1
|
Shalata W, Abu Saleh O, Tourkey L, Shalata S, Neime AE, Abu Juma’a A, Soklakova A, Tourkey L, Jama AA, Yakobson A. The Efficacy of Cannabis in Oncology Patient Care and Its Anti-Tumor Effects. Cancers (Basel) 2024; 16:2909. [PMID: 39199679 PMCID: PMC11352579 DOI: 10.3390/cancers16162909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
As the legalization of medical cannabis expands across several countries, interest in its potential advantages among cancer patients and caregivers is burgeoning. However, patients seeking to integrate cannabis into their treatment often encounter frustration when their oncologists lack adequate information to offer guidance. This knowledge gap is exacerbated by the scarcity of published literature on the benefits of medical cannabis, leaving oncologists reliant on evidence-based data disheartened. This comprehensive narrative article, tailored for both clinicians and patients, endeavors to bridge these informational voids. It synthesizes cannabis history, pharmacology, and physiology and focuses on addressing various symptoms prevalent in cancer care, including insomnia, nausea and vomiting, appetite issues, pain management, and potential anti-cancer effects. Furthermore, by delving into the potential mechanisms of action and exploring their relevance in cancer treatment, this article aims to shed light on the potential benefits and effects of cannabis in oncology.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omar Abu Saleh
- Department of Dermatology and Venereology, Emek Medical Centre, Afula 18341, Israel
| | - Lena Tourkey
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Ala Eddin Neime
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ali Abu Juma’a
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arina Soklakova
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lama Tourkey
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Center and Dr. Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Mashabela MD, Kappo AP. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int J Mol Sci 2024; 25:5659. [PMID: 38891847 PMCID: PMC11171526 DOI: 10.3390/ijms25115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Cannabinoids, the bioactive compounds found in Cannabis sativa, have been used for medicinal purposes for centuries, with early discoveries dating back to the BC era (BCE). However, the increased recreational use of cannabis has led to a negative perception of its medicinal and food applications, resulting in legal restrictions in many regions worldwide. Recently, cannabinoids, notably Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), have gained renewed interest in the medical field due to their anti-cancer properties. These properties include the inhibition of tumour growth and cell invasion, anti-inflammatory effects, and the induction of autophagy and apoptosis. As a result, the use of cannabinoids to treat chemotherapy-associated side effects, like nausea, vomiting, and pain, has increased, and there have been suggestions to implement the large-scale use of cannabinoids in cancer therapy. However, these compounds' cellular and molecular mechanisms of action still need to be fully understood. This review explores the recent evidence of CBD's efficacy as an anti-cancer agent, which is of interest due to its non-psychoactive properties. The current review will also provide an understanding of CBD's common cellular and molecular mechanisms in different cancers. Studies have shown that CBD's anti-cancer activity can be receptor-dependent (CB1, CB2, TRPV, and PPARs) or receptor-independent and can be induced through molecular mechanisms, such as ceramide biosynthesis, the induction of ER stress, and subsequent autophagy and apoptosis. It is projected that these molecular mechanisms will form the basis for the therapeutic applications of CBD. Therefore, it is essential to understand these mechanisms for developing and optimizing pre-clinical CBD-based therapies.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway, P.O. Box 524, Johannesburg 2006, South Africa;
| | | |
Collapse
|
3
|
Abdel Shaheed C, Hayes C, Maher CG, Ballantyne JC, Underwood M, McLachlan AJ, Martin JH, Narayan SW, Sidhom MA. Opioid analgesics for nociceptive cancer pain: A comprehensive review. CA Cancer J Clin 2024; 74:286-313. [PMID: 38108561 DOI: 10.3322/caac.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023] Open
Abstract
Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.
Collapse
Affiliation(s)
- Christina Abdel Shaheed
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Christopher Hayes
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Christopher G Maher
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Jane C Ballantyne
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Martin Underwood
- Warwick Clinical Trials Unit, University of Warwick, Coventry, United Kingdom
- University Hospitals of Coventry and Warwickshire, Coventry, United Kingdom
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer H Martin
- College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sujita W Narayan
- Faculty of Medicine and Health, School of Public Health, University of Sydney, Sydney, New South Wales, Australia
- Sydney Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, New South Wales, Australia
| | - Mark A Sidhom
- Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia
- South Western Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Albahri G, Badran A, Abdel Baki Z, Alame M, Hijazi A, Daou A, Baydoun E. Potential Anti-Tumorigenic Properties of Diverse Medicinal Plants against the Majority of Common Types of Cancer. Pharmaceuticals (Basel) 2024; 17:574. [PMID: 38794144 PMCID: PMC11124340 DOI: 10.3390/ph17050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, cancer is one of the primary causes of both morbidity and mortality. To prevent cancer from getting worse, more targeted and efficient treatment plans must be developed immediately. Recent research has demonstrated the benefits of natural products for several illnesses, and these products have played a significant role in the development of novel treatments whose bioactive components serve as both chemotherapeutic and chemo-preventive agents. Phytochemicals are naturally occurring molecules obtained from plants that have potential applications in both cancer therapy and the development of new medications. These phytochemicals function by regulating the molecular pathways connected to the onset and progression of cancer. Among the specific methods are immune system control, inducing cell cycle arrest and apoptosis, preventing proliferation, raising antioxidant status, and inactivating carcinogens. A thorough literature review was conducted using Google Scholar, PubMed, Scopus, Google Patent, Patent Scope, and US Patent to obtain the data. To provide an overview of the anticancer effects of several medicinal plants, including Annona muricata, Arctium lappa, Arum palaestinum, Cannabis sativa, Catharanthus roseus, Curcuma longa, Glycyrrhiza glabra, Hibiscus, Kalanchoe blossfeldiana, Moringa oleifera, Nerium oleander, Silybum marianum, Taraxacum officinale, Urtica dioica, Withania somnifera L., their availability, classification, active components, pharmacological activities, signaling mechanisms, and potential side effects against the most common cancer types were explored.
Collapse
Affiliation(s)
- Ghosoon Albahri
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra Amman Jordan, Amman P.O. Box 961343, Jordan;
| | - Zaher Abdel Baki
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Alame
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Akram Hijazi
- Plateforme de Recherche et d’Analyse en Sciences de l’Environnement (EDST-PRASE), Beirut P.O. Box 657314, Lebanon; (G.A.); (M.A.); (A.H.)
