1
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
2
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Sperlagh B, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Embers of the Past: Early Childhood Traumas Interact with Variation in P2RX7 Gene Implicated in Neuroinflammation on Markers of Current Suicide Risk. Int J Mol Sci 2024; 25:865. [PMID: 38255938 PMCID: PMC10815854 DOI: 10.3390/ijms25020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Both early childhood traumatic experiences and current stress increase the risk of suicidal behaviour, in which immune activation might play a role. Previous research suggests an association between mood disorders and P2RX7 gene encoding P2X7 receptors, which stimulate neuroinflammation. We investigated the effect of P2RX7 variation in interaction with early childhood adversities and traumas and recent stressors on lifetime suicide attempts and current suicide risk markers. Overall, 1644 participants completed questionnaires assessing childhood adversities, recent negative life events, and provided information about previous suicide attempts and current suicide risk-related markers, including thoughts of ending their life, death, and hopelessness. Subjects were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into logistic and linear regression models, followed by a clumping procedure to identify clumps of SNPs with a significant main and interaction effect. We identified two significant clumps with a main effect on current suicidal ideation with top SNPs rs641940 and rs1653613. In interaction with childhood trauma, we identified a clump with top SNP psy_rs11615992 and another clump on hopelessness containing rs78473339 as index SNP. Our results suggest that P2RX7 variation may mediate the effect of early childhood adversities and traumas on later emergence of suicide risk.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Sara Sutori
- National Centre for Suicide Research and Prevention (NASP), Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Granits väg 4, 17165 Solna, Sweden;
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Szigony utca 43, 1083 Budapest, Hungary;
| | - Ian M. Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester M13 9NT, UK; (I.M.A.); (B.D.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary; (Z.G.); (D.T.); (N.E.); (G.B.); (G.J.)
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6, 1082 Budapest, Hungary;
- NAP3.0 Neuropsychopharmacology Research Group, Semmelweis University, Nagyvarad ter 4, 1089 Budapest, Hungary
| |
Collapse
|
3
|
Ling Y, Crotti A. Emerging Microglial Therapies and Targets in Clinical Trial. ADVANCES IN NEUROBIOLOGY 2024; 37:623-637. [PMID: 39207717 DOI: 10.1007/978-3-031-55529-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of microglia function for treatment of neurodegenerative and neuropsychiatric disorders is an emerging field of neuroscience drug development. This is largely attributed to human genetic association studies combined with biological evidence indicating that the innate immune system acts as a causal contributor superimposed on the reactive component of neuronal loss in neurological dysfunction. The identification of disease risk gene variants that encode immune-modulatory proteins in microglia provides tools to evaluate how microglia cellular function or dysfunction affect neuronal health. The development of clinical stage therapeutic compounds that modify myeloid cell function enables us to investigate how modulating microglia function could become a transformational approach to mitigate neurological disorders. Improving our ability to boost microglia-promoting homeostatic and reparative functions hopefully will translate into achieving a better outcome for patients affected by neurological diseases. In this chapter, we aim to provide an overview of the microglial emerging therapies and targets being studied in current clinical trials.
Collapse
Affiliation(s)
- Yan Ling
- Neuroscience Translational Medicine, Takeda Pharmaceutical Co. Ltd., Tokyo, Japan
| | | |
Collapse
|
4
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
5
|
Kristof Z, Gal Z, Torok D, Eszlari N, Sutori S, Erdelyi-Hamza B, Petschner P, Sperlagh B, Anderson IM, Deakin JFW, Bagdy G, Juhasz G, Gonda X. Variation along P2RX7 interacts with early traumas on severity of anxiety suggesting a role for neuroinflammation. Sci Rep 2023; 13:7757. [PMID: 37173368 PMCID: PMC10182087 DOI: 10.1038/s41598-023-34781-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Emotional stress is a leading risk factor in the development of neuropsychiatric disorders possibly via immune activation. P2X7 receptors promote neuroinflammation, and research suggests a relationship between chromosome region 12q2431, in which the P2X7R gene is located, and development of mood disorders, however, few studies concentrate on its association with anxiety. Our aim was to investigate the effects of P2RX7 variation in interaction with early childhood traumas and recent stressors on anxiety. 1752 participants completed questionnaires assessing childhood adversities and recent negative life events, provided data on anxiety using the Brief Symptom Inventory, and were genotyped for 681 SNPs in the P2RX7 gene, 335 of which passed quality control and were entered into linear regression models followed by a linkage disequilibrium-based clumping procedure to identify clumps of SNPs with a significant main or interaction effect. We identified a significant clump with top SNP rs67881993 and containing a set of 29SNPs that are in high LD, which significantly interacted with early childhood traumas but not with recent stress conveying a protective effect against increased anxiety in those exposed to early adversities. Our study demonstrated that P2RX7 variants interact with distal and more etiological stressors in influencing the severity of anxiety symptoms, supporting previous scarce results and demonstrating its role in moderating the effects of stress.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Berta Erdelyi-Hamza
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Bioinformatics Center, Institute of Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Research Unit for Realization of Sustainable Society, Kyoto University, Uji, Kyoto, Japan
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
7
|
Huang G, Qiu Y, Bi L, Wei H, Li G, Li Z, Ye P, Yang M, Shen Y, Liu H, Wang L, Jin H. PET Imaging of P2X7 Receptor (P2X7R) for Neuroinflammation with Improved Radiosynthesis of Tracer [18F]4A in Mice and Non-human Primates. ACS Chem Neurosci 2022; 13:3464-3476. [PMID: 36441909 DOI: 10.1021/acschemneuro.2c00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.
