1
|
Liu X, Zhang J, Sun W, Cao J, Ma Z. COX-2 in lung cancer: Mechanisms, development, and targeted therapies. Chronic Dis Transl Med 2024; 10:281-292. [PMID: 39429482 PMCID: PMC11483542 DOI: 10.1002/cdt3.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 10/22/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) comprising 85% of all cases. COX-2, an enzyme induced significantly under stress conditions, catalyzes the conversion of free arachidonic acid into prostaglandins. It exhibits high expression in various tumors and is closely linked to LC progression. COX-2 functions as a pivotal driver in cancer pathogenesis by promoting prostaglandin E2 synthesis and facilitating tumor cell occurrence and development. Furthermore, COX-2 holds potential as a predictive marker for early-stage NSCLC, guiding targeted therapy in patients with early COX-2 overexpression. Additionally, combining COX-2 inhibitors with diverse treatment modalities enhances tumor therapeutic efficacy, minimizes adverse effects on healthy tissues, and improves overall patient survival rates posttreatment. In conclusion, combined therapy targeting COX-2 presents a promising novel strategy for NSCLC treatment, offering avenues for improving prognosis and effective tumor treatment. This review provides novel insights and ideas for developing new treatment strategies to improve the prognosis of NSCLC.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Respiratory MedicinePostgraduate Training Base of Jinzhou Medical University in the General Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Junli Zhang
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Wenwu Sun
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Jianping Cao
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| | - Zhuang Ma
- Department of Respiratory MedicineGeneral Hospital of Northern Theater CommandShenyangLiaoningChina
| |
Collapse
|
2
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
4
|
Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, Poppiti R. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Curr Oncol 2023; 30:704-719. [PMID: 36661704 PMCID: PMC9858415 DOI: 10.3390/curroncol30010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
Collapse
Affiliation(s)
- George Doumat
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Morgan Bou Zerdan
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nasri Nasra
- Faculty of Medicine, University of Aleppo, Aleppo 15310, Syria
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Monica Recine
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Identification of AGR2 Gene-Specific Expression Patterns Associated with Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms231810845. [PMID: 36142758 PMCID: PMC9504245 DOI: 10.3390/ijms231810845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
The TGF-β signaling pathway is involved in numerous cellular processes, and its deregulation may result in cancer development. One of the key processes in tumor progression and metastasis is epithelial to mesenchymal transition (EMT), in which TGF-β signaling plays important roles. Recently, AGR2 was identified as a crucial component of the cellular machinery responsible for maintaining the epithelial phenotype, thereby interfering with the induction of mesenchymal phenotype cells by TGF-β effects in cancer. Here, we performed transcriptomic profiling of A549 lung cancer cells with CRISPR-Cas9 mediated AGR2 knockout with and without TGF-β treatment. We identified significant changes in transcripts associated with focal adhesion and eicosanoid production, in particular arachidonic acid metabolism. Changes in transcripts associated with the focal adhesion pathway were validated by RT-qPCR of COL4A1, COL4A2, FLNA, VAV3, VEGFA, and VINC mRNAs. In addition, immunofluorescence showed the formation of stress fibers and vinculin foci in cells without AGR2 and in response to TGF-β treatment, with synergistic effects observed. These findings imply that both AGR2 downregulation and TGF-β have a role in focal adhesion formation and cancer cell migration and invasion. Transcripts associated with arachidonic acid metabolism were downregulated after both AGR2 knockout and TGF-β treatment and were validated by RT-qPCR of GPX2, PTGS2, and PLA2G4A. Since PGE2 is a product of arachidonic acid metabolism, its lowered concentration in media from AGR2-knockout cells was confirmed by ELISA. Together, our results demonstrate that AGR2 downregulation and TGF-β have an essential role in focal adhesion formation; moreover, we have identified AGR2 as an important component of the arachidonic acid metabolic pathway.
Collapse
|
6
|
Zhao X, Cui L, Zhang Y, Guo C, Deng L, Wen Z, Lu Z, Shi X, Xing H, Liu Y, Zhang Y. Screening for Potential Therapeutic Agents for Non-Small Cell Lung Cancer by Targeting Ferroptosis. Front Mol Biosci 2022; 9:917602. [PMID: 36203872 PMCID: PMC9532010 DOI: 10.3389/fmolb.2022.917602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Chao Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhitong Wen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xiaoyuan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Haojie Xing
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu, ; Yi Zhang, , orcid.org/0000-0003-0305-3127
| |
Collapse
|
7
|
Lou Y, Huang Z, Wu H, Zhou Y. Tranilast attenuates lipopolysaccharide‑induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway. Mol Med Rep 2022; 26:220. [PMID: 35583012 PMCID: PMC9175269 DOI: 10.3892/mmr.2022.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
It has been reported that the expression of C-X-C motif chemokine receptor 4 (CXCR4) is increased in patients with lung injury, while CXCR4 downregulation can improve sepsis-induced lung injury. Previous studies have shown that tranilast can inhibit CXCR4 mRNA expression. Therefore, the present study aimed to investigate whether tranilast could protect against lipopolysaccharide (LPS)-induced lung injury via the CXCR4/Janus kinase 2 (JAK2)/STAT3 signaling pathway. A Cell Counting Kit-8 assay was performed to evaluate the effect of different concentrations of tranilast on the viability of LPS-induced BEAS-2B cells. The mRNA and protein expression levels of the inflammatory factors, TNFα, IL-1β, IL-6, cytochrome c oxidase subunit II and inducible nitric oxide synthase were detected using reverse transcription-quantitative PCR and western blot analysis, respectively. In addition, the cell apoptosis rate and the expression levels of apoptosis-related proteins were analyzed using a TUNEL staining assay and western blot analysis, respectively. The expression levels of the CXCR4/JAK2/STAT3 signaling pathway-related proteins were also determined using western blot analysis. Furthermore, the effects of tranilast on cell viability, inflammation and apoptosis were also evaluated in LPS-stimulated BEAS-2B cells following CXCR4 overexpression, which were pre-treated with tranilast. The results demonstrated that tranilast could alleviate LPS-induced cell viability, the secretion of inflammatory cytokines and cell apoptosis. In addition, cell treatment with tranilast inhibited the expression of CXCR4/JAK2/STAT3 signaling-related proteins in LPS-induced BEAS-2B cells. Following CXCR4 overexpression, the alleviating effect of tranilast on cell viability, inflammatory response and apoptosis was notably attenuated. Overall, the current study suggested that tranilast could attenuate LPS-induced lung injury via the CXCR4/JAK2/STAT3 signaling pathway, suggesting that tranilast could be considered as a promising agent for treating sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Yufeng Lou