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107, Lebanon
| |
Collapse
|
5
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Targeting Colorectal Cancer: Unravelling the Transcriptomic Impact of Cisplatin and High-THC Cannabis Extract. Int J Mol Sci 2024; 25:4439. [PMID: 38674023 PMCID: PMC11050262 DOI: 10.3390/ijms25084439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
6
|
Malík M, Doskočil I, Pavlík J, Ulman M, Praus L, Kouřimský P, Lampová B, Kuklina A, Tlustoš P. Selective Cytotoxicity of Medical Cannabis ( Cannabis sativa L.) Extracts Across the Whole Vegetation Cycle Under Various Hydroponic and Nutritional Treatments. Cannabis Cannabinoid Res 2024; 9:409-420. [PMID: 36459627 DOI: 10.1089/can.2022.0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Ivo Doskočil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Jan Pavlík
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Miloš Ulman
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Lukáš Praus
- Department of Agroenvironmental Chemistry and Plant Nutrition, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Pavel Kouřimský
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Barbora Lampová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Alexandra Kuklina
- Department of Agroenvironmental Chemistry and Plant Nutrition, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| |
Collapse
|
7
|
Sooda K, Allison SJ, Javid FA. Investigation of the cytotoxicity induced by cannabinoids on human ovarian carcinoma cells. Pharmacol Res Perspect 2023; 11:e01152. [PMID: 38100640 PMCID: PMC10723784 DOI: 10.1002/prp2.1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Cannabinoids have been shown to induce anti-tumor activity in a variety of carcinoma cells such as breast, prostate, and brain. The aim of the present study is to investigate the anti-tumor activity of cannabinoids, CBD (cannbidiol), and CBG (cannabigerol) in ovarian carcinoma cells sensitive and resistant to chemotherapeutic drugs. Sensitive A2780 cells and resistant A2780/CP70 carcinoma cells and non-carcinoma cells were exposed to varying concentrations of CBD, CBG, carboplatin or CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, alone or in combination, at different exposure times and cytotoxicity was measured by MTT assay. The mechanism of action of CBD and CB in inducing cytotoxicity was investigated involving a variety of apoptotic and cell cycle assays. Treatment with CBD and CBG selectively, dose and time dependently reduced cell viability and induced apoptosis. The effect of CBD was stronger than CBG in all cell lines tested. Both CBD and CBG induced stronger cytotoxicity than afforded by carboplatin in resistant cells. The cytotoxicity induced by CBD was not CB1 or CB2 receptor dependent in both carcinoma cells, however, CBG-induced cytotoxicity may involve CB1 receptor activity in cisplatin-resistant carcinoma cells. A synergistic effect was observed when cannabinoids at sublethal doses were combined with carboplatin in both carcinoma cells. The apoptotic event may involve loss of mitochondrial membrane potential, Annexin V, caspase 3/7, ROS activities, and cell cycle arrest. Further studies are required to investigate whether these results are translatable in the clinic. Combination therapies with conventional cancer treatments using cannabinoids are suggested.
Collapse
Affiliation(s)
- Kartheek Sooda
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Simon J. Allison
- Department of Biological & Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Farideh A. Javid
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
8
|
Cherkasova V, Ilnytskyy Y, Kovalchuk O, Kovalchuk I. Transcriptome Analysis of Cisplatin, Cannabidiol, and Intermittent Serum Starvation Alone and in Various Combinations on Colorectal Cancer Cells. Int J Mol Sci 2023; 24:14743. [PMID: 37834191 PMCID: PMC10572413 DOI: 10.3390/ijms241914743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (V.C.); (Y.I.)
| |
Collapse
|
9
|
Yu MH, Yang Q, Zhang YP, Wang JH, Zhang RJZ, Liu ZG, Liu XC. Cannabinoid Receptor Agonist WIN55, 212-2 Attenuates Injury in the Hippocampus of Rats after Deep Hypothermic Circulatory Arrest. Brain Sci 2023; 13:brainsci13030525. [PMID: 36979335 PMCID: PMC10046860 DOI: 10.3390/brainsci13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES Postoperative neurological deficits remain a challenge in cardiac surgery employing deep hypothermic circulatory arrest (DHCA). This study aimed to investigate the effect of WIN55, 212-2, a cannabinoid agonist, on brain injury in a rat model of DHCA. METHODS Twenty-four male Sprague Dawley rats were randomly divided into three groups: a control group (which underwent cardiopulmonary bypass (CPB) only), a DHCA group (CPB with DHCA), and a WIN group (WIN55, 212-2 pretreatment before CPB with DHCA). Histopathological changes in the brain were evaluated by hematoxylin-eosin staining. Plasma levels of superoxide dismutase (SOD) and proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-a) were determined using an enzyme-linked immunosorbent assay (ELISA). The expression of SOD in the hippocampus was detected by Western blot and immunofluorescence staining. Levels of apoptotic-related protein caspase-3 and type 1 cannabinoid receptor (CB1R) in the hippocampus were evaluated by Western blot. RESULTS WIN55, 212-2 administration attenuated histopathological injury of the hippocampus in rats undergoing DHCA, associated with lowered levels of IL-1β, IL-6, and TNF-α (p < 0.05, p < 0.001, and p < 0.01, vs. DHCA, respectively) and an increased level of SOD (p < 0.05 vs. DHCA). WIN55, 212-2 treatment also increased the content of SOD in the hippocampus. The protein expression of caspase-3 was downregulated and the expression of CB1R was upregulated in the hippocampus by WIN55, 212-2. CONCLUSIONS the administration of WIN55, 212-2 alleviates hippocampal injury induced by DHCA in rats by regulating intrinsic inflammatory and oxidative stress responses through a CB1R-dependent mechanism.