Collapse
Affiliation(s)
- Guolong Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Yifan Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Peizhen Ye
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Yanfang Shen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, Guangdong, China
| |
Collapse
|
8
|
Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology. PLoS One 2022; 17:e0276107. [PMID: 36256604 PMCID: PMC9578589 DOI: 10.1371/journal.pone.0276107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The blood-brain barrier (BBB) presents a major obstacle in developing specific diagnostic imaging agents for many neurological disorders. In this study we aimed to generate single domain anti-mouse transferrin receptor antibodies (anti-mTfR VHHs) to mediate BBB transcytosis as components of novel MRI molecular contrast imaging agents. Anti-mTfR VHHs were produced by immunizing a llama with mTfR, generation of a VHH phage display library, immunopanning, and in vitro characterization of candidates. Site directed mutagenesis was used to generate additional variants. VHH fusions with neurotensin (NT) allowed rapid, hypothermia-based screening for VHH-mediated BBB transcytosis in wild-type mice. One anti-mTfR VHH variant was fused with an anti-amyloid-beta (Aβ) VHH dimer and labeled with fluorescent dye for direct assessment of in vivo target engagement in a mouse model of AD-related Aβ plaque pathology. An anti-mTfR VHH called M1 and variants had binding affinities to mTfR of <1nM to 1.52nM. The affinity of the VHH binding to mTfR correlated with the efficiency of the VHH-NT induced hypothermia effects after intravenous injection of 600 nmol/kg body weight, ranging from undetectable for nonbinding mutants to -6°C for the best mutants. The anti-mTfR VHH variant M1P96H with the strongest hypothermia effect was fused to the anti-Aβ VHH dimer and labeled with Alexa647; the dye-labeled VHH fusion construct still bound both mTfR and Aβ plaques at concentrations as low as 0.22 nM. However, after intravenous injection at 600 nmol/kg body weight into APP/PS1 transgenic mice, there was no detectible labeling of plaques above control levels. Thus, NT-induced hypothermia did not correlate with direct target engagement in cortex, likely because the concentration required for NT-induced hypothermia was lower than the concentration required to produce in situ labeling. These findings reveal an important dissociation between NT-induced hypothermia, presumably mediated by hypothalamus, and direct engagement with Aβ-plaques in cortex. Additional methods to assess anti-mTfR VHH BBB transcytosis will need to be developed for anti-mTfR VHH screening and the development of novel MRI molecular contrast agents.
Collapse
|
9
|
Abstract
The P2X7 receptor has been proposed as a novel drug target for different types of diseases associated with inflammation, including brain diseases, peripheral inflammation, and cancers. Structurally diverse P2X7 receptor antagonists, mainly negative allosteric modulators (NAMs), have been developed in recent years, and several P2X7 receptor antagonists are currently evaluated in clinical trials. The P2X7 receptor requires high micro- to even millimolar ATP concentrations to be activated. Selective agonists for the P2X7 receptor are not available. Positive allosteric modulators (PAMs) have been described, but PAMs with high potency and selectivity are still lacking. This chapter discusses medicinal chemistry approaches toward the development of P2X7 receptor modulators and presents a selection of recommended tool compounds for studying P2X7 receptors in humans and rodents.
