli in rats after sciatic nerve injury, as measured by von Frey and cold plate tests. Behavioral effects were associated with the beneficial impact of cenicriviroc on the activation/influx level of C1q/IBA-1-positive cells in the spinal cord and/or DRG and GFAP-positive cells in DRG. In parallel, administration of cenicriviroc decreased the expression of CCR2 in the spinal cord and CCR5 in DRG. Concomitantly, we observed that the level of important pronociceptive factors (e.g., IL-1beta, IL-6, IL-18, and CCL3) were increased in the lumbar spinal cord and/or DRG 7 days following injury, and cenicriviroc was able to prevent these changes. Additionally, repeated administration of this dual CCR2/CCR5 antagonist enhanced the analgesic effects of morphine and buprenorphine in neuropathic rats, which can be associated with the ability of cenicriviroc to prevent nerve injury-induced downregulation of all opioid receptors at the DRG level. Overall, our results suggest that pharmacological modulation based on the simultaneous blockade of CCR2 and CCR5 may serve as an innovative strategy for the treatment of neuropathic pain, as well as in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
12
|
Chen IJ, Yang CP, Lin SH, Lai CM, Wong CS. The Circadian Hormone Melatonin Inhibits Morphine-Induced Tolerance and Inflammation via the Activation of Antioxidative Enzymes. Antioxidants (Basel) 2020; 9:antiox9090780. [PMID: 32842597 PMCID: PMC7555201 DOI: 10.3390/antiox9090780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Opioids are commonly prescribed for clinical pain management; however, dose-escalation, tolerance, dependence, and addiction limit their usability for long-term chronic pain. The associated poor sleep pattern alters the circadian neurobiology, and further compromises the pain management. Here, we aim to determine the correlation between constant light exposure and morphine tolerance and explore the potential of melatonin as an adjuvant of morphine for neuropathic pain treatment. Methods: Wistar rats were preconditioned under constant light (LL) or a regular light/dark (LD) cycle before neuropathic pain induction by chronic constriction injury. An intrathecal (i.t.) osmotic pump was used for continued drug delivery to induce morphine tolerance. Pain assessments, including the plantar test, static weight-bearing symmetry, and tail-flick latency, were used to determine the impact of the light disruption or exogenous melatonin on the morphine tolerance progression. Results: constant light exposure significantly aggravates morphine tolerance in neuropathic rats. Continued infusion of low-dose melatonin (3 μg/h) attenuated morphine tolerance in both neuropathic and naïve rats. This protective effect was independent of melatonin receptors, as shown by the neutral effect of melatonin receptors inhibitors. The transcriptional profiling demonstrated a significant enhancement of proinflammatory and pain-related receptor genes in morphine-tolerant rats. In contrast, this transcriptional pattern was abolished by melatonin coinfusion along with the upregulation of the Kcnip3 gene. Moreover, melatonin increased the antioxidative enzymes SOD2, HO-1, and GPx1 in the spinal cord of morphine-tolerant rats. Conclusion: Dysregulated circadian light exposure significantly compromises the efficacy of morphine’s antinociceptive effect, while the cotreatment with melatonin attenuates morphine tolerance/hyperalgesia development. Our results suggest the potential of melatonin as an adjuvant of morphine in clinical pain management, particularly in patients who need long-term opioid treatment.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
| | - Chih-Ping Yang
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Anesthesiology, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Sheng-Hsiung Lin
- Planning & Management Office, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chang-Mei Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Correspondence: ; Tel.: +886-2-27082121
| |
Collapse
|
13
|
Bogacka J, Ciapała K, Pawlik K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia - Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience 2020; 441:77-92. [PMID: 32592824 DOI: 10.1016/j.neuroscience.2020.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
Abstract
Chemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the role of chemokine CC motif receptor 4 (CCR4) remains unknown. The goal was to examine the function of CCR4 in hypersensitivity development and opioid effectiveness in diabetic neuropathy. Streptozotocin (STZ; 200 mg/kg, intraperitoneally administered)-induced mouse model of diabetic neuropathy were used. An analysis of the mRNA/protein expression of CCR4 and its ligands was performed by qRT-PCR, microarray and/or Western blot methods. C021 (CCR4 antagonist), morphine and buprenorphine were injected intrathecally or intraperitoneally, and pain-related behavior was evaluated by the von Frey, cold plate and rotarod tests. We observed that on day 7 after STZ administration, the blood glucose level was increased, and as a consequence, hypersensitivity to tactile and thermal stimuli developed. In addition, we observed an increase in the mRNA level of CCL2 but not CCL17/CCL22. The microarray technique showed that the CCL2 protein level was also upregulated. In naive mice, the pronociceptive effect of intrathecally injected CCL2 was blocked by C021, suggesting that this chemokine acts through CCR4. Importantly, our results provide the first evidence that in a mouse model of diabetic neuropathy, single intrathecal and intraperitoneal injections of C021 diminished neuropathic pain-related behavior in a dose-dependent manner and improved motor functions. Moreover, both single intrathecal and intraperitoneal injections of C021 enhanced morphine and buprenorphine effectiveness. These results reveal that pharmacological modulation of CCR4 may be a good potential therapeutic target for the treatment of diabetic neuropathy and may enhance the effectiveness of opioids.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
14
|
Central IRAK-4 kinase inhibition for the treatment of pain following nerve injury in rats. Brain Behav Immun 2020; 88:781-790. [PMID: 32439472 DOI: 10.1016/j.bbi.2020.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
There is ample evidence for the role of the immune system in developing chronic pain following peripheral nerve injury. Especially Toll-like receptors (TLRs) and their associated signaling components and pro-inflammatory cytokines such as IL-1β, induced after injury, are involved in nociceptive processes and believed to contribute to the manifestation of chronic neuropathic pain states. Whereas the inhibition of the kinase function of IRAK-4, a central kinase downstream of TLRs and IL-1 receptors (IL-1Rs), seems efficacious in various chronic inflammatory and autoimmune models, it's role in regulating chronic neuropathic pain remained elusive to date. Here, we examined whether pharmacological inhibition of IRAK-4 kinase activity using PF-06650833 and BMS-986147, two clinical-stage kinase inhibitors, is effective for controlling persistent pain following nerve injury. Both inhibitors potently inhibited TLR-triggered cytokine release in human peripheral blood mononuclear cell (PBMC) as well as human and rat whole blood cultures. BMS-986147 showing favorable pharmacokinetic (PK) properties, significantly inhibited R848-triggered plasma TNF levels in a rat in vivo cytokine release model after single oral dosing. However, BMS-986147 dose dependently reversed cold allodynia in a rat chronic constriction injury (CCI) model following intrathecal administration only, supporting the notion that central neuro-immune modulation is beneficial for treating chronic neuropathic pain. Although both inhibitors were efficacious in inhibiting IL-1β- or TLR-triggered cytokine release in rat dorsal root ganglion cultures, only partial efficacy was reached in IL-1β-stimulated human glial cultures indicating that inhibiting IRAK-4́'s kinase function might be partially dispensable for human IL-1β driven neuroinflammation. Overall, our data demonstrate that IRAK-4 inhibitors could provide therapeutic benefit in chronic pain following nerve injury, and the central driver for efficacy in the neuropathic pain model as well as potential side effects of centrally available IRAK-4 inhibitors warrant further investigation to develop effective analgesia for patients in high unmet medical need.
Collapse
|
15
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
16
|
Metamizole relieves pain by influencing cytokine levels in dorsal root ganglia in a rat model of neuropathic pain. Pharmacol Rep 2020; 72:1310-1322. [PMID: 32691345 PMCID: PMC7550285 DOI: 10.1007/s43440-020-00137-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023]
Abstract
Background Treatment of neuropathic pain is still challenging. Recent studies have suggested that dorsal root ganglia (DRG), which carry sensory neural signals from the peripheral nervous system to the central nervous system, are important for pathological nociception. A proper understanding of the significance and function of DRG and their role in pharmacotherapy can help to improve the treatment of neuropathic pain. Metamizole, also known as sulpyrine or dipyrone, is a non-opioid analgesic commonly used in clinical practice, but it is not used for neuropathic pain treatment. Methods Chronic constriction injury (CCI) of the sciatic nerve was induced in Wistar rats. Metamizole was administered intraperitoneally (ip) preemptively at 16 and 1 h before CCI and then twice a day for 7 days. To evaluate tactile and thermal hypersensitivity, von Frey and cold plate tests were conducted, respectively. Results Our behavioral