Collapse
Affiliation(s)
- Ming-Huan Yu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Qin Yang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Jia-Hui Wang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Ren-Jian-Zhi Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| | - Xiao-Cheng Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Avenue, TEDA, Tianjin 300456, China
| |
Collapse
|
10
|
Whynot EG, Tomko AM, Dupré DJ. Anticancer properties of cannabidiol and Δ 9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines. J Cannabis Res 2023; 5:7. [PMID: 36870996 PMCID: PMC9985258 DOI: 10.1186/s42238-023-00174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION With the legalization of cannabis in multiple jurisdictions throughout the world, a larger proportion of the population consumes cannabis. Several studies have demonstrated anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of cannabinoids in bladder cancer and how cannabinoids could potentially synergize with chemotherapeutic agents. Our study aims to identify whether a combination of cannabinoids, like cannabidiol and Δ9-tetrahydrocannabinol, with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, can produce desirable synergistic effects. We also evaluated if co-treatment with different cannabinoids resulted in synergistic effects. METHODS We generated concentration curves with several drugs, including several cannabinoids, to identify the range at which they could exert anti-tumor effects in bladder cancer cell lines. We tested the cytotoxic effects of gemcitabine (up to 100 nM), cisplatin (up to 100 μM), and cannabinoids (up to 10 μM) in T24 and TCCSUP cells. We also evaluated the activation of the apoptotic cascade and whether cannabinoids have the ability to reduce invasion in T24 cells. RESULTS Cannabidiol, Δ9-tetrahydrocannabinol, cannabichromene, and cannabivarin reduce cell viability of bladder cancer cell lines, and their combination with gemcitabine or cisplatin may induce differential responses, from antagonistic to additive and synergistic effects, depending on the concentrations used. Cannabidiol and Δ9-tetrahydrocannabinol were also shown to induce apoptosis via caspase-3 cleavage and reduce invasion in a Matrigel assay. Cannabidiol and Δ9-tetrahydrocannabinol also display synergistic properties with other cannabinoids like cannabichromene or cannabivarin, although individual cannabinoids may be sufficient to reduce cell viability of bladder cancer cell lines. DISCUSSION Our results indicate that cannabinoids can reduce human bladder transitional cell carcinoma cell viability, and that they can potentially exert synergistic effects when combined with other agents. Our in vitro results will form the basis for future studies in vivo and in clinical trials for the development of new therapies that could be beneficial for the treatment of bladder cancer in the future.
Collapse
Affiliation(s)
- Erin G. Whynot
- grid.55602.340000 0004 1936 8200Faculty of Medicine, Department of Pharmacology, Dalhousie University, PO BOX 15 000, 5850 College St., Sir Charles Tupper Medical Building, Halifax, NS B3H 4R2 Canada
| | - Andrea M. Tomko
- grid.55602.340000 0004 1936 8200Faculty of Medicine, Department of Pharmacology, Dalhousie University, PO BOX 15 000, 5850 College St., Sir Charles Tupper Medical Building, Halifax, NS B3H 4R2 Canada
| | - Denis J. Dupré
- grid.55602.340000 0004 1936 8200Faculty of Medicine, Department of Pharmacology, Dalhousie University, PO BOX 15 000, 5850 College St., Sir Charles Tupper Medical Building, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
11
|
Cannabidiol alters mitochondrial bioenergetics via VDAC1 and triggers cell death in hormone-refractory prostate cancer. Pharmacol Res 2023; 189:106683. [PMID: 36736415 DOI: 10.1016/j.phrs.2023.106683] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.
Collapse
|
12
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
13
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
14
|
Tomko AM, Whynot EG, Dupré DJ. Anti-cancer properties of cannflavin A and potential synergistic effects with gemcitabine, cisplatin, and cannabinoids in bladder cancer. J Cannabis Res 2022; 4:41. [PMID: 35869542 PMCID: PMC9306207 DOI: 10.1186/s42238-022-00151-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/03/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Several studies have shown anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of most compounds present in cannabis in bladder cancer and how these compounds could potentially positively or negatively impact the actions of chemotherapeutic agents. Our study aims to evaluate the effects of a compound found in Cannabis sativa that has not been extensively studied to date, cannflavin A, in bladder cancer cell lines. We aimed to identify whether cannflavin A co-treatment with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, is able to produce synergistic effects. We also evaluated whether co-treatment of cannflavin A with various cannabinoids could produce synergistic effects. Methods Two transitional cell carcinoma cell lines were used to assess the cytotoxic effects of the flavonoid cannflavin A up to 100 μM. We tested the potential synergistic cytotoxic effects of cannflavin A with gemcitabine (up to 100 nM), cisplatin (up to 100 μM), and cannabinoids (up to 10 μM). We also evaluated the activation of the apoptotic cascade using annexin V and whether cannflavin A has the ability to reduce invasion using a Matrigel assay. Results Cell viability of bladder cancer cell lines was affected in a concentration-dependent fashion in response to cannflavin A, and its combination with gemcitabine or cisplatin induced differential responses—from antagonistic to additive—and synergism was also observed in some instances, depending on the concentrations and drugs used. Cannflavin A also activated apoptosis via caspase 3 cleavage and was able to reduce invasion by 50%. Interestingly, cannflavin A displayed synergistic properties with other cannabinoids like Δ9-tetrahydrocannabinol, cannabidiol, cannabichromene, and cannabivarin in the bladder cancer cell lines. Discussion Our results indicate that compounds from Cannabis sativa other than cannabinoids, like the flavonoid cannflavin A, can be cytotoxic to human bladder transitional carcinoma cells and that this compound can exert synergistic effects when combined with other agents. In vivo studies will be needed to confirm the activity of cannflavin A as a potential agent for bladder cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00151-y.
Collapse
|
15
|
Zhang SS, Zhang NN, Guo TT, Sheen LY, Ho CT, Bai NS. The impact of phyto- and endo-cannabinoids on central nervous system diseases:A review. J Tradit Complement Med 2022; 13:30-38. [PMID: 36685079 PMCID: PMC9845650 DOI: 10.1016/j.jtcme.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023] Open
Abstract
Background and aim Cannabis sativa L. is a medicinal plant with a long history. Phyto-cannabinoids are a class of compounds from C. sativa L. with varieties of structures. Endocannabinoids exist in the human body. This article provides an overview of natural cannabinoids (phyto-cannabinoids and endocannabinoids) with an emphasis on their pharmacology activities. Experimental procedure The keywords "Cannabis sativa L″, "cannabinoids", and "central nervous system (CNS) diseases" were used for searching and collecting pieces of literature from PubMed, ScienceDirect, Web of Science, and Google Scholar. The data were extracted and analyzed to explore the effects of cannabinoids on CNS diseases. Result and conclusion In this paper, schematic diagrams are used to intuitively show the phyto-cannabinoids skeletons' mutual conversion and pharmacological activities, with special emphasis on their relevant pharmacological activities on central nervous system (CNS) diseases. It was found that the endocannabinoid system and microglia play a crucial role in the treatment of CNS diseases. In the past few years, pharmacological studies focused on Δ9-THC, CBD, and the endocannabinoids system. It is expected to encourage new studies on a more deep exploration of other types of cannabinoids and the mechanism of their pharmacological activities in the future.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Tian-Tian Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA,Corresponding author.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China,Corresponding author.