Collapse
Affiliation(s)
- Christa E Müller
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
von Muecke-Heim IA, Ries C, Urbina L, Deussing JM. P2X7R antagonists in chronic stress-based depression models: a review. Eur Arch Psychiatry Clin Neurosci 2021; 271:1343-1358. [PMID: 34279714 PMCID: PMC8429152 DOI: 10.1007/s00406-021-01306-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Depression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist (Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application timing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we propose adherence to the Research Domain Criteria and the STRANGE framework.
Collapse
Affiliation(s)
- Iven-Alex von Muecke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Clemens Ries
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Lidia Urbina
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
11
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
14
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
16
|
Zheng QH. Radioligands targeting purinergic P2X7 receptor. Bioorg Med Chem Lett 2020; 30:127169. [DOI: 10.1016/j.bmcl.2020.127169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
17
|
Kolb HC, Barret O, Bhattacharya A, Chen G, Constantinescu C, Huang C, Letavic M, Tamagnan G, Xia CA, Zhang W, Szardenings AK. Preclinical Evaluation and Nonhuman Primate Receptor Occupancy Study of 18F-JNJ-64413739, a PET Radioligand for P2X7 Receptors. J Nucl Med 2019; 60:1154-1159. [PMID: 30733317 DOI: 10.2967/jnumed.118.212696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022] Open
Abstract
The P2X7 receptor is an adenosine triphosphate-gated ion channel, which is abundantly expressed in glial cells within the central nervous system and in the periphery. P2X7 receptor activation leads to the release of the proinflammatory cytokine IL-1β in the brain, and antagonism of the P2X7 receptor is a novel therapeutic strategy to dampen adenosine triphosphate-dependent IL-1β signaling. PET ligands for the P2X7 receptor will not only be valuable to assess central target engagement of drug candidates but also hold promise as surrogate markers of central neuroinflammation. Herein we describe the in vitro and in vivo evaluation of 18F-JNJ-64413739, an 18F-labeled PET ligand for imaging the P2X7 receptor in the brain. Methods: P2X7 receptor affinity and specificity, pharmacokinetics, metabolic stability, blood-brain barrier permeability, and off-target binding of JNJ-64413739 were evaluated in a series of in vitro, ex vivo, and in vivo assays. 18F-JNJ-64413739 was radiolabeled via a one-step nucleophilic aromatic substitution. The tracer was also studied in rhesus macaques, and PET images were analyzed with an arterial plasma input function-based Logan graphical analysis. Results: The potency (half-maximal inhibitory concentration) of the P2X7 receptor antagonist JNJ-64413739 is 1.0 ± 0.2 nM and 2.0 ± 0.6 nM at the recombinant human and rat P2X7 receptor, respectively, and the binding affinity is 2.7 nM (rat cortex binding assay) and 15.9 nM (human P2X7 receptor). In nonhuman primate PET imaging studies, dose-dependent receptor occupancy of JNJ-54175446 was observed in 2 rhesus monkeys. At a 0.1 mg/kg dose (intravenous) of JNJ-54175446, the receptor occupancy was calculated to be 17% by Logan graphical analysis, whereas a dose of 2.5 mg/kg yielded a receptor occupancy of 60%. Conclusion: The preclinical evaluation of 18F-JNJ-64413739 demonstrates that the tracer engages the P2X7 receptor. Reproducible and dose-dependent receptor occupancy studies with the P2X7 receptor antagonist JNJ-54175446 were obtained in rhesus monkeys. This novel PET tracer exhibits in vitro and in vivo characteristics suitable for imaging the P2X7 receptor in the brain and warrants further studies in humans.
Collapse
Affiliation(s)
- Hartmuth C Kolb
- Janssen Research and Development LLC, San Diego, California; and
| | | | | | - Gang Chen
- Janssen Research and Development LLC, San Diego, California; and
| | | | - Chaofeng Huang
- Janssen Research and Development LLC, San Diego, California; and
| | - Michael Letavic
- Janssen Research and Development LLC, San Diego, California; and
| | | | - Chunfang A Xia
- Janssen Research and Development LLC, San Diego, California; and
| | - Wei Zhang
- Janssen Research and Development LLC, San Diego, California; and
| | | |
Collapse
|
18
|
Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol 2019; 326:62-74. [DOI: 10.1016/j.jneuroim.2018.11.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
|
19
|
Bhattacharya A, Lord B, Grigoleit JS, He Y, Fraser I, Campbell SN, Taylor N, Aluisio L, O’Connor JC, Papp M, Chrovian C, Carruthers N, Lovenberg TW, Letavic MA. Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology 2018; 43:2586-2596. [PMID: 30026598 PMCID: PMC6224414 DOI: 10.1038/s41386-018-0141-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/09/2022]
Abstract
Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1β release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1β release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG-induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation. Finally, in a rat model of chronic stress induced sucrose intake deficit, JNJ-55308942 reversed the deficit with concurrent high P2X7 brain occupancy as measured by autoradiography. This body of data demonstrates that JNJ-55308942 is a potent P2X7 antagonist, engages the target in brain, modulates IL-1β release and microglial activation leading to efficacy in two models of anhedonia in rodents.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA, 92131, USA.