results provide evidence that repeated intraperitoneal administration of metamizole diminishes the development of neuropathic pain symptoms in rats. Simultaneously, our findings provide evidence that metamizole diminishes the expression of pronociceptive interleukins (IL-1beta, IL-6, and IL-18) and chemokines (CCL2, CCL4, and CCL7) in DRG measured 7 days after sciatic nerve injury. These assays indicate, for the first time, that metamizole exerts antinociceptive effects on nerve injury-induced neuropathic pain at the DRG level. Conclusions Finally, we indicate that metamizole-induced analgesia in neuropathy is associated with silencing of a broad spectrum of cytokines in DRG. Our results also suggest that metamizole is likely to be an effective medication for neuropathic pain. Graphic abstract ![]()
Collapse
|
17
|
Bogacka J, Ciapała K, Pawlik K, Kwiatkowski K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. CCR4 Antagonist (C021) Administration Diminishes Hypersensitivity and Enhances the Analgesic Potency of Morphine and Buprenorphine in a Mouse Model of Neuropathic Pain. Front Immunol 2020; 11:1241. [PMID: 32760393 PMCID: PMC7372009 DOI: 10.3389/fimmu.2020.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a chronic condition that remains a major clinical problem owing to high resistance to available therapy. Recent studies have indicated that chemokine signaling pathways are crucial in the development of painful neuropathy; however, the involvement of CC chemokine receptor 4 (CCR4) has not been fully elucidated thus far. Therefore, the aim of our research was to investigate the role of CCR4 in the development of tactile and thermal hypersensitivity, the effectiveness of morphine/buprenorphine, and opioid-induced tolerance in mice exposed to chronic constriction injury (CCI) of the sciatic nerve. The results of our research demonstrated that a single intrathecal or intraperitoneal administration of C021, a CCR4 antagonist, dose dependently diminished neuropathic pain-related behaviors in CCI-exposed mice. After sciatic nerve injury, the spinal expression of CCL17 and CCL22 remained unchanged in contrast to that of CCL2, which was significantly upregulated until day 14 after CCI. Importantly, our results provide evidence that in naive mice, CCL2 may evoke pain-related behaviors through CCR4 because its pronociceptive effects are diminished by C021. In CCI-exposed mice, the pharmacological blockade of CCR4 enhanced the analgesic properties of morphine/buprenorphine and delayed the development of morphine-induced tolerance, which was associated with the silencing of IBA-1 activation in cells and decrease in CCL2 production. The obtained data suggest that the pharmacological blockade of CCR4 may be a new potential therapeutic target for neuropathic pain polytherapy.
Collapse
Affiliation(s)
- Joanna Bogacka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Klaudia Kwiatkowski
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
18
|
Bogacka J, Popiolek-Barczyk K, Pawlik K, Ciechanowska A, Makuch W, Rojewska E, Dobrogowski J, Przeklasa-Muszynska A, Mika J. CCR4 antagonist (C021) influences the level of nociceptive factors and enhances the analgesic potency of morphine in a rat model of neuropathic pain. Eur J Pharmacol 2020; 880:173166. [PMID: 32407723 DOI: 10.1016/j.ejphar.2020.173166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a chronic condition which significantly reduces the quality of life and serious clinical issue that is in general resistant to available therapies. Therefore looking for new analgesics is still critical issue. Recent, studies have indicated that chemokine signaling pathways are crucial for the development of neuropathy; however, the role of CC chemokine receptor 4 (CCR4) in this process has not yet been studied. Therefore, the aim of our research was to investigate the influence of C021 (a CCR4 antagonist) and CCR4 CC chemokine ligands 17 and 22 (CCL17 and CCL22) on the development of hypersensitivity and the effectiveness of morphine induced analgesia in naive animals and/or animals exposed to chronic constriction injury (CCI) of the sciatic nerve. Firstly, we demonstrated that the intrathecal administration of CCL17 and CCL22 induced pain-related behavior in naive mice. Secondly, we revealed that the intrathecal injection of C021 significantly reduced CCI-induced hypersensitivity after nerve injury. In parallel, C021 reduced microglia/macrophages activation and the level of some pronociceptive interleukins (IL-1beta; IL-18) in the spinal cord 8 days after CCI. Moreover, C021 not only attenuated mechanical and thermal hypersensitivity but also enhanced the analgesic properties of morphine. Our research indicates that CCR4 ligands might be important factors in the early stages of neuropathy, when we observe intense microglia/macrophages activation. Moreover, pharmacological blockade of CCR4 may serve as a potential new target for better understanding the mechanisms of neuropathic pain development.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