| |
Collapse
|
16
|
Ben-Ami Shor D, Hochman I, Gluck N, Shibolet O, Scapa E. The Cytotoxic Effect of Isolated Cannabinoid Extracts on Polypoid Colorectal Tissue. Int J Mol Sci 2022; 23:ijms231911366. [PMID: 36232668 PMCID: PMC9570046 DOI: 10.3390/ijms231911366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purified cannabinoids have been shown to prevent proliferation and induce apoptosis in colorectal carcinoma cell lines. To assess the cytotoxic effect of cannabinoid extracts and purified cannabinoids on both colorectal polyps and normal colonic cells, as well as their synergistic interaction. Various blends were tested to identify the optimal synergistic effect. Methods: Biopsies from polyps and healthy colonic tissue were obtained from 22 patients undergoing colonic polypectomies. The toxicity of a variety of cannabinoid extracts and purified cannabinoids at different concentrations was evaluated. The synergistic effect of cannabinoids was calculated based on the cells’ survival. Isolated cannabinoids illustrated different toxic effects on the viability of cells derived from colorectal polyps. THC-d8 and THC-d9 were the most toxic and exhibited persistent toxicity in all the polyps tested. CBD was more toxic to polypoid cells in comparison to normal colonic cells at a concentration of 15 µM. The combinations of the cannabinoids CBDV, THCV, CBDVA, CBCA, and CBGA exhibited a synergistic inhibitory effect on the viability of cells derived from colon polyps of patients. Isolated cannabinoid compounds interacted synergistically against colonic polyps, and some also possessed a differential toxic effect on polyp and adjacent colonic tissue, suggesting possible future therapeutic value.
Collapse
Affiliation(s)
- Dana Ben-Ami Shor
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| | - Ilan Hochman
- CNBX Pharmaceuticals Ltd., Rehovot 7608801, Israel
| | - Nathan Gluck
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Oren Shibolet
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Erez Scapa
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Hasan N, Imran M, Sheikh A, Saad S, Chaudhary G, Jain GK, Kesharwani P, Ahmad FJ. Cannabis as a potential compound against various malignancies, legal aspects, advancement by exploiting nanotechnology and clinical trials. J Drug Target 2022; 30:709-725. [PMID: 35321629 DOI: 10.1080/1061186x.2022.2056188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Various preclinical and clinical studies exhibited the potential of cannabis against various diseases, including cancer and related pain. Subsequently, many efforts have been made to establish and develop cannabis-related products and make them available as prescription products. Moreover, FDA has already approved some cannabis-related products, and more advancement in this aspect is still going on. However, the approved product of cannabis is in oral dosage form, which exerts various limitations to achieve maximum therapeutic effects. A considerable translation is on a hike to improve bioavailability, and ultimately, the therapeutic efficacy of cannabis by the employment of nanotechnology. Besides the well-known psychotropic effects of cannabis upon the use at high doses, literature has also shown the importance of cannabis and its constituents in minimising the lethality of cancer in the preclinical models. This review discusses the history of cannabis, its legal aspect, safety profile, the mechanism by which cannabis combats with cancer, and the advancement of clinical therapy by exploiting nanotechnology. A brief discussion related to the role of cannabinoid in various cancers has also been incorporated. Lastly, the information regarding completed and ongoing trials have also been elaborated.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suma Saad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Gaurav Chaudhary
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Marzęda P, Wróblewska-Łuczka P, Drozd M, Florek-Łuszczki M, Załuska-Ogryzek K, Łuszczki JJ. Cannabidiol Interacts Antagonistically with Cisplatin and Additively with Mitoxantrone in Various Melanoma Cell Lines-An Isobolographic Analysis. Int J Mol Sci 2022; 23:ijms23126752. [PMID: 35743195 PMCID: PMC9224300 DOI: 10.3390/ijms23126752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
The medical application of cannabidiol (CBD) has been gathering increasing attention in recent years. This non-psychotropic cannabis-derived compound possesses antiepileptic, antipsychotic, anti-inflammatory and anxiolytic properties. Recent studies report that it also exerts antineoplastic effects in multiple types of cancers, including melanoma. In this in vitro study we tried to reveal the anticancer properties of CBD in malignant melanoma cell lines (SK-MEL 28, A375, FM55P and FM55M2) administered alone, as well as in combination with mitoxantrone (MTX) or cisplatin (CDDP). The effects of CBD on the viability of melanoma cells were measured by the MTT assay; cytotoxicity was determined in the LDH test and proliferation in the BrdU test. Moreover, the safety of CBD was tested in human keratinocytes (HaCaT) in LDH and MTT tests. Results indicate that CBD reduces the viability and proliferation of melanoma-malignant cells and exerts additive interactions with MTX. Unfortunately, CBD produced antagonistic interaction when combined with CDDP. CBD does not cause significant cytotoxicity in HaCaT cell line. In conclusion, CBD may be considered as a part of melanoma multi-drug therapy when combined with MTX. A special attention should be paid to the combination of CBD with CDDP due to the antagonistic interaction observed in the studied malignant melanoma cell lines.
Collapse
Affiliation(s)
- Paweł Marzęda
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (P.M.); (P.W.-Ł.); (M.D.); (K.Z.-O.)
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (P.M.); (P.W.-Ł.); (M.D.); (K.Z.-O.)
| | - Małgorzata Drozd
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (P.M.); (P.W.-Ł.); (M.D.); (K.Z.-O.)
| | | | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (P.M.); (P.W.-Ł.); (M.D.); (K.Z.-O.)
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (P.M.); (P.W.-Ł.); (M.D.); (K.Z.-O.)
- Correspondence: ; Tel.: +48-81-448-6500; Fax: +48-81-448-6501
| |
Collapse
|
19
|
Katta MR, Valisekka SS, Agarwal P, Hameed M, Shivam S, Kaur J, Prasad S, Bethineedi LD, Lavu DV, Katamreddy Y. Non-pharmacological integrative therapies for chronic cancer pain. J Oncol Pharm Pract 2022; 28:1859-1868. [DOI: 10.1177/10781552221098437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Chronic pain is one of the most detrimental symptoms exhibited by cancer patients, being an indication for opioid therapy in up to half of the patients’ receiving chemotherapy and in 90% of advanced cases. Various successful non-pharmacological integrative therapy options have been explored and implemented to improve the quality of life in these patients. This review aims to highlight the mechanisms implicated; assessment tools used for cancer pain and summarize current evidence on non-pharmacological approaches in the treatment of chronic cancer pain. Data sources A review of the literature was conducted using a combination of MeSH keywords including “Chronic cancer pain,” “Assessment,” “Non-pharmacological management,” and “Integrative therapy.” Data summary Data on the approach and assessment of chronic cancer pain as well as non-pharmacological integrative options have been displayed with the help of figures and tables. Of note, non-pharmacological integrative management was divided into three subcategories; physical therapy (involving exercise, acupuncture, massage, and transcutaneous electric nerve stimulation), psychosocial therapy (e.g. mindful practices, supportive therapy), and herbal supplementation. Conclusions The use of non-pharmacological integrative therapy in the management of chronic cancer pain has been grossly underestimated and must be considered before or as an adjuvant of other treatment regimens to ensure appropriate care.