| | - Brian Lord
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | | | - Yingbo He
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Ian Fraser
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Shannon N. Campbell
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Natalie Taylor
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Leah Aluisio
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Jason C. O’Connor
- 0000 0004 0617 9080grid.414059.dDepartment of Pharmacology, UT Health San Antonio, 7703 Floyd Curl Dr. and Audie L. Murphy VA Hospital, 7400 Merton Minter Blvd, San Antonio, TX 78229 USA
| | - Mariusz Papp
- 0000 0001 2227 8271grid.418903.7Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, Krakow, 31-343 Poland
| | - Christa Chrovian
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Nicholas Carruthers
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Timothy W. Lovenberg
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Michael A. Letavic
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| |
Collapse
|
20
|
Lee SH, Suk K. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways. Expert Opin Drug Discov 2018; 13:627-641. [DOI: 10.1080/17460441.2018.1465925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sun-Hwa Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, Li C, Chalon S, Emond P, Belzung C, Li D, Lu C, Roger S, Jiang LH. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev 2018; 87:192-205. [PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
Collapse
Affiliation(s)
- Linyu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Faculty of Medicine and Health Science, University Putra Malaysia, Selangor, Malaysia
| | - Jing Yan
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Libin Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China
| | - Sylvie Chalon
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | - Patrick Emond
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Nucléaire In Vitro, Tours, France
| | | | - Dongliang Li
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, China
| | - Sebastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université de Tours, France; Institut Universitaire de France, Paris Cedex 05, France
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom; Institut Universitaire de France, Paris Cedex 05, France.
| |
Collapse
|
22
|
Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018; 9:212. [PMID: 29593540 PMCID: PMC5861216 DOI: 10.3389/fphar.2018.00212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation-related intestinal diseases are a set of various conditions presenting an overactive enteric immune system. A continuous overproduction of pro-inflammatory cytokines and a decreased production of anti-inflammatory modulators are generally observed, while morpho-functional alterations of the enteric nervous system lead to intestinal secretory and motor dysfunctions. The factors at the basis of these conditions are still to be totally identified and current therapeutic strategies are aimed only at achieving and maintaining remission states, by using therapeutic tools like aminosalicylates, corticosteroids, immunomodulators, biological drugs (i.e., monoclonal antibodies), and eventually surgery. Recent reports described a key role of purinergic mediators (i.e., adenosine and its nucleotides ATP and ADP) in the regulation of the activity of immune cells and enteric nervous system, showing also that alterations of the purinergic signaling are linked to pathological conditions of the intestinal tract. These data prompted to a series of investigations to test the therapeutic potential for inflammation-related intestinal conditions of compounds able to restore or modulate an altered purinergic signaling within the gut. This review provides an overview on these investigations, describing the results of preclinical and/or clinical evaluation of compounds able to stimulate or inhibit specific P2 (i.e., P2X7) or P1 (i.e., A2A or A3) receptor signaling and to modify the adenosine levels through the modulation of enzymes activity (i.e., Adenosine Deaminase) or nucleoside transporters. Recent developments in the field are also reported and the most promising purine-based therapeutic strategies for the treatment of inflammation-related gastrointestinal disorders are schematically summarized.