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Zhenrong Huang
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Hui Wu
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yun Zhou
- Department of Emergency, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
8
|
Aryl Hydrocarbon Receptor (AhR) Limits the Inflammatory Responses in Human Lung Adenocarcinoma A549 Cells via Interference with NF-κB Signaling. Cells 2022; 11:cells11040707. [PMID: 35203356 PMCID: PMC8870046 DOI: 10.3390/cells11040707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
Apart from its role in the metabolism of carcinogens, the aryl hydrocarbon receptor (AhR) has been suggested to be involved in the control of inflammatory responses within the respiratory tract. However, the mechanisms responsible for this are only partially known. In this study, we used A549 cell line, as a human model of lung alveolar type II (ATII)-like cells, to study the functional role of the AhR in control of inflammatory responses. Using IL-1β as an inflammation inducer, we found that the induction of cyclooxygenase-2 and secretion of prostaglandins, as well as expression and release of pro-inflammatory cytokines, were significantly higher in the AhR-deficient A549 cells. This was linked with an increased nuclear factor-κB (NF-κB) activity, and significantly enhanced phosphorylation of its regulators, IKKα/β, and their target IκBα, in the AhR-deficient A549 cells. In line with this, when we mimicked the exposure to a complex mixture of airborne pollutants, using an organic extract of reference diesel exhaust particle mixture, an exacerbated inflammatory response was observed in the AhR-deficient cells, as compared with wild-type A549 cells. Together, the present results indicate that the AhR may act as a negative regulator of the inflammatory response in the A549 model, via a direct modulation of NF-κB signaling. Its role(s) in the control of inflammation within the lung alveoli exposed to airborne pollutants, especially those which simultaneously activate the AhR, thus deserve further attention.
Collapse
|
9
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
10
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
12
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
13
|
Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. BIOLOGY 2020; 9:E434. [PMID: 33271839 PMCID: PMC7760298 DOI: 10.3390/biology9120434] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Erica Buoso
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
14
|
Zhang P, Song E, Jiang M, Song Y. Celecoxib and Afatinib synergistic enhance radiotherapy sensitivity on human non-small cell lung cancer A549 cells. Int J Radiat Biol 2020; 97:170-178. [PMID: 33164600 DOI: 10.1080/09553002.2021.1846817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Radioresistance is highly correlated with radiotherapy failure in clinical cancer treatment. In the current study, we sought to examine the efficacy of Celecoxib and Afatinib co-treatment as radiosensitizers in the management of non-small cell lung cancer (NSCLC) A549 cells. MATERIALS AND METHODS Generally, A549 cells were cultured with the treatment of Celecoxib and/or Afatinib for 24 h. Then, the cells were exposed to irradiation at 2 Gy/min for 1 min. After the end of treatment, cell viability, clonogenic survival, apoptosis and Prostaglandin E2 (PGE2) Elisa assays were performed. Transcriptional levels of Cyclooxygenase-2 (COX-2) affected by Celecoxib and/or Afatinib were measured by RT-qPCR. Posttranscriptional level of epidermal growth factor receptor (EGFR)-related gene was measured by Western blotting analysis. RESULTS Here, we, for the first time, reported that the co-treatment of Celecoxib and Afatinib regulates the resistance of NSCLC A549 cells to radiation. The co-treatment of Celecoxib and Afatinib sensitized radiotherapy through the radiation-induced loss of cell viability and colony formation, as well as apoptosis. Mechanistically, Celecoxib and Afatinib-treated cells showed the inhibition of COX-2 and EGFR expression, which may be responsible for the A549 cells' increased resistance to radiation. CONCLUSION Our results suggested that Celecoxib and Afatinib regulate cell sensitivity to apoptosis, and thus modulate the resistance of NSCLC to radiation.
Collapse
Affiliation(s)
- Pan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
In Vitro and In Silico Evaluation of Anticancer Activity of New Indole-Based 1,3,4-Oxadiazoles as EGFR and COX-2 Inhibitors. Molecules 2020; 25:molecules25215190. [PMID: 33171861 PMCID: PMC7664637 DOI: 10.3390/molecules25215190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a-i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a-i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 μM, 9.62 ± 1.14 μM, and 8.07 ± 1.36 μM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 μM, 19.41 ± 2.38 μM, and 23.81 ± 4.17 μM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 μM when compared with erlotinib (IC50 = 0.04 ± 0.01 μM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.
Collapse
|
16
|
Pandey A, Oliver R, Kar SK. Differential Gene Expression in Brain and Liver Tissue of Wistar Rats after Rapid Eye Movement Sleep Deprivation. Clocks Sleep 2020; 2:442-465. [PMID: 33114225 PMCID: PMC7711450 DOI: 10.3390/clockssleep2040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is essential for the survival of most living beings. Numerous researchers have identified a series of genes that are thought to regulate "sleep-state" or the "deprived state". As sleep has a significant effect on physiology, we believe that lack of total sleep, or particularly rapid eye movement (REM) sleep, for a prolonged period would have a profound impact on various body tissues. Therefore, using the microarray method, we sought to determine which genes and processes are affected in the brain and liver of rats following nine days of REM sleep deprivation. Our findings showed that REM sleep deprivation affected a total of 652 genes in the brain and 426 genes in the liver. Only 23 genes were affected commonly, 10 oppositely, and 13 similarly across brain and liver tissue. Our results suggest that nine-day REM sleep deprivation differentially affects genes and processes in the brain and liver of rats.