19
|
Pawlik K, Piotrowska A, Kwiatkowski K, Ciapała K, Popiolek‐Barczyk K, Makuch W, Mika J. The blockade of CC chemokine receptor type 1 influences the level of nociceptive factors and enhances opioid analgesic potency in a rat model of neuropathic pain. Immunology 2020; 159:413-428. [PMID: 31919846 PMCID: PMC7078003 DOI: 10.1111/imm.13172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence has indicated that the release of nociceptive factors, such as interleukins and chemokines, by activated immune and glial cells has crucial significance for neuropathic pain generation and maintenance. Moreover, changes in the production of nociceptive immune factors are associated with low opioid efficacy in the treatment of neuropathy. Recently, it has been suggested that CC chemokine receptor type 1 (CCR1) signaling is important for nociception. Our study provides evidence that the development of hypersensitivity in rats following chronic constriction injury (CCI) of the sciatic nerve is associated with significant up-regulation of endogenous CCR1 ligands, namely, CCL2, CCL3, CCL4, CCL6, CCL7 and CCL9 in the spinal cord and CCL2, CCL6, CCL7 and CCL9 in dorsal root ganglia (DRG). We showed that single and repeated intrathecal administration of J113863 (an antagonist of CCR1) attenuated mechanical and thermal hypersensitivity. Moreover, repeated administration of a CCR1 antagonist enhanced the analgesic properties of morphine and buprenorphine after CCI. Simultaneously, repeated administration of J113863 reduced the protein levels of IBA-1 in the spinal cord and MPO and CD4 in the DRG and, as a consequence, the level of pronociceptive factors, such as interleukin-1β (IL-1β), IL-6 and IL-18. The data obtained provide evidence that CCR1 blockade reduces hypersensitivity and increases opioid-induced analgesia through the modulation of neuroimmune interactions.
Collapse
Affiliation(s)
- Katarzyna Pawlik
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Anna Piotrowska
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Klaudia Kwiatkowski
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Katarzyna Ciapała
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | | | - Wioletta Makuch
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| | - Joanna Mika
- Department of Pain PharmacologyMaj Institute of PharmacologyPolish Academy of SciencesKrakowPoland
| |
Collapse
|
20
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
21
|
Current Agents and Related Therapeutic Targets for Inflammation After Acute Traumatic Spinal Cord Injury. World Neurosurg 2019; 132:138-147. [DOI: 10.1016/j.wneu.2019.08.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
|
22
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Nalepa I, Mika J. Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury. Front Immunol 2019; 10:2198. [PMID: 31616413 PMCID: PMC6775284 DOI: 10.3389/fimmu.2019.02198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
23
|
Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine 2019; 119:202-213. [DOI: 10.1016/j.cyto.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
|
24
|
Li Y, Chen C, Li S, Jiang C. Ginsenoside
R
f relieves mechanical hypersensitivity, depression‐like behavior, and inflammatory reactions in chronic constriction injury rats. Phytother Res 2019; 33:1095-1103. [PMID: 30740801 DOI: 10.1002/ptr.6303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yangyi Li
- Department of AnesthesiaQuanzhou First Affiliated Hospital of Fujian Medical University No. 250, East Street, Licheng District Quanzhou Fujian Province 362000 China
| | - Chengbo Chen
- Department of CardiologyQuanzhou First Affiliated Hospital of Fujian Medical University No. 250, East Street, Licheng District Quanzhou Fujian Province 362000 China
| | - Shunyuan Li
- Department of AnesthesiaQuanzhou First Affiliated Hospital of Fujian Medical University No. 250, East Street, Licheng District Quanzhou Fujian Province 362000 China
| | - Changcheng Jiang
- Department of AnesthesiaQuanzhou First Affiliated Hospital of Fujian Medical University No. 250, East Street, Licheng District Quanzhou Fujian Province 362000 China
| |
Collapse
|
25
|
Rojewska E, Ciapała K, Mika J. Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 2019; 71:139-148. [DOI: 10.1016/j.pharep.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
|
26
|
Zajaczkowska R, Popiolek-Barczyk K, Pilat D, Rojewska E, Makuch W, Wordliczek J, Mika J. Involvement of microglial cells in the antinociceptive effects of metamizol in a mouse model of neuropathic pain. Pharmacol Biochem Behav 2018; 175:77-88. [DOI: 10.1016/j.pbb.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023]
|
27
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