Collapse
Affiliation(s)
| | | | - Pahel Agarwal
- Bhaskar Medical College, Hyderabad, Telangana, India
| | - Maha Hameed
- AlFaisal University, College of Medicine, Riyadh, Kingdom of Saudi Arabia
| | - Swadha Shivam
- Bhaskar Medical College, Hyderabad, Telangana, India
| | | | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | | | | | | |
Collapse
|
20
|
Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int J Mol Sci 2022; 23:ijms23063344. [PMID: 35328765 PMCID: PMC8952215 DOI: 10.3390/ijms23063344] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
Medical case reports suggest that cannabinoids extracted from Cannabis sativa have therapeutic effects; however, the therapeutic employment is limited due to the psychotropic effect of its major component, Δ9-tetrahydrocannabinol (THC). The new scientific discoveries related to the endocannabinoid system, including new receptors, ligands, and mediators, allowed the development of new therapeutic targets for the treatment of several pathological disorders minimizing the undesirable psychotropic effects of some constituents of this plant. Today, FDA-approved drugs, such as nabiximols (a mixture of THC and non-psychoactive cannabidiol (CBD)), are employed in alleviating pain and spasticity in multiple sclerosis. Dronabinol and nabilone are used for the treatment of chemotherapy-induced nausea and vomiting in cancer patients. Dronabinol was approved for the treatment of anorexia in patients with AIDS (acquired immune deficiency syndrome). In this review, we highlighted the potential therapeutic efficacy of natural and synthetic cannabinoids and their clinical relevance in cancer, neurodegenerative and dermatological diseases, and viral infections.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
- Correspondence: (M.B.); or (C.L.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (M.B.); or (C.L.)
| |
Collapse
|
21
|
Melén CM, Merrien M, Wasik AM, Panagiotidis G, Beck O, Sonnevi K, Junlén HR, Christensson B, Sander B, Wahlin BE. Clinical effects of a single dose of cannabinoids to patients with chronic lymphocytic leukemia. Leuk Lymphoma 2022; 63:1387-1397. [PMID: 35037561 DOI: 10.1080/10428194.2021.2020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This phase II clinical trial investigates a one-time oromucosal dose of tetrahydrocannabinol/cannabidiol (THC/CBD) in 23 patients with indolent leukemic B cell lymphomas. Primary endpoint was a significant reduction in leukemic B cells. Grade 1 - 2 adverse events were seen in 91% of the patients; most common were dry mouth (78%), vertigo (70%), and somnolence (43%). After THC/CBD a significant reduction in leukemic B cells (median, 11%) occurred within two hours (p = .014), and remained for 6 h without induction of apoptosis or proliferation. Normal B cells and T cells were also reduced. CXCR4 expression increased on leukemic cells and T cells. All effects were gone by 24 h. Our results show that a single dose of THC/CBD affects a wide variety of leukocytes and only transiently reduce malignant cells in blood. Based on this study, THC/CBD shows no therapeutic potential for indolent B cell lymphomas (EudraCT trial no. 2014-005553-39).
Collapse
Affiliation(s)
- Christopher M Melén
- Department of Medicine at Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Agata M Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Panagiotidis
- Department of Laboratory Medicine, Division of Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Pharmacology, University Hospital, Stockholm, Sweden
| | - Olof Beck
- Department of Laboratory Medicine, Division of Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Pharmacology, University Hospital, Stockholm, Sweden
| | - Kristina Sonnevi
- Department of Medicine at Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Henna-Riikka Junlén
- Department of Medicine at Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Birger Christensson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Engelbrekt Wahlin
- Department of Medicine at Huddinge, Division of Hematology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Razlog R, Kruger CA, Abrahamse H. Enhancement of Conventional and Photodynamic Therapy for Treatment of Cervical Cancer with Cannabidiol. Integr Cancer Ther 2022; 21:15347354221092706. [PMID: 35481367 PMCID: PMC9087227 DOI: 10.1177/15347354221092706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/15/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cervical cancer (CC) is the fourth most diagnosed cancer in women worldwide. Conventional treatments include surgery, chemo- and radiotherapy, however these are invasive and may cause severe side effects. Furthermore, approximately 70% of late-stage CC patients experience metastasis, due to treatment resistance and limitations. Thus, there is a dire need to investigate alternative therapeutic combination therapies. Photodynamic therapy (PDT) is an alternative CC treatment modality that has been clinically proven to treat primary CC, as well as to limit secondary metastasis. Since PDT is a non-invasive localized treatment, with fewer side effects and lessened resistance to dose repeats, it is considered far more advantageous. However, more clinical trials are required to refine its delivery and dosing, as well as improve its ability to activate specific immune responses to eradicate secondary CC spread. Cannabidiol (CBD) isolates have been shown to exert in vitro CC anticancer effects, causing apoptosis post treatment, as well as inducing specific immune responses, which obstruct tumor invasion and angiogenesis, and so hinder CC metastatic spread. This review paper discusses the current conventional and alternative PDT treatment modalities for CC, as well as their limitations over the last 10 years. It has a particular focus on the combinative administration of CBD with these treatments in order to prevent CC secondary migration and so possibly encourage future research studies to focus on this synergistic effect to eradicate CC.