Collapse
Affiliation(s)
- Atul Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ryan Oliver
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Santosh K Kar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Bio Incubator, Campus-11, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
17
|
Identification of a Transcription Factor-microRNA-Gene Coregulation Network in Meningioma through a Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6353814. [PMID: 32832554 PMCID: PMC7428944 DOI: 10.1155/2020/6353814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
Abstract
Background Meningioma is a prevalent type of brain tumor. However, the initiation and progression mechanisms involved in the meningioma are mostly unknown. This study aimed at exploring the potential transcription factors/micro(mi)RNAs/genes and biological pathways associated with meningioma. Methods mRNA expressions from GSE88720, GSE43290, and GSE54934 datasets, containing data from 83 meningioma samples and eight control samples, along with miRNA expression dataset GSE88721, which had 14 meningioma samples and one control sample, were integrated analyzed. The bioinformatics approaches were used for identifying differentially expressed genes and miRNAs, as well as predicting transcription factor targets related to the differentially expressed genes. The approaches were also used for gene ontology term analysis and biological pathway enrichment analysis, construction, and analysis of protein-protein interaction network, and transcription factor-miRNA-gene coregulation network construction. Results Fifty-six upregulated and 179 downregulated genes were identified. Thirty transcription factors able to target the differentially expressed genes were predicted and selected based on public databases. One hundred seventeen overlapping genes were identified from the differentially expressed genes and the miRNAs predicted by miRWalk. Furthermore, NF-κB/IL6, PTGS2, MYC/hsa-miR-574-5p, hsa-miR-26b-5p, hsa-miR-335-5p, and hsa-miR-98-5p, which are involved in the transcription factor-miRNA-mRNA coregulation network, were found to be associated with meningioma. Conclusion The bioinformatics analysis identified several potential molecules and relevant pathways that may represent critical mechanisms involved in the progression and development of meningioma. This work provides new insights into meningioma pathogenesis and treatments.
Collapse
|
18
|
Lim W, Kang C. Avenanthramide C suppresses hypoxia-induced cyclooxygenase-2 expression through sirtuin1 activation in non-small-cell lung cancer cells. Anim Cells Syst (Seoul) 2020; 24:79-83. [PMID: 32489686 PMCID: PMC7241542 DOI: 10.1080/19768354.2020.1748108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/01/2022] Open
Abstract
Avenanthramide C (AVC), found mainly in oats, mediates anti-inflammatory activities by reducing the anti-inflammatory cytokine levels. This study investigated the effects of AVC on hypoxia-induced cyclooxygenase-2 (COX-2) expression in A549 cells. AVC suppressed the hypoxia-induced increase in COX-2 protein levels and promoter activity. We also observed that the effects of AVC were reversed by a SIRT1 inhibitor, indicating that the inhibitory effects of AVC on hypoxia-induced COX-2 expression are mediated by SIRT1. Therefore, AVC inhibits the hypoxic induction of COX-2 expression via SIRT1 activation. Our results suggest that AVC could be beneficial for preventing lung inflammation under hypoxia.
Collapse
Affiliation(s)
- Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon, South Korea
| |
Collapse
|
19
|
Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells. Cell Death Dis 2019; 10:777. [PMID: 31611604 PMCID: PMC6791885 DOI: 10.1038/s41419-019-2020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
MET overactivation is one of the crucial reasons for tyrosine kinase inhibitor (TKI) resistance, but the mechanisms are not wholly clear. Here, COX2, TOPK, and MET expression were examined in EGFR-activating mutated NSCLC by immunohistochemical (IHC) analysis. The relationship between COX2, TOPK, and MET was explored in vitro and ex vivo. In addition, the inhibition of HCC827GR cell growth by combining COX2 inhibitor (celecoxib), TOPK inhibitor (pantoprazole), and gefitinib was verified ex vivo and in vivo. We found that COX2 and TOPK were highly expressed in EGFR-activating mutated NSCLC and the progression-free survival (PFS) of triple-positive (COX2, MET, and TOPK) patients was shorter than that of triple-negative patients. Then, we observed that the COX2-TXA2 signaling pathway modulated MET through AP-1, resulting in an inhibition of apoptosis in gefitinib-resistant cells. Moreover, we demonstrated that MET could phosphorylate TOPK at Tyr74 and then prevent apoptosis in gefitinib-resistant cells. In line with these findings, the combination of celecoxib, pantoprazole, and gefitinib could induce apoptosis in gefitinib-resistant cells and inhibit tumor growth ex vivo and in vivo. Our work reveals a novel COX2/MET/TOPK signaling axis that can prevent apoptosis in gefitinib-resistant cells and suggests that a triple combination of FDA-approved drugs would provide a low-cost and practical strategy to overcome gefitinib resistance.
Collapse
|
20
|
Lin XM, Luo W, Wang H, Li RZ, Huang YS, Chen LK, Wu XP. The Role of Prostaglandin-Endoperoxide Synthase-2 in Chemoresistance of Non-Small Cell Lung Cancer. Front Pharmacol 2019; 10:836. [PMID: 31440159 PMCID: PMC6694719 DOI: 10.3389/fphar.2019.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
The prostaglandin-endoperoxide synthase-2 (PTGS2) plays essential roles in diverse pathological process. Although recent studies implied that PTGS2 was closely related with chemoresistance, the precise roles and the underlying mechanisms of PTGS2 in the developing process of chemoresistance in non-small cell lung cancer (NSCLC) remained elusive. In the present study, we revealed a novel molecular mechanism of PTGS2 implicated in the chemoresistance of NSCLC and proposed a model for the positive feedback regulation of PTGS2 in the process of developing resistance phenotype in NSCLC cells. Our results demonstrated that cisplatin induced PTGS2 expression through the ROS-ERK1/2-NF-κB signaling axis. The prostaglandin E2 (PGE2) derived from PTGS2 catalyzation further strengthened PTGS2 expression via the PGE2-EPs-ERK1/2 positive feedback loop, which induced multidrug resistance of NSCLC cells through up-regulation of BCL2 expression and the subsequent attenuation of cell apoptosis. Consistently, high levels of both PTGS2 and BCL2 were closely associated with poor survival in NSCLC patients. Inhibition of PTGS2 significantly reversed the chemoresistance in the resistant NSCLC in vitro and in vivo. Our results suggested that PTGS2 might be employed as an adjunctive therapeutic target for improving the response to the therapeutic agents in a subset of resistant NSCLC.