28
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
29
|
Liu Y, Ni Y, Zhang W, Sun Y, Jiang M, Gu W, Ma Z, Gu X. Anti-nociceptive effects of caloric restriction on neuropathic pain in rats involves silent information regulator 1. Br J Anaesth 2018; 120:807-817. [DOI: 10.1016/j.bja.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
|
30
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
31
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
32
|
Spinal CCL1/CCR8 signaling interplay as a potential therapeutic target – Evidence from a mouse diabetic neuropathy model. Int Immunopharmacol 2017; 52:261-271. [DOI: 10.1016/j.intimp.2017.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
|
33
|
Popiolek-Barczyk K, Piotrowska A, Makuch W, Mika J. Biphalin, a Dimeric Enkephalin, Alleviates LPS-Induced Activation in Rat Primary Microglial Cultures in Opioid Receptor-Dependent and Receptor-Independent Manners. Neural Plast 2017; 2017:3829472. [PMID: 28573049 PMCID: PMC5442438 DOI: 10.1155/2017/3829472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain is relatively less responsive to opioids than other types of pain, which is possibly due to a disrupted opioid system partially caused by the profound microglial cell activation that underlines neuroinflammation. We demonstrated that intrathecally injected biphalin, a dimeric enkephalin analog, diminished symptoms of neuropathy in a preclinical model of neuropathic pain in rats (CCI, chronic constriction injury of the sciatic nerve) at day 12 postinjury. Using primary microglial cell cultures, we revealed that biphalin did not influence cell viability but diminished NO production and expression of Iba1 in LPS-stimulated cells. Biphalin also diminished MOP receptor level, as well as pronociceptive mediators (iNOS, IL-1β, and IL-18) in an opioid receptor-dependent manner, and it was correlated with diminished p-NF-κB, p-IκB, p-p38MAPK, and TRIF levels. Biphalin reduced IL-6, IL-10, TNFα, p-STAT3, and p-ERK1/2 and upregulated SOCS3, TLR4, and MyD88; however, this effect was not reversed by naloxone pretreatment. Our study provides evidence that biphalin diminishes neuropathy symptoms, which might be partially related to reduced pronociceptive mediators released by activated microglia. Biphalin may be a putative drug for future pain therapy, especially for the treatment of neuropathic pain, when the lower analgesic effects of morphine are correlated with profound microglial cell activation.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
34
|
The RS504393 Influences the Level of Nociceptive Factors and Enhances Opioid Analgesic Potency in Neuropathic Rats. J Neuroimmune Pharmacol 2017; 12:402-419. [PMID: 28337574 PMCID: PMC5527054 DOI: 10.1007/s11481-017-9729-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Increasing evidence has indicated that activated glial cells releasing nociceptive factors, such as interleukins and chemokines, are of key importance for neuropathic pain. Significant changes in the production of nociceptive factors are associated with the low effectiveness of opioids in neuropathic pain. Recently, it has been suggested that CCL2/CCR2 signaling is important for nociception. Here, we studied the time course changes in the mRNA/protein level of CD40/Iba-1, CCL2 and CCR2 in the spinal cord/dorsal root ganglia (DRG) in rats following chronic constriction injury (CCI) of the sciatic nerve. Moreover, we examined the influence of intrathecal preemptive and repeated (daily for 7 days) administration of RS504393, CCR2 antagonist, on pain-related behavior and the associated biochemical changes of some nociceptive factors as well as its influence on opioid effectiveness. We observed simultaneous upregulation of Iba-1, CCL2, CCR2 in the spinal cord on 7th day after CCI. Additionally, we demonstrated that repeated administration of RS504393 not only attenuated tactile/thermal hypersensitivity but also enhanced the analgesic properties of morphine and buprenorphine under neuropathy. Our results proof that repeated administration of RS504393 reduced the mRNA and/or protein levels of pronociceptive factors, such as IL-1beta, IL-18, IL-6 and inducible nitric oxide synthase (iNOS), and some of their receptors in the spinal cord and/or DRG. Furthermore, RS504393 elevated the spinal protein level of antinociceptive IL-1alpha and IL-18 binding protein. Our data provide new evidence that CCR2 is a promising target for diminishing neuropathic pain and enhancing the opioid analgesic effects.
Collapse
|
35
|
Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Front Pharmacol 2017; 8:48. [PMID: 28275350 PMCID: PMC5321202 DOI: 10.3389/fphar.2017.00048] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
Neuropathic pain is still an extremely important problem in today's medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential therapeutic utility.