Collapse
Affiliation(s)
- Radmila Razlog
- Department of Complementary Medicine,
Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg,
South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of
Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South
Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of
Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South
Africa
| |
Collapse
|
23
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
24
|
Jo MJ, Kim BG, Kim WY, Lee DH, Yun HK, Jeong S, Park SH, Kim BR, Kim JL, Kim DY, Lee SI, Oh SC. Cannabidiol Suppresses Angiogenesis and Stemness of Breast Cancer Cells by Downregulation of Hypoxia-Inducible Factors-1α. Cancers (Basel) 2021; 13:cancers13225667. [PMID: 34830821 PMCID: PMC8616476 DOI: 10.3390/cancers13225667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD), one of the compounds present in the marijuana plant, has antitumor properties. However, the effect of CBD on breast cancer remains unclear. The aim of this study was to assess the effects of CBD for the angiogenesis and stemness of breast cancer cells by decreasing the expression of hypoxia-induced factor-1α (HIF-1α) through the Src/von Hippel–Lindau tumor suppressor protein (VHL) interaction. CBD can suppress angiogenesis and stem cell-like properties of breast cancer through Src/VHL/HIF-1α signaling. Abstract To assess the effect of Cannabidiol (CBD) on the angiogenesis and stemness of breast cancer cells as well as proliferation. Methods: mRNA level and the amount of protein of vascular endothelial growth factor (VEGF) were determined by qRT-PCR and ELISA. The angiogenic potential of breast cancer cells under hypoxic conditions was identified by the HUVEC tube formation assay. The degradation of HIF-1α by CBD and the Src/von Hippel–Lindau tumor suppressor protein (VHL) interaction were assessed by a co-immunoprecipitation assay and Western blotting. To identify the stemness of mamospheres, they were evaluated by the sphere-forming assay and flow cytometry. Results: CBD can suppress angiogenesis and stem cell-like properties of breast cancer through Src/VHL/HIF-1α signaling. CBD may potentially be utilized in the treatment of refractory or recurrent breast cancer.
Collapse
Affiliation(s)
- Min Jee Jo
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Bu Gyeom Kim
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Woo Young Kim
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea;
- Correspondence: (W.Y.K.); (D.-H.L.); Tel.: +82-2-2626-3078 (W.Y.K.); +82-33-640-2347 (D.-H.L.)
| | - Dae-Hee Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 25457, Korea
- Correspondence: (W.Y.K.); (D.-H.L.); Tel.: +82-2-2626-3078 (W.Y.K.); +82-33-640-2347 (D.-H.L.)
| | - Hye Kyeong Yun
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Seong Hye Park
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| | - Dae Yeong Kim
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
| | - Sun Il Lee
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea;
| | - Sang Cheul Oh
- Graduate School of Medicine, College of Medicine, Korea University, Seoul 08308, Korea; (M.J.J.); (B.G.K.); (H.K.Y.); (S.H.P.); (D.Y.K.); (S.C.O.)
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea; (S.J.); (B.R.K.); (J.L.K.)
| |
Collapse
|
25
|
Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 2021; 147:2507-2534. [PMID: 34259916 PMCID: PMC8310855 DOI: 10.1007/s00432-021-03710-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties. METHOD A database search of peer reviewed articles published in English as full texts between January 1970 and April 2021 in Google Scholar, MEDLINE, PubMed and Web of Science was undertaken. References of relevant literature were searched to identify additional studies to construct a narrative literature review of oncological effects of cannabinoids in pre-clinical and clinical studies in various cancer types. RESULTS Phyto-, endogenous and synthetic cannabinoids demonstrated antitumour effects both in vitro and in vivo. However, these effects are dependent on cancer type, the concentration and preparation of the cannabinoid and the abundance of receptor targets. The mechanism of action of synthetic cannabinoids, (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has mainly been described via the traditional cannabinoid receptors; CB1 and CB2, but reports have also indicated evidence of activity through GPR55, TRPM8 and other ion channels including TRPA1, TRPV1 and TRPV2. CONCLUSION Cannabinoids have shown to be efficacious both as a single agent and in combination with antineoplastic drugs. These effects have occurred through various receptors and ligands and modulation of signalling pathways involved in hallmarks of cancer pathology. There is a need for further studies to characterise its mode of action at the molecular level and to delineate efficacious dosage and route of administration in addition to synergistic regimes.
Collapse
Affiliation(s)
- Nagina Mangal
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Nagy Habib
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Vikash Reebye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK.
| |
Collapse
|
26
|
Cherkasova V, Kovalchuk O, Kovalchuk I. Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer. Cancers (Basel) 2021; 13:4353. [PMID: 34503163 PMCID: PMC8430689 DOI: 10.3390/cancers13174353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world's disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.
Collapse
Affiliation(s)
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada;
| |
Collapse
|
27
|
Rahman NAA, Jamil MMA, Adon MN, Zainal AB, Javid F, Youseffi M. Fundamental Study of Cannabidiol Effect on MCF-7 with Low Voltage Pulse Electric Field. 2021 11TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE) 2021. [DOI: 10.1109/iccsce52189.2021.9530885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Todorova J, Lazarov LI, Petrova M, Tzintzarov A, Ugrinova I. The antitumor activity of cannabidiol on lung cancer cell lines A549 and H1299: the role of apoptosis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jordana Todorova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lazar I. Lazarov
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Tzintzarov
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
29
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
30
|
Ahmed I, Rehman SU, Shahmohamadnejad S, Zia MA, Ahmad M, Saeed MM, Akram Z, Iqbal HMN, Liu Q. Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders. Molecules 2021; 26:3389. [PMID: 34205169 PMCID: PMC8199938 DOI: 10.3390/molecules26113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer-both in vivo and in vitro clinical trials-has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, School of medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran;
| | - Muhammad Anjum Zia
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan;
| | - Muhammad Muzammal Saeed
- Enzyme Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.Z.); (M.M.S.)
| | - Zain Akram
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| |
Collapse
|
31
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
32
|
Cannabinoids pharmacological effects are beyond the palliative effects: CB2 cannabinoid receptor agonist induced cytotoxicity and apoptosis in human colorectal cancer cells (HT-29). Mol Cell Biochem 2021; 476:3285-3301. [PMID: 33886060 DOI: 10.1007/s11010-021-04158-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is between the top three occurring cancers worldwide. The anticancer effects of Cannabinoid receptor 2 (CB2) agonist (GW833972A) in the presence and absence of its inverse agonist (SR144528) on Human colorectal adenocarcinoma cells (HT-29) was investigated. Following cell viability assays on HT-29 and HFF cells, the molecular mechanism(s) of cytotoxicity and apoptotic pathways of cell death were analyzed. The anticancer effects of CB2 agonist were measured with tumor cell migration and colony-forming assays. Real-time PCR and Western blotting techniques were used to examine any alterations in the expression of apoptotic genes. A concentration and time-dependent cytotoxicity of CB2 agonist with IC50 value of 24.92 ± 6.99 μM was obtained. The rate of lipid peroxidation was elevated, while the TNF-α concentration was declined, significantly (p < 0.05). CB2 agonist (50 μM) reduced the colony-forming capability by 83% and tumor cell migration by 50%. Apoptotic effects of CB2 agonist were revealed with the increase of apoptotic cells in Acridine orange/Ethidium bromide staining, clear DNA fragmentation, pro-apoptotic genes and proteins upregulation (Caspase-3 and p53), and significant downregulation of anti-apoptotic Bcl-2. All assessments demonstrated that CB2 agonist-induced effects were reversed by CB2 inverse agonist. These data suggest that CB2 agonists at micro-molar concentrations might be considered in the CRC treatment, and their effectiveness attributes to the apoptosis induction via upregulation of caspase-3 and p53 and downregulation of Bcl-2.