Collapse
Affiliation(s)
- Xiao-Mian Lin
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Wu Luo
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Heng Wang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Rong-Zhen Li
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Yi-Shan Huang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Lian-Kuai Chen
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Xiao-Ping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Cerioni L, Guidarelli A, Fiorani M, Cantoni O. Prostaglandin E 2 Signals Through E Prostanoid Receptor 2 to Inhibit Mitochondrial Superoxide Formation and the Ensuing Downstream Cytotoxic and Genotoxic Effects Induced by Arsenite. Front Pharmacol 2019; 10:781. [PMID: 31354495 PMCID: PMC6640088 DOI: 10.3389/fphar.2019.00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/17/2019] [Indexed: 12/02/2022] Open
Abstract
We investigated the effects of prostaglandin E2 (PGE2), an important inflammatory lipid mediator, on the cytotoxicity–genotoxicity induced by arsenite. With the use of a toxicity paradigm in which the metalloid uniquely induces mitochondrial superoxide (mitoO2−.) formation, PGE2 promoted conditions favoring the cytosolic accumulation of Bad and Bax and abolished mitochondrial permeability transition (MPT) and the ensuing lethal response through an E prostanoid receptor 2/adenylyl cyclase/protein kinase A (PKA) dependent signaling. It was, however, interesting to observe that, under the same conditions, PGE2 also abolished the DNA-damaging effects of arsenite and that this response was associated with an unexpected suppression of mitoO2−. formation. We conclude that PGE2 promotes PKA-dependent inhibition of mitoO2−. formation, thereby blunting the downstream responses mediated by these species, leading to DNA strand scission and MPT-dependent apoptosis. These findings are therefore consistent with the possibility that, in cells responding to arsenite with mitoO2−. formation, PGE2 fails to enhance—but rather decreases—the risk of neoplastic transformation associated with genotoxic events.
Collapse
Affiliation(s)
- Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
22
|
Bartolomeu ADA, Silva RC, Brocksom TJ, Noël T, de Oliveira KT. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. J Org Chem 2019; 84:10459-10471. [DOI: 10.1021/acs.joc.9b01879] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aloisio de A. Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Rodrigo C. Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J. Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Kleber T. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
23
|
Abstract
Epithelial ovarian cancer (EOC) is the fifth most common cause of cancer mortality among women. At present, EOC is treated with one or in a combination of treatments, commonly debulking surgery, combining a platinum-based and a taxane-based therapy; however, the patients have a risk of injury to the bowel, bladder, ureter, and vessels during surgery and many of them suffer from severe adverse effects caused by chemotherapy. Pharmaceutical inhibition of cyclooxygenase (COX) might be an important therapeutic tool in cancer treatment, as COX contributes to cancer progression by upregulating the levels of downstream metabolites. In this review article, we have discussed the role of COX in cancer progression and the therapeutic use of COX inhibitors in the treatment of EOC with subsequent clinical studies and future management. Usually, gonadotropins can promote prostaglandin E2 production in EOC cells via COX-1 and -2 upregulations through the PI3K/AKT signaling pathway. Several reports have shown that treatment of EOC cells with COX-1- and COX-2-specific inhibitors exhibits a therapeutic effect on EOC both in vitro and in vivo. However, more clinical investigations are needed to develop therapeutic COX inhibitors for the prevention and treatment of EOC without adverse effects.
Collapse
|
24
|
Mahboubi Rabbani SMI, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2014-2018). Expert Opin Ther Pat 2019; 29:407-427. [PMID: 31132889 DOI: 10.1080/13543776.2019.1623880] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION COX-2 is a key enzyme in the process of prostaglandins (PGs) synthesis. The products of this enzyme could play a major role as the mediators of the inflammatory response and some other medical states such as cancer. The design and synthesis of novel selective COX-2 inhibitors have always been attractive to researchers. This review discusses the structures of novel COX-2 inhibitors synthesized during the last five years and describes their efficacy as anticancer agents. AREAS COVERED It is well established that COX-2 is overexpressed in many different cancers and treatment with selective COX-2 inhibitors could relieve their symptoms and limit their adverse sequences. EXPERT OPINION The diversity of selective COX-2 inhibitors is mainly related to the types of scaffolds. Monocyclic, bicyclic, tricyclic, and acyclic scaffolds with different pharmacological effects and toxicological profiles could be found in the family of selective COX-2 inhibitors. The great interest of the researchers in this field is due to the importance of selective COX-2 inhibitors as a relatively safe and effective set of compounds which could present different properties such as antirheumatic, anti-inflammatory, antiplatelet, anti-Alzheimer's disease, anti-Parkinson's disease, and anticancer.