Collapse
Affiliation(s)
- Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
23
|
Bhattacharya A. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Front Pharmacol 2018; 9:30. [PMID: 29449810 PMCID: PMC5799703 DOI: 10.3389/fphar.2018.00030] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
The ATP-gated P2X7 ion channel is an abundant microglial protein in the CNS that plays an important pathological role in executing ATP-driven danger signal transduction. Emerging data has generated scientific interest and excitement around targeting the P2X7 ion channel as a potential drug target for CNS disorders. Over the past years, a wealth of data has been published on CNS P2X7 biology, in particular the role of P2X7 in microglial cells, and in vivo effects of brain-penetrant P2X7 antagonists. Likewise, significant progress has been made around the medicinal chemistry of CNS P2X7 ligands, as antagonists for in vivo target validation in models of CNS diseases, to identification of two clinical compounds (JNJ-54175446 and JNJ-55308942) and finally, discovery of P2X7 PET ligands. This review is an attempt to bring together the current understanding of P2X7 in the CNS with a focus on P2X7 as a drug target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
24
|
Zhao H, Chen Y, Feng H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr Neuropharmacol 2018; 16:1282-1295. [PMID: 29766811 PMCID: PMC6251042 DOI: 10.2174/1570159x16666180516094500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and cell death is widely believed to occur after exposure to blood metabolites or subsequently damaged cells. Recently, programmed cell death, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, has been demonstrated to play crucial roles in the pathophysiology of stroke. However, the detailed mechanisms of these novel kinds of cell death are still unclear. The P2X7 receptor, previously known for its cytotoxic activity, is an ATP-gated, nonselective cation channel that belongs to the family of ionotropic P2X receptors. Evolving evidence indicates that the P2X7 receptor plays a pivotal role in central nervous system pathology; genetic deletion and pharmacological blockade of the P2X7 receptor provide neuroprotection in various neurological disorders, including intracerebral hemorrhage and subarachnoid hemorrhage. The P2X7 receptor may regulate programmed cell death via (I) exocytosis of secretory lysosomes, (II) exocytosis of autophagosomes or autophagolysosomes during formation of the initial autophagic isolation membrane or omegasome, and (III) direct release of cytosolic IL-1β secondary to regulated cell death by pyroptosis or necroptosis. In this review, we present an overview of P2X7 receptor- associated programmed cell death for further understanding of hemorrhagic stroke pathophysiology, as well as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
25
|
Chrovian CC, Soyode-Johnson A, Peterson AA, Gelin CF, Deng X, Dvorak CA, Carruthers NI, Lord B, Fraser I, Aluisio L, Coe KJ, Scott B, Koudriakova T, Schoetens F, Sepassi K, Gallacher DJ, Bhattacharya A, Letavic MA. A Dipolar Cycloaddition Reaction To Access 6-Methyl-4,5,6,7-tetrahydro-1H-[1,2,3]triazolo[4,5-c]pyridines Enables the Discovery Synthesis and Preclinical Profiling of a P2X7 Antagonist Clinical Candidate. J Med Chem 2017; 61:207-223. [DOI: 10.1021/acs.jmedchem.7b01279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Christa C. Chrovian
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Akinola Soyode-Johnson
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Alexander A. Peterson
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Christine F. Gelin
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Xiaohu Deng
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Curt A. Dvorak
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas I. Carruthers
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Lord
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Ian Fraser
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Leah Aluisio
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Kevin J. Coe
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Scott
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Tatiana Koudriakova
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Freddy Schoetens
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Kia Sepassi
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - David J. Gallacher
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michael A. Letavic
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
26
|
Jin H, Han J, Resing D, Liu H, Yue X, Miller RL, Schoch KM, Miller TM, Perlmutter JS, Egan TM, Tu Z. Synthesis and in vitro characterization of a P2X7 radioligand [ 123I]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease. Eur J Pharmacol 2017; 820:8-17. [PMID: 29225193 DOI: 10.1016/j.ejphar.2017.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
Abstract
The purinergic receptor P2X ligand-gated ion channel 7 (P2X7 receptor) is a promising imaging target to detect neuroinflammation. Herein, we report development of a potent iodinated radiotracer for P2X7 receptor, [123I]TZ6019. The radiosynthesis of [123I]TZ6019 was accomplished by allylic-tin precursor iodination using [123I]NaI with good radiochemical yield of 85% and high radiochemical purity of > 99%. Human embryonic kidney 293 (HEK-293) cell line stably transfected with the human P2X7 receptor was used to characterize the binding affinity of TZ6019 by fluorescence, radioactive competitive, and saturation binding assays. A radioligand competitive binding assay with [123I]TZ6019 demonstrated that the nonradioactive compound TZ6019 has an IC50 value of 9.49 ± 1.4nM, and the known P2X7 receptor compound GSK1482160 has an IC50 value of 4.30 ± 0.86nM, consistent with previous reports. The radioligand saturation binding assay and competitive assay revealed that [123I]TZ6019 specifically bound to the human P2X7 receptor with high affinity (Ki = 6.3 ± 0.9nM). In vitro autoradiography quantification with brain slices collected from 9-month old P301S tau transgenic mice along with wild type controls, revealed higher binding of [123I]TZ6019 (35% increase) in the brain of P301S transgenic mice (n = 3, p = 0.04) compared to wild type controls. The immunofluorescence microscopy confirmed that expression of P2X7 receptor was colocalized with astrocytes in the tauopathy P301S transgenic mice. [123I]TZ6019 has specific binding for P2X7 receptor and has great potential to be a radiotracer for screening new compounds and quantifying expression of P2X7 receptor in neuroinflammation related diseases.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek Resing
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca L Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen M Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terrance M Egan
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Letavic MA, Savall BM, Allison BD, Aluisio L, Andres JI, De Angelis M, Ao H, Beauchamp DA, Bonaventure P, Bryant S, Carruthers NI, Ceusters M, Coe KJ, Dvorak CA, Fraser IC, Gelin CF, Koudriakova T, Liang J, Lord B, Lovenberg TW, Otieno MA, Schoetens F, Swanson DM, Wang Q, Wickenden AD, Bhattacharya A. 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. J Med Chem 2017; 60:4559-4572. [PMID: 28493698 DOI: 10.1021/acs.jmedchem.7b00408] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.