Collapse
Affiliation(s)
- Agnieszka M Jurga
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Anna Piotrowska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Wioletta Makuch
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Barbara Przewlocka
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology Krakow, Poland
| |
Collapse
|
36
|
Bhat RA, Lingaraju MC, Pathak NN, Kalra J, Kumar D, Kumar D, Tandan SK. Effect of ursolic acid in attenuating chronic constriction injury-induced neuropathic pain in rats. Fundam Clin Pharmacol 2016; 30:517-528. [PMID: 27414466 DOI: 10.1111/fcp.12223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 01/13/2023]
Abstract
Ursolic acid (UA; 3b-hydroxy-12-urs-12-en-28-oic acid), a natural pentacyclic triterpenoid carboxylic acid, has been known to possess potent anti-inflammatory, antioxidant, and antinociceptive effects in various animal models. Therefore, this study was designed to investigate the antihyperalgesic, anti-inflammatory, and antioxidant effects of UA at 5, 10, and 20 mg/kg of doses via per os (p.o.) route for 14 days in chronic constriction injury (CCI)-induced neuropathic pain in rats. Pain behavior in rats was evaluated before and after UA administration via mechanical and heat hyperalgesia. CCI caused significant increase in levels of pro-inflammatory cytokines and oxido-nitrosative stress. In addition, significant increase in myeloperoxidase, malondialdehyde, protein carbonyl, nitric oxide (NO), and total oxidant status (TOS) levels in sciatic nerve and spinal cord concomitant with mechanical and heat hyperalgesia is also noted for CCI-induced neuropathic pain. Administration of UA significantly reduced the increased levels of pro-inflammatory cytokines and TOS. Further, reduced glutathione is also restored by UA. UA also showed in vitro NO and superoxide radical scavenging activity. UA has a potential in attenuating neuropathic pain behavior in CCI model which may possibly be attributed to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Rafia A Bhat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Nitya N Pathak
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Jaspreet Kalra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Surendra K Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
37
|
Zychowska M, Rojewska E, Makuch W, Luvisetto S, Pavone F, Marinelli S, Przewlocka B, Mika J. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2016; 791:377-388. [DOI: 10.1016/j.ejphar.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
|
38
|
Maraviroc reduces neuropathic pain through polarization of microglia and astroglia – Evidence from in vivo and in vitro studies. Neuropharmacology 2016; 108:207-19. [DOI: 10.1016/j.neuropharm.2016.04.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 02/08/2023]
|
39
|
Pilat D, Piotrowska A, Rojewska E, Jurga A, Ślusarczyk J, Makuch W, Basta-Kaim A, Przewlocka B, Mika J. Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine. Mol Cell Neurosci 2016; 71:114-24. [PMID: 26763728 DOI: 10.1016/j.mcn.2015.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/16/2015] [Accepted: 12/31/2015] [Indexed: 12/24/2022] Open
Abstract
Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 μg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.
Collapse
Affiliation(s)
- Dominika Pilat
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Agnieszka Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Poland.
| |
Collapse
|
40
|
Popiolek-Barczyk K, Mika J. Targeting the Microglial Signaling Pathways: New Insights in the Modulation of Neuropathic Pain. Curr Med Chem 2016; 23:2908-2928. [PMID: 27281131 PMCID: PMC5427777 DOI: 10.2174/0929867323666160607120124] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
The microglia, once thought only to be supporting cells of the central nervous system (CNS), are now recognized to play essential roles in many pathologies. Many studies within the last decades indicated that the neuro-immune interaction underlies the generation and maintenance of neuropathic pain. Through a large number of receptors and signaling pathways, the microglial cells communicate with neurons, astrocytes and other cells, including those of the immune system. A disturbance or loss of CNS homeostasis causes rapid responses of the microglia, which undergo a multistage activation process. The activated microglia change their cell shapes and gene expression profiles, which induce proliferation, migration, and the production of pro- or antinociceptive factors. The cells release a large number of mediators that can act in a manner detrimental or beneficial to the surrounding cells and can indirectly alter the nociceptive signals. This review discusses the most important microglial intracellular signaling cascades (MAPKs, NF-kB, JAK/STAT, PI3K/Akt) that are essential for neuropathic pain development and maintenance. Our objective was to identify new molecular targets that may result in the development of powerful tools to control the signaling associated with neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str., 31-343 Krakow, Poland.
| |
Collapse
|