Collapse
Affiliation(s)
| | - Afshin Zarghi
- a Department of Medicinal Chemistry, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
25
|
Destefanis F, Fiorito V, Altruda F, Tolosano E. Investigating the Connection Between Endogenous Heme Accumulation and COX2 Activity in Cancer Cells. Front Oncol 2019; 9:162. [PMID: 30941311 PMCID: PMC6433962 DOI: 10.3389/fonc.2019.00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Heme, an iron-containing porphyrin, is fundamental for a variety of functions in cell homeostasis. Nevertheless, recent data indicate that dysregulation of heme metabolism might promote tumorigenesis. The intracellular heme pool is finely regulated through the control of heme synthesis, degradation, incorporation into hemoproteins and trafficking across membranes. All these processes might be potentially targeted to alter endogenous heme content in order to counteract cancer growth. Nevertheless, these putative therapeutic interventions have to take into account the possibility of undesired side effects, such as the over-activation of heme-dependent enzymes involved in cancer. Among them, cyclooxygenase-2 is a prostaglandin-producing hemoprotein, induced during inflammation and in different types of tumor, particularly in colorectal cancer. The aim of this study was to evaluate whether modulation of endogenous heme may affect cyclooxygenase-2 expression and activity, taking advantage of two different approaches able to alter heme levels: the silencing of the heme exporter Feline Leukemia Virus subgroup C receptor 1 and the induction of heme synthesis by 5-aminolevulinic acid administration. Our data demonstrate that the down-regulation of the heme exporter in colorectal cancer cells does not affect cyclooxygenase-2 expression and activity. Conversely, 5-aminolevulinic acid administration results in decreased cyclooxygenase-2 expression. However, the overall cyclooxygenase-2 enzymatic activity is maintained. The present work sheds light on the complex modulation of cyclooxygenase-2 by endogenous heme and support the idea that targeting heme metabolism could be a valuable therapeutic option against cancer.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
26
|
Kumar JSD, Zanderigo F, Prabhakaran J, Rubin-Falcone H, Parsey RV, Mann JJ. In vivo evaluation of [ 11C]TMI, a COX-2 selective PET tracer, in baboons. Bioorg Med Chem Lett 2018; 28:3592-3595. [PMID: 30396759 DOI: 10.1016/j.bmcl.2018.10.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/30/2018] [Indexed: 02/02/2023]
Abstract
Overexpression of Cyclooxygenase-2 (COX-2) enzyme is associated with the pathogenesis of inflammation, cancers, stroke, arthritis, and neurological disorders. Because of the involvement of COX-2 in these diseases, quantification of COX-2 expression using Positron Emission Tomography (PET) may be a biological marker for early diagnosis, monitoring of disease progression, and an indicator of effective treatment. At present there is no target-specific or validated PET tracer available for in vivo quantification of COX-2. The objective of this study is to evaluate [11C]TMI, a selective COX-2 inhibitor (Ki ≤ 1 nM) in nonhuman primates using PET imaging. PET imaging in baboons showed that [11C]TMI penetrates the blood brain barrier (BBB) and accumulates in brain in a somewhat heterogeneous pattern. Metabolite analyses indicated that [11C]TMI undergoes no significant metabolism of parent tracer in the plasma for baseline scans, however a relative faster metabolism was found for blocking scan. All the tested quantification approaches provide comparable tracer total distribution volume (VT) estimates in the range of 3.2-7 (mL/cm3). We observed about 25% lower VT values in blocking studies with meloxicam, a nonselective COX-2 inhibitor, compared to baseline [11C]TMI binding. Our findings indicate that [11C]TMI may be a suitable PET tracer for the quantification of COX-2 in vivo. Further experiments are needed to confirm the potential of this tracer in COX-2 overexpressing models for brain diseases.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA
| | | | - Ramin V Parsey
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook, New York, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Medical Center, New York, USA
| |
Collapse
|
27
|
In Vivo Brain Imaging, Biodistribution, and Radiation Dosimetry Estimation of [ 11C]Celecoxib, a COX-2 PET Ligand, in Nonhuman Primates. Molecules 2018; 23:molecules23081929. [PMID: 30072617 PMCID: PMC6222548 DOI: 10.3390/molecules23081929] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
COX-2 selective inhibitors (COXIBs) are non-steroidal anti-inflammatory drugs (NSAIDs), with fewer side effects compared with non-selective NSAIDs, and are used for the treatment of arthritis, headaches, and other inflammatory diseases of the brain and peripheral tissues. Radiolabeled COXIBs may permit positron emission tomography (PET) imaging of COX-2 localization and activity in diseases, enable monitoring of inflammatory processes, and determine target occupancy of COX-2 activity by NSAIDs, thus, accelerating the development of novel CIXIBs. We synthesized [11C]celecoxib, one of the COXIBs and a prescription drug, and here report its in vivo uptake in the brain, whole body biodistribution, and radiation dosimetry in baboons using PET. Brain imaging experiments were performed in one baboon and whole body PET scans were performed in triplicates in two male baboons using an ECAT ACCEL (Siemens Medical Solutions, Inc. Knoxville) under anesthetic conditions. PET studies in baboons show that [11C]celecoxib penetrates the blood brain barrier (BBB) and accumulates in the brain, followed by a washout of radioactivity. The liver has the highest residence time and the gallbladder is the critical organ for [11C]celecoxib. Organ Level Internal Dose Assessment (OLINDA) estimates indicate that the maximum permissible single study dosage of [11C]celecoxib in humans is 1110 MBq (30 mCi) for both males and females under the 21 CFR 361.1 dose limit for research subjects.
Collapse
|
28
|
Lee WH, Loo CY, Ghadiri M, Leong CR, Young PM, Traini D. The potential to treat lung cancer via inhalation of repurposed drugs. Adv Drug Deliv Rev 2018; 133:107-130. [PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023]
Abstract
Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
Collapse
Affiliation(s)
- Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia.
| | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Chean-Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
| |
Collapse
|
29
|
Prabhakaran J, Underwood M, Zanderigo F, Simpson NR, Cooper AR, Matthew J, Rubin-Falcone H, Parsey RV, Mann JJ, Dileep Kumar JS. Radiosynthesis and in vivo evaluation of [ 11C]MOV as a PET imaging agent for COX-2. Bioorg Med Chem Lett 2018; 28:2432-2435. [PMID: 29929881 DOI: 10.1016/j.bmcl.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/15/2022]
Abstract
Radiosynthesis and in vivo evaluation of [11C]4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (methoxy analogue of valdecoxib, [11C]MOV), a COX-2 inhibitor, was conducted in rat and baboon. Synthesis of the reference standard MOV (3), and its desmethyl precursor 2 for radiolabeling were performed using 1,2-diphenylethan-1-one as the starting material in five steps with 15% overall yield. Radiosynthesis of [11C]MOV was accomplished in 40 ± 10% yield and >99% radiochemical purity by reacting the precursor 2 in dimethyl formamide (DMF) with [11C]CH3I followed by removal of the dimethoxytrityl (DMT) protective group using trifluroacetic acid. PET studies in anesthetized baboon showed very low uptake and homogeneous distribution of [11C]MOV in brain. The radioligand underwent rapid metabolism in baboon plasma. MicroPET studies in male Sprague Dawley rats revealed [11C]MOV binding in lower thorax. The tracer binding in rats was partially blocked in heart and duodenum by the administration of 1 mg/kg oral dose of COX-2 inhibitor valdecoxib.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Mark Underwood
- Department of Psychiatry, Columbia University Medical Center, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University Medical Center, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Norman R Simpson
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Anna R Cooper
- Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Jeffrey Matthew
- Department of Psychiatry, Columbia University Medical Center, New York, USA
| | - Harry Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook Medical Center, Stony Brook, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA
| | - J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, USA.