Collapse
Affiliation(s)
- Michael A Letavic
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brad M Savall
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brett D Allison
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Leah Aluisio
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jose Ignacio Andres
- Janssen Research & Development, a Division of Janssen-Cilag , Jarama 75, 45007 Toledo, Spain
| | - Meri De Angelis
- Janssen Research & Development, a Division of Janssen-Cilag , Jarama 75, 45007 Toledo, Spain
| | - Hong Ao
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Derek A Beauchamp
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Pascal Bonaventure
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Stewart Bryant
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Nicholas I Carruthers
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV , Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kevin J Coe
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Curt A Dvorak
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Ian C Fraser
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Christine F Gelin
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Tatiana Koudriakova
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jimmy Liang
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Lord
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Timothy W Lovenberg
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Monicah A Otieno
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Freddy Schoetens
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Devin M Swanson
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Qi Wang
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Alan D Wickenden
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
28
|
Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks. Eur J Nucl Med Mol Imaging 2016; 44:533-547. [PMID: 27933416 DOI: 10.1007/s00259-016-3587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
|
29
|
Abstract
INTRODUCTION The P2X7 receptor (P2X7R) is a unique subtype among the family of seven purinergic P2X receptors, which are ATP-gated non-selective cation channels. P2X7R has been reported to have pathological roles in various diseases, including autoimmune diseases such as arthritis and inflammatory bowel disease, neurodegenerative diseases, chronic pain, mood disorders and cancers. Therefore, many pharmaceutical companies have endeavored to develop a clinical candidate targeting P2X7R. Areas covered: This review provides a summary of various patents on chemicals and biologics and their clinical use published between 2010 and 2015. The reader will gain information on structural claims, representative structures and biological activities of recently developed P2X7R antagonists. Expert opinion: P2X7R is a fascinating therapeutic target and potential biomarker for inflammation, pain disorders and cancers. Research on the development of P2X7R antagonists has continually increased despite the failure of AstraZeneca and Merck's compounds in phase II clinical trials. Various scaffolds have been disclosed by several pharmaceutical industries, and some compounds are currently under investigation in clinical trials.