Collapse
|
33
|
Gruber T, Robatel S, Kremenovic M, Bäriswyl L, Gertsch J, Schenk M. Cannabinoid Receptor Type-2 in B Cells Is Associated with Tumor Immunity in Melanoma. Cancers (Basel) 2021; 13:cancers13081934. [PMID: 33923757 PMCID: PMC8073134 DOI: 10.3390/cancers13081934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In this study we investigated the role of cannabinoid receptor 2 (CB2R) on immune cells in melanoma and found significantly improved overall survival in patients with high intra-tumoral CB2R gene expression. In human melanoma, CB2R is predominantly expressed in B cells, as shown using a previously published single-cell RNA sequencing (scRNA-seq) dataset and by performing RNAscope. In a murine melanoma model, tumor growth was enhanced in CB2R-deficient mice. In-depth analysis of tumor-infiltrating lymphocytes using scRNA-seq showed less differentiated B cells in CB2R-deficient tumors, favoring the induction of regulatory T cells (Treg) and an immunosuppressive tumor microenvironment. Taken together, these data indicate a central role of CB2R on B cells in regulating tumor immunity. These results contribute to the understanding of the role of CB2R in tumor immunity and facilitate the development of new CB2R-targeted anti-cancer drugs. Abstract Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r−/− mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies.
Collapse
Affiliation(s)
- Thomas Gruber
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Steve Robatel
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Mirela Kremenovic
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Graduate School GCB, University of Bern, 3012 Bern, Switzerland
| | - Lukas Bäriswyl
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland;
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.G.); (S.R.); (M.K.); (L.B.)
- Correspondence: ; Tel.: +41-31-632-88-02
| |
Collapse
|
34
|
Owusu NO, Arthur B, Aboagye EM. Industrial hemp as an agricultural crop in Ghana. J Cannabis Res 2021; 3:9. [PMID: 33845918 PMCID: PMC8042943 DOI: 10.1186/s42238-021-00066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background Cannabis is one of humanity’s oldest crops with several uses, from food to clothing and medicine. It remains one of the most controversial crops whose production, possession, and usage are regulated differently across jurisdictions. Academic research and advocacy have resulted in the redefinition of the legal status of cannabis in several countries. Ghana recently reviewed its laws on cannabis, allowing for the cultivation of industrial hemp. The legislation paves the way for Ghana to benefit from industrial hemp and include it in the agricultural cash crop list. This paper looks at the economic prospects of industrial hemp in the wake of the new law. Methods A systematic electronic research was conducted to identify journal articles, reports, news, blogs, and other relevant materials on cannabis, marijuana, and industrial hemp. The electronic search was done primarily on Google, Google Scholar, Bing, and “Baidu Xueshi” to identify cannabis-related publications. The search was expanded beyond Ghana to find other perspectives on cannabis. The search began in January 2020 on Google using search terms like “cannabis in Ghana” and “which countries have legal cannabis.” Materials on history, financial prospects, industrial uses, and legislations on cannabis and industrial hemp were reviewed. Results Existing research on cannabis in Ghana has focused on the psychotic effects of cannabis other than its industrial aspects, which has potentials for the economy. Industrial hemp has CBD with no psychotic effects and is very useful in making medicine, paper, and textiles. Ghana has both the land and workforce to produce hemp to feed local industries and the international market. Conclusion The new legislation can put Ghana in a position to benefit from the current cannabis industry. Therefore, policymakers should implement a registration regime that would favor local investors and farmers to reduce illegal production. The regulatory framework should establish a well-equipped agency that will supervise production and research into hemp development.
Collapse
Affiliation(s)
- Nana Osei Owusu
- Zhongnan University of Economics and Law, 182# Nanhu Avenue, East Lake High-tech Development Zone, Wuhan, 430073, People's Republic of China.
| | - Benedict Arthur
- Zhongnan University of Economics and Law, 182# Nanhu Avenue, East Lake High-tech Development Zone, Wuhan, 430073, People's Republic of China
| | - Emmanuel Mensah Aboagye
- Zhongnan University of Economics and Law, 182# Nanhu Avenue, East Lake High-tech Development Zone, Wuhan, 430073, People's Republic of China
| |
Collapse
|
35
|
Toma W, Caillaud M, Patel NH, Tran TH, Donvito G, Roberts J, Bagdas D, Jackson A, Lichtman A, Gewirtz DA, Makriyannis A, Malamas MS, Imad Damaj M. N-acylethanolamine-hydrolysing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. Eur J Pain 2021; 25:1367-1380. [PMID: 33675555 DOI: 10.1002/ejp.1758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although paclitaxel is an effective chemotherapeutic agent used to treat multiple types of cancer (e.g. breast, ovarian, neck and lung), it also elicits paclitaxel-induced peripheral neuropathy (PIPN), which represents a major dose-limiting side effect of this drug. METHODS As the endogenously produced N-acylethanolamine, palmitoylethanolamide (PEA), reverses paclitaxel-induced mechanical hypersensitivity in mice, the main goals of this study were to examine if paclitaxel affects levels of endogenous PEA in the spinal cord of mice and whether exogenous administration of PEA provides protection from the occurrence of paclitaxel-induced mechanical hypersensitivity. We further examined whether inhibition of N-acylethanolamine-hydrolysing acid amidase (NAAA), a hydrolytic PEA enzyme, would offer protection in mouse model of PIPN. RESULTS Paclitaxel reduced PEA levels in the spinal cord, suggesting that dysregulation of this lipid signalling system may contribute to PIPN. Consistent with this idea, repeated administration of PEA partially prevented the paclitaxel-induced mechanical hypersensitivity. We next evaluated whether the selective NAAA inhibitor, AM9053, would prevent paclitaxel-induced mechanical hypersensitivity in mice. Acute administration of AM9053 dose-dependently reversed mechanical hypersensitivity through a PPAR-α mechanism, whereas repeated administration of AM9053 fully prevented the development of PIPN, without any evidence of tolerance. Moreover, AM9053 produced a conditioned place preference in paclitaxel-treated mice, but not in control mice. This pattern of findings suggests a lack of intrinsic rewarding effects, but a reduction in the pain aversiveness induced by paclitaxel. Finally, AM9053 did not alter paclitaxel-induced cytotoxicity in lung tumour cells. CONCLUSIONS Collectively, these studies suggest that NAAA represents a promising target to treat and prevent PIPN. SIGNIFICANCE The present study demonstrates that the chemotherapeutic paclitaxel alters PEA levels in the spinal cord, whereas repeated exogenous PEA administration moderately alleviates PIPN in mice. Additionally, targeting NAAA, PEA's hydrolysing enzyme with a selective compound AM9053 reverses and prevents the PIPN via the PPAR-α mechanism. Overall, the data suggest that selective NAAA inhibitors denote promising future therapeutics to mitigate and prevent PIPN.