| |
Collapse
|
30
|
Moon HJ, Kim HB, Lee SH, Jeun SE, Kang CD, Kim SH. Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 2018. [PMID: 29541415 PMCID: PMC5834263 DOI: 10.18632/oncotarget.24130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
NSAIDs (non-steroidal anti-inflammatory drugs) have potential use as anticancer agents, either alone or in combination with other cancer therapies. We found that NSAIDs including celecoxib (CCB) and ibuprofen (IBU) significantly potentiated the cytotoxicity of Hsp90 inhibitors in human multidrug-resistant (MDR) cells expressing high levels of mutant p53 (mutp53) protein and P-glycoprotein (P-gp), and reversed Hsp90 inhibitor resistance caused by activation of heat shock factor 1 (HSF1) and by up-regulation of heat shock proteins (Hsps) and P-gp. Inhibition of Akt/mTOR and STAT3 pathways by CCB induced autophagy, which promoted the degradation of mutp53, one of Hsp90 client proteins, and subsequently down-regulated HSF1/Hsps and P-gp. Inhibition of autophagy prevented mutp53 degradation and CCB-induced apoptosis, and inhibition of caspase-3-mediated apoptotic pathway by Z-DEVD-FMK did not completely block CCB-induced cell death in MDR cells, suggesting that autophagic and apoptotic cell death may contribute to CCB-induced cytotoxicity in MDR cells. Furthermore, CCB and IBU suppressed Hsp90 inhibitor-induced HSF1/Hsp70/P-gp activity and mutp53 expression in MDR cells. Our results suggest that NSAIDs can be used as potential Hsp90 inhibitor chemosensitizers and reverse resistance of MDR cells to Hsp90 inhibitors via induction of apoptosis and autophagy. These results might enable the use of lower, less toxic doses of Hsp90 inhibitors and facilitate the design of practically applicable, novel combination therapy for the treatment of MDR cancer.
Collapse
Affiliation(s)
- Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Hak-Bong Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - So-Eun Jeun
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan 626-870, Korea
| |
Collapse
|
31
|
Mardani S, Maghsoodi M, Ghanbarzadeh S, Nokhodchi A, Yaqoubi S, Hamishehkar H. Preparation and Characterization of Celecoxib Agglomerated Nanocrystals and Dry Powder Inhalation Formulations to Improve its Aerosolization Performance. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
32
|
Zhang G, Gan YH. Synergistic antitumor effects of the combined treatment with an HDAC6 inhibitor and a COX-2 inhibitor through activation of PTEN. Oncol Rep 2017; 38:2657-2666. [PMID: 29048666 PMCID: PMC5780018 DOI: 10.3892/or.2017.5981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/11/2017] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy is one of the most effective non-surgical treatments for various types of tumor. Identifying different combinations of antitumor agents that can produce synergistic antitumor effects remains an important clinical strategy. In the present study, we showed that the combination of histone deacetylase 6 (HDAC6) inhibitor tubastatin A together with cyclooxygenase-2 (COX-2) inhibitor celecoxib resulted in synergistic antitumor effects in CAL 27 and SACC-83 cells. Treatment with celecoxib alone promoted the membrane translocation of phosphatase and tensin homolog (PTEN), indicating PTEN activation, and consequently led to protein kinase B (AKT) dephosphorylation (inactivation). Similarly, treatment with an HDAC6 inhibitor alone promoted PTEN membrane translocation and correspondingly dephosphorylated AKT. The combination of celecoxib and an HDAC6 inhibitor synergistically increased PTEN membrane translocation and inactivated AKT. Moreover, celecoxib enhanced the HDAC6 inhibitor-induced antitumor effects in PTEN-deficient U-87 MG cells that had been stably transfected with wild-type PTEN, but not in the same cell line stably transfected with mutant PTEN-K163R, which cannot be activated by HDAC6 inhibitors. In summary, the results indicated that the COX-2 inhibitor celecoxib enhanced the HDAC6 inhibitor-induced antitumor effects by activating the PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Guanhua Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| |
Collapse
|
33
|
Han ZQ, Liao H, Shi F, Chen XP, Hu HC, Tian MQ, Wang LH, Ying S. Inhibition of cyclooxygenase-2 sensitizes lung cancer cells to radiation-induced apoptosis. Oncol Lett 2017; 14:5959-5965. [PMID: 29113232 PMCID: PMC5661612 DOI: 10.3892/ol.2017.6940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/15/2017] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy resistance is an enduring major setback in lung cancer therapy, and is responsible for a large proportion of treatment failures. In previous years, cyclooxygenase-2 (COX-2) has frequently been reported to promote tumor occurrence and development, suggesting a potential role in radiotherapy resistance. To investigate whether COX-2 inhibitors can be applied in radiosensitization, an MTT assay was performed to examine cell viability after X-ray radiation in the presence or absence of the specific COX-2 inhibitor Celecoxib. Cell apoptosis and cell cycle changes were also detected through laser confocal scanning microcopy and flow cytometry. X-ray treatment only caused mild cell death in lung cancer A549 cells. However, combination treatment using celecoxib and X-ray radiation exhibited improved inhibitory effects and significantly suppressed cell proliferation. Therefore, COX-2 inhibitors combined with radiotherapy can counteract radiation-induced high COX-2 expression, demonstrating that celecoxib can function as a radiosensitizer of lung cancer cells. It is therefore reasonable to predict COX-2 inhibitors to be potential clinical radiotherapy synergists.