Collapse
Affiliation(s)
- Jin-Hee Park
- a School of Life Sciences , Gwangju Institute of Science & Technology , Gwangju , Republic of Korea.,b New Drug Development Center (NDDC) , Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF) , Daegu , Republic of Korea
| | - Yong-Chul Kim
- a School of Life Sciences , Gwangju Institute of Science & Technology , Gwangju , Republic of Korea.,c Department of Biomedical Science and Engineering , Gwangju Institute of Science & Technology , Gwangju , Republic of Korea
| |
Collapse
|
30
|
Swanson DM, Savall BM, Coe KJ, Schoetens F, Koudriakova T, Skaptason J, Wall J, Rech J, Deng X, De Angelis M, Everson A, Lord B, Wang Q, Ao H, Scott B, Sepassi K, Lovenberg TW, Carruthers NI, Bhattacharya A, Letavic MA. Identification of (R)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1H-imidazo[4,5-c]pyridin-5(4H)-yl)methanone (JNJ 54166060), a Small Molecule Antagonist of the P2X7 receptor. J Med Chem 2016; 59:8535-48. [DOI: 10.1021/acs.jmedchem.6b00989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Devin M. Swanson
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brad M. Savall
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Kevin J. Coe
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Freddy Schoetens
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Tatiana Koudriakova
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Judith Skaptason
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Jessica Wall
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Jason Rech
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Xiahou Deng
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Meri De Angelis
- Janssen Research & Development, Discovery Sciences, A Division of Janssen-Cilag, Jarama 75, 45007 Toledo, Spain
| | - Anita Everson
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brian Lord
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Qi Wang
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Hong Ao
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Brian Scott
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Kia Sepassi
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Timothy W. Lovenberg
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Nicholas I. Carruthers
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Anindya Bhattacharya
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| | - Michael A. Letavic
- Janssen Pharmaceutical Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121 United States
| |
Collapse
|
31
|
Fischer W, Franke H, Krügel U, Müller H, Dinkel K, Lord B, Letavic MA, Henshall DC, Engel T. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS One 2016; 11:e0156468. [PMID: 27281030 PMCID: PMC4900628 DOI: 10.1371/journal.pone.0156468] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/13/2016] [Indexed: 01/03/2023] Open
Abstract
The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Heike Franke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | - Klaus Dinkel
- Lead Discovery Center GmbH, Dortmund, Germany
- Affectis Pharmaceutical AG, Dortmund, Germany
| | - Brian Lord
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Michael A. Letavic
- Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California, United States of America
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
32
|
Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016; 64:1772-87. [PMID: 27219534 DOI: 10.1002/glia.23001] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Based on promising preclinical evidence, microglial P2X7 has increasingly being recognized as a target for therapeutic intervention in neurological and psychiatric diseases. However, despite this knowledge no P2X7-related drug has yet entered clinical trials with respect to CNS diseases. We here discuss the current literature on P2X7 being a drug target and identify unsolved issues and still open questions that have hampered the development of P2X7 dependent therapeutic approaches for CNS diseases. It is concluded here that the lack of brain penetrating P2X7 antagonists is a major obstacle in the field and that central P2X7 is a yet untested clinical drug target. In the CNS, microglial P2X7 activation causes neuroinflammation, which in turn plays a role in various CNS disorders. This has resulted in a surge of brain penetrant P2X7 antagonists. P2X7 is a viable, clinically untested CNS drug target. GLIA 2016;64:1772-1787.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- LLC. Neuroscience Drug Discovery, Janssen Research & Development, 3210 Merryfield Row, San Diego, California
| | - Knut Biber
- Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Hauptstrasse 5, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, AV Groningen, The Netherlands
| |
Collapse
|
33
|
Chrovian CC, Soyode-Johnson A, Ao H, Bacani GM, Carruthers NI, Lord B, Nguyen L, Rech JC, Wang Q, Bhattacharya A, Letavic MA. Novel Phenyl-Substituted 5,6-Dihydro-[1,2,4]triazolo[4,3-a]pyrazine P2X7 Antagonists with Robust Target Engagement in Rat Brain. ACS Chem Neurosci 2016; 7:490-7. [PMID: 26752113 DOI: 10.1021/acschemneuro.5b00303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Novel 5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazine P2X7 antagonists were optimized to allow for good blood-brain barrier permeability and high P2X7 target engagement in the brain of rats. Compound 25 (huP2X7 IC50 = 9 nM; rat P2X7 IC50 = 42 nM) achieved 80% receptor occupancy for 6 h when dosed orally at 10 mg/kg in rats as measured by ex vivo radioligand binding autoradiography. Structure-activity relationships within this series are described, as well as in vitro ADME results. In vivo pharmacokinetic data for key compounds is also included.
Collapse
Affiliation(s)
- Christa C. Chrovian
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Akinola Soyode-Johnson
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Hong Ao
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Genesis M. Bacani
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Nicholas I. Carruthers
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Brian Lord
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Leslie Nguyen
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Jason C. Rech
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Qi Wang
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| | - Michael A. Letavic
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121-1126, United States
| |
Collapse
|
34
|
Ziff J, Rudolph DA, Stenne B, Koudriakova T, Lord B, Bonaventure P, Lovenberg TW, Carruthers NI, Bhattacharya A, Letavic MA, Shireman BT. Substituted 5,6-(Dihydropyrido[3,4-d]pyrimidin-7(8H)-yl)-methanones as P2X7 Antagonists. ACS Chem Neurosci 2016; 7:498-504. [PMID: 26754558 DOI: 10.1021/acschemneuro.5b00304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We describe the synthesis of a novel class of brain penetrating P2X7 antagonists with high potency at both the rat and human P2X7 receptors. Disclosed herein are druglike molecules with demonstrated target engagement of the rat P2X7 receptors after an oral dose. Specifically, compound 20 occupied the P2X7 receptors >80% over the 6 h time course as measured by an ex vivo radioligand binding experiment. In a dose-response assay, this molecule has a plasma EC50 of 8 ng/mL. Overall, 20 has suitable druglike properties and pharmacokinetics in rat and dog. This molecule and others disclosed herein will serve as additional tools to elucidate the role of the P2X7 receptor in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jeannie Ziff
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Dale A. Rudolph
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brice Stenne
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Tatiana Koudriakova
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Lord
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Pascal Bonaventure
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Timothy W. Lovenberg
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas I. Carruthers
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Anindya Bhattacharya
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michael A. Letavic
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brock T. Shireman
- Janssen Research & Development L.L.C., 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
35
|
Amhaoul H, Ali I, Mola M, Van Eetveldt A, Szewczyk K, Missault S, Bielen K, Kumar-Singh S, Rech J, Lord B, Ceusters M, Bhattacharya A, Dedeurwaerdere S. P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology 2016; 105:175-185. [PMID: 26775823 DOI: 10.1016/j.neuropharm.2016.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The available pharmacotherapy for patients with epilepsy primarily address the symptoms and are ineffective in about 40% of patients. Brain inflammation gained support as potential target for developing new therapies, especially the P2X7 receptor (P2X7R), involved in processing of IL-1β, might be an interesting candidate. This study was designed to investigate the effect of a novel P2X7R antagonist on the severity and on the number of chronic spontaneous recurrent seizures (SRS), which was unexplored until now. METHODS After one-week of vehicle treatment (20% HP-β-cyclodextrin), JNJ-42253432 was administered subcutaneously for another week under continuous video-electroencephalography monitoring (n = 17) in Sprague Dawley rats 3 months after kainic acid-induced status epilepticus. The proportion of different seizure classes, as well as the number of SRS/day were calculated for the vehicle and treatment period. In addition, post-mortem microglial activation and astrogliosis were assessed. RESULTS A significant decrease of the proportion of type 4-5 SRS (p < 0.05), while an increase of type 1-3 was demonstrated (p < 0.05) from the vehicle to the treatment period. There was no effect of the P2X7R antagonist on the number of SRS/day or the glial markers. CONCLUSIONS The P2X7R antagonist gave rise to a less severe profile of the chronic seizure burden without suppressing the SRS frequency. More studies are needed to unravel the underlying mechanisms of the beneficial effect on seizure severity and whether the administration of the compound during early epileptogenesis could induce long-term disease-modifying effects.
Collapse
Affiliation(s)
- Halima Amhaoul
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Idrish Ali
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Marco Mola
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Annemie Van Eetveldt
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Stephan Missault
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Kenny Bielen
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Samir Kumar-Singh
- Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jason Rech
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, USA
| | - Brian Lord
- Neuroscience Therapeutic Area, Janssen Research & Development, San Diego, USA
| | - Marc Ceusters
- Neuroscience Therapeutic Area, Janssen Research & Development, Beerse, Belgium
| | | | | |
Collapse
|
36
|
Ameriks MK, Ao H, Carruthers NI, Lord B, Ravula S, Rech JC, Savall BM, Wall JL, Wang Q, Bhattacharya A, Letavic MA. Preclinical characterization of substituted 6,7-dihydro-[1,2,4]triazolo[4,3- a ]pyrazin-8(5 H )-one P2X7 receptor antagonists. Bioorg Med Chem Lett 2016; 26:257-261. [DOI: 10.1016/j.bmcl.2015.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
37
|
Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 2015; 104:31-49. [PMID: 26686393 DOI: 10.1016/j.neuropharm.2015.12.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain, diabetes, ischemic protection and many other conditions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2-MeSADP, (PubChem CID: 121990)
- A-740003, (PubChem CID: 23232014)
- ATP
- Agonists
- Antagonists
- DPCPX, (PubChem CID: 1329)
- GPCR
- IB-MECA, (PubChem CID: 123683)
- Ion channel
- LUF6000, (PubChem CID: 11711282)
- MRS2500, (PubChem CID: 44448831)
- Nucleosides
- Nucleotides
- PPTN, (PubChem CID: 42611190)
- PSB-1114, (PubChem CID: 52952605)
- PSB-603, (PubChem CID: 44185871)
- SCH442416, (PubChem CID: 10668061)
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892, Bethesda, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|