Collapse
Affiliation(s)
- Zhi-Qiang Han
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Hongwei Liao
- Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Feng Shi
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Xiao-Ping Chen
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Hua-Cheng Hu
- Department of Respiratory Internal Medicine, The Second Affiliated Hospital, Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| | - Ming-Qing Tian
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Li-Hua Wang
- Department of Respiratory Internal Medicine, People's Hospital of Quzhou City, Quzhou, Zhejiang 324000, P.R. China
| | - Songmin Ying
- Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
34
|
lncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein. Biochem Biophys Res Commun 2017. [PMID: 28634076 DOI: 10.1016/j.bbrc.2017.06.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly upregulated in liver cancer (HULC), a lncRNA overexpressed in hepatocellular carcinoma (HCC), has been demonstrated to be involved in the carcinogenesis and progression of HCC. However, the mechanisms of HULC promoting the abnormal growth of HCC cells are still not well elucidated. In the present study, we for the first time demonstrated that HULC promoted the growth of HCC cells through elevating COX-2 protein. Moreover, the study of the corresponding mechanism by which HULC upregulated COX-2 showed that HULC enhanced the level of ubiquitin-specific peptidase 22 (USP22), which decreased ubiquitin-mediated degradation of COX-2 protein by removing the conjugated polyubiquitin chains from COX-2 and finally stabilized COX2 protein. In addition, knockdown of USP22 or COX-2 attenuated HULC-mediated abnormal growth of HCC cells. In conclusion, our results demonstrated that "USP22/COX-2" axis played an important role in HULC promoting growth of HCC cells. The identification of this novel pathway may pave a road for developing new potential anti-HCC strategies.
Collapse
|
35
|
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8:51888-51906. [PMID: 28881698 PMCID: PMC5584299 DOI: 10.18632/oncotarget.17128] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress results from an imbalance of the reactive oxygen species/reactive nitrogen species (ROS/RNS) production and the oxidants defense system. Extensive research during the last decades has revealed that oxidative stress can mediate cancer initiation and development by leading not only to molecular damage but also to a disruption of reduction-oxidation (redox) signaling. In order to provide a global overview of the redox signaling pathways, which play a role in cancer formation, we conducted a systematic literature search in PubMed and ISI Web of Science and identified 185 relevant reviews published in the last 10 years. The 20 most frequently described pathways were selected to be presented in this systematic review and could be categorized into 3 groups: Intracellular ROS/RNS generating organelles and enzymes, signal transduction cascades kinases/phosphatases and transcription factors. Intracellular ROS/RNS generation organelles are mitochondria, endoplasmic reticulum and peroxisomes. Enzymes, including NOX, COX, LOX and NOS, are the most prominent enzymes generating ROS/RNS. ROS/RNS act as redox messengers of transmembrane receptors and trigger the activation or inhibition of signal transduction kinases/phosphatases, such as the family members of protein tyrosine kinases and protein tyrosine phosphatases. Furthermore, these reactions activate downstream signaling pathways including protein kinase of the MAPK cascade, PI3K and PKC. The kinases and phosphatases regulate the phosphorylation status of transcription factors including APE1/Ref-1, HIF-1α, AP-1, Nrf2, NF-κB, p53, FOXO, STAT, and β-catenin. Finally, we briefly discuss cancer prevention and treatment opportunities, which address redox pathways and further research needs.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany.,Institute of Health Care and Social Sciences, FOM University, Essen, Germany
| |
Collapse
|
36
|
Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea. Sci Rep 2017; 7:44693. [PMID: 28300223 PMCID: PMC5353645 DOI: 10.1038/srep44693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
An adverse role for obstructive sleep apnea (OSA) in cancer epidemiology and outcomes has recently emerged from clinical and animal studies. In animals, intermittent hypoxia (IH) mimicking OSA promotes tumor malignancy both directly and via host immune alterations. We hypothesized that IH could potentiate cancer aggressiveness through activation of the cyclooxygenase-2 (COX-2) pathway and the concomitant increases in prostaglandin E2 (PGE2). The contribution of the COX-2 in IH-induced enhanced tumor malignancy was assessed using celecoxib as a COX-2 specific inhibitor in a murine model of OSA bearing Lewis lung carcinoma (LLC1) tumors. Exposures to IH accelerated tumor progression with a tumor associated macrophages (TAMs) shift towards a pro-tumoral M2 phenotype. Treatment with celecoxib prevented IH-induced adverse tumor outcomes by inhibiting IH-induced M2 polarization of TAMs. Furthermore, TAMs isolated from IH-exposed mice treated with celecoxib reduced the proliferation of LLC1 naïve cells, while the opposite occurred with placebo-treated IH-exposed mice. Finally, in vitro IH exposures of murine macrophages and LLC1 cells showed that both cell types increased PGE2 release in response to IH. These results suggest a crucial role for the COX-2 signaling pathway in the IH-exacerbated malignant processes, and designate macrophages and lung adenocarcinoma cells, as potential sources of PGE2.
Collapse
|
37
|
Kummari B, Polkam N, Ramesh P, Anantaraju H, Yogeeswari P, Anireddy JS, Guggilapu SD, Babu BN. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Adv 2017. [DOI: 10.1039/c6ra28525b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 1,2,3-triazole–etodolac hybrids (6a–l) were synthesized as potent anti-cancer molecules and the synthesis strongly relies on Huisgen's 1,3-dipolar cycloaddition between etodolac azide 3 and substituted terminal alkynes 5a–l.
Collapse
Affiliation(s)
- Bhaskar Kummari
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Naveen Polkam
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Perla Ramesh
- Natural Products Chemistry Division
- Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | | | - Perumal Yogeeswari
- Department of Pharmacy
- Birla Institute of Technology and Science
- Pilani
- Hyderabad Campus
- India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology
- Institute of Science and Technology
- Jawaharlal Nehru Technological University Hyderabad
- Hyderabad-500085
- India
| | - Sravanthi Devi Guggilapu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education Research (NIPER)
- Hyderabad
- India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education Research (NIPER)
- Hyderabad
- India
| |
Collapse
|
38
|
Gölz L, Buerfent BC, Hofmann A, Rühl H, Fricker N, Stamminger W, Oldenburg J, Deschner J, Hoerauf A, Nöthen MM, Schumacher J, Hübner MP, Jäger A. Genome-wide transcriptome induced by nickel in human monocytes. Acta Biomater 2016; 43:369-382. [PMID: 27477848 DOI: 10.1016/j.actbio.2016.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Nickel-containing alloys are frequently used in the biomedical field, although, owing to corrosive processes metal ion leaching is inevitable. Due to nickel ion (Ni(2+)) leaching several adverse effects are described in the literature. However, only a few studies evaluated the genetic profile of Ni(2+) in human cells which is of great importance since nickel-induced effects differ between humans and mice as a result of species-specific receptor variability. Thus, we investigated gene expression induced by Ni(2+)in human monocytes using a transcriptome-wide approach determining new target genes implicated in nickel-induced pathologies. Monocytes were isolated from healthy volunteers of Central European origin using stringent inclusion criteria. Cells were challenged with different Ni(2+) concentrations. Array-based gene expression analysis was performed comprising more than 47,000 transcripts followed by pathway analyses. Transcriptional data were validated by protein and cell surface markers. Ni(2+) significantly influenced the expression of 1385 transcripts in a dose-dependent manner. Apart from known targets (CCL20↑, PTGS2↑, MTs↑, SLCs↑), we identified new candidates implicated in Ni(2+)-elicited processes (various microRNAs↑, INSIG1↑, NAMPT↑, MS4A6A↓, DHRS9↓). Several of these transcripts correspond to immunity, inflammation and were shown to be involved in cellular reactions related to hypersensitivity, cancer, colitis, and encephalitis. Moreover, 459 canonical pathways/signaling, 500 pathologies and 2687 upstream regulators were detected. Protein results validated our findings. To our knowledge, the present systematic transcriptome-wide expression study is the first which explored Ni(2+)-elicited cell responses in human primary monocytes identifying new target genes, pathways and upstream regulators of relevance to diagnostic and therapeutic strategies. STATEMENT OF SIGNIFICANCE Nickel is widely applied in the biomedical field, although several adverse effects are documented in the literature due to nickel ion (Ni(2+)) leaching. In humans, allergic reactions like contact dermatitis are the most common adverse effect to Ni(2+), whereas serious concerns relate to possible systemic and carcinogenic activities. Using a systematic genome-wide transcriptional approach in human primary monocytes unveil new target genes, pathways and upstream regulators implicated in nickel-elicited immune response which are of significance to diagnostic and therapeutic strategies. This approach provides new information of how host-derived immune response contributes to the interaction with antigens and supports the interplay between metal ions and systemic diseases.
Collapse
|
39
|
Cyclooxygenase-2 induced β1-integrin expression in NSCLC and promoted cell invasion via the EP1/MAPK/E2F-1/FoxC2 signal pathway. Sci Rep 2016; 6:33823. [PMID: 27654511 PMCID: PMC5031967 DOI: 10.1038/srep33823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) has been implicated in cell invasion in non-small-cell lung cancer (NSCLC). However, the mechanism is unclear. The present study investigated the effect of COX-2 on β1-integrin expression and cell invasion in NSCLC. COX-2 and β1-integrin were co-expressed in NSCLC tissues. COX-2 overexpression or Prostaglandin E2 (PGE2) treatment increased β1-integrin expression in NSCLC cell lines. β1-integrin silencing suppressed COX-2-mediated tumour growth and cancer cell invasion in vivo and in vitro. Prostaglandin E Receptor EP1 transfection or treatment with EP1 agonist mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated β1-integrin expression. EP1 agonist treatment promoted Erk1/2, p38 phosphorylation and E2F-1 expression. MEK1/2 and p38 inhibitors suppressed EP1-mediated β1-integrin expression. E2F-1 silencing suppressed EP1-mediated FoxC2 and β1-integrin upregulation. ChIP and Luciferase Reporter assays identified that EP1 agonist treatment induced E2F-1 binding to FoxC2 promotor directly and improved FoxC2 transcription. FoxC2 siRNA suppressed β1-integrin expression and EP1-mediated cell invasion. Immunohistochemistry showed E2F-1, FoxC2, and EP1R were all highly expressed in the NSCLC cases. This study suggested that COX-2 upregulates β1-integrin expression and cell invasion in NSCLC by activating the MAPK/E2F-1 signalling pathway. Targeting the COX-2/EP1/PKC/MAPK/E2F-1/FoxC2/β1-integrin pathway might represent a new therapeutic strategy for the prevention and treatment of this cancer.
Collapse
|
40
|
Sarfraz M, Roa W, Bou-Chacra N, Löbenberg R. Inflammation Caused by Nanosized Delivery Systems: Is There a Benefit? Mol Pharm 2016; 13:3270-8. [PMID: 27540750 DOI: 10.1021/acs.molpharmaceut.6b00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secondary macrophage cytotoxicity induced by nanoparticles was described before. The study aim was to investigate the role of secondary cytotoxic effect in a macrophage-lung cancer coculture model after nanoparticle treatment in the presence and absence of anti-inflammatory drugs. An in vitro coculture model composed of confluent alveolar macrophage MH-S and A-549 lung cancer cells separated by a 0.4 μm porous membrane was used in the study. Macrophages were treated with two sizes of gelatin nanoparticles and two sizes of poly(isobutyl cyanoacrylate) (PIBCA) nanoparticles, with and without doxorubicin as a chemotherapeutic drug. The treatment effect with and without the presence of anti-inflammatory drug was studied using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The model drugs were ibuprofen, celecoxib, prednisolone, dexamethasone, and methotrexate. Different nanoparticles in different sizes were synthesized with a range of physicochemical characteristics. Doxorubicin loaded nanoparticles were prepared with an entrapment efficiency of 82-83% for PIBCA and 39-42% for gelatin. Nanoparticle treatment of macrophages showed a secondary cytotoxic effect on A-549 cancer cells at 24 and 36 h, with a drop in cell viability of 40-62%. However, this effect was significantly reduced to 10-48% if the macrophages were exposed to anti-inflammatory drugs. When ibuprofen and celecoxib were used the cell viability rebounded between 24 and 36 h. For prednisolone, dexamethasone, and methotrexate the cell viability dropped further between 24 and 36 h. Macrophages exposed to nanoparticles show secondary cytotoxicity, which has a significant antitumor effect in the microclimate of the coculture model. The beneficial nanoparticle treatment effect was significantly reduced if nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, or methotrexate was given at the same time. The data suggest that anti-inflammatory treatments can decrease the carrier-induced macrophage cytotoxicity and its antitumor effectiveness with chemotherapy.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Wilson Roa
- Department of Radiation Oncology, Cross Cancer Institute, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Nadia Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo , Sao Paulo, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|