Collapse
Affiliation(s)
- Wisam Toma
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nipa H Patel
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tammy H Tran
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jane Roberts
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Deniz Bagdas
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, USA
| | - Asti Jackson
- Department of Psychiatry, Yale University School of Medicine, Yale Tobacco Center of Regulatory Science, New Haven, CT, USA
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Michael S Malamas
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Kolbe MR, Hohmann T, Hohmann U, Ghadban C, Mackie K, Zöller C, Prell J, Illert J, Strauss C, Dehghani F. THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner. Cancers (Basel) 2021; 13:cancers13051064. [PMID: 33802282 PMCID: PMC7959141 DOI: 10.3390/cancers13051064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant tumor of the central nervous system in humans with a median survival time of less than 15 months. ∆9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best-characterized components of Cannabis sativa plants with modulating effects on cannabinoid receptors 1 and 2 (CB1 and CB2) and on orphan receptors such as GPR18 or GPR55. Previous studies have demonstrated anti-tumorigenic effects of THC and CBD in several tumor entities including GBM, mostly mediated via CB1 or CB2. In this study, we investigated the non-CB1/CB2 effects of THC on the cell cycle of GBM cells isolated from human tumor samples. Cell cycle entry was measured after 24 h upon exposure by immunocytochemical analysis of Ki67 as proliferation marker. The Ki67-reducing effect of THC was abolished in the presence of CBD, whereas CBD alone did not cause any changes. To identify the responsible receptor for THC effects, we first characterized the cells regarding their expression of different cannabinoid receptors: CB1, CB2, GPR18, and GPR55. Secondly, the receptors were pharmacologically blocked by application of their selective antagonists AM281, AM630, O-1918, and CID16020046 (CID), respectively. All examined cells expressed the receptors, but only in presence of the GPR55 antagonist CID was the THC effect diminished. Stimulation with the GPR55 agonist lysophosphatidylinositol (LPI) revealed similar effects as obtained for THC. The LPI effects were also inhibited by CBD and CID, confirming a participation of GPR55 and suggesting its involvement in modifying the cell cycle of patient-derived GBM cells.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101E. 10th, Bloomington, IN 47405, USA;
| | - Christin Zöller
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (C.Z.); (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.); (C.G.)
- Correspondence: ; Tel.: +49-345-557-1707
| |
Collapse
|
37
|
Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in Medicine: Cancer, Immunity, and Microbial Diseases. Int J Mol Sci 2020; 22:E263. [PMID: 33383838 PMCID: PMC7795897 DOI: 10.3390/ijms22010263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-032 Poznan, Poland;
| | | | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland;
| |
Collapse
|
38
|
Oliver EE, Hughes EK, Puckett MK, Chen R, Lowther WT, Howlett AC. Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in Health and Disease. Biomolecules 2020; 10:biom10121609. [PMID: 33261012 PMCID: PMC7761089 DOI: 10.3390/biom10121609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling depends upon the CB1 and CB2 cannabinoid receptors, their endogenous ligands anandamide and 2-arachidonoylglycerol, and intracellular proteins that mediate responses via the C-terminal and other intracellular receptor domains. The CB1 receptor regulates and is regulated by associated G proteins predominantly of the Gi/o subtypes, β-arrestins 1 and 2, and the cannabinoid receptor-interacting protein 1a (CRIP1a). Evidence for a physiological role for CRIP1a is emerging as data regarding the cellular localization and function of CRIP1a are generated. Here we summarize the neuronal distribution and role of CRIP1a in endocannabinoid signaling, as well as discuss investigations linking CRIP1a to development, vision and hearing sensory systems, hippocampus and seizure regulation, and psychiatric disorders including schizophrenia. We also examine the genetic and epigenetic association of CRIP1a within a variety of cancer subtypes. This review provides evidence upon which to base future investigations on the function of CRIP1a in health and disease.
Collapse
Affiliation(s)
- Emily E. Oliver
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Erin K. Hughes
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Meaghan K. Puckett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - W. Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Correspondence: ; Tel.: +1-336-716-8545
| |
Collapse
|
39
|
Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res 2020; 163:105302. [PMID: 33246167 DOI: 10.1016/j.phrs.2020.105302] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, 122413, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
40
|
Cannabinoids Inhibited Pancreatic Cancer via P-21 Activated Kinase 1 Mediated Pathway. Int J Mol Sci 2020; 21:ijms21218035. [PMID: 33126623 PMCID: PMC7662796 DOI: 10.3390/ijms21218035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The anti-cancer effects of cannabinoids including CBD (Cannabidiol) and THC ((−)-trans-∆9-tetrahydrocannabinol) have been reported in the case of pancreatic cancer (PC). The connection of these cannabinoids to KRas oncogenes that mutate in more than 90% of PC, and their effects on PD-L1, a key target of immune checkpoint blockade, have not been thoroughly investigated. Using cell lines and mouse models of PC, the effects of CBD and THC on cancer growth, the interaction between PC cells and a stromal cell, namely pancreatic stellate cells (PSCs), and the mechanism(s) involved were determined by cell-based assays and mouse study in vivo. CBD and THC inhibited the proliferation of PC, PSC, and PSC-stimulated PC cells. They also suppressed pancreatic tumour growth in mice. Furthermore, CBD and/or THC reduced the expression of PD-L1 by either PC or PSC cells. Knockout of p-21 activated kinase 1 (PAK1, activated by KRas) in PC and PSC cells and, in mice, dramatically decreased or blocked these inhibitory effects of CBD and/or THC. These results indicated that CBD and THC exerted their inhibitions on PC and PSC via a p-21 activated kinase 1 (PAK1)-dependent pathway, suggesting that CBD and THC suppress Kras activated pathway by targeting PAK1. The inhibition by CBD and THC of PD-L1 expression will enhance the immune checkpoint blockade of PC.
Collapse
|
41
|
Salami SA, Martinelli F, Giovino A, Bachari A, Arad N, Mantri N. It Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules 2020; 25:E4036. [PMID: 32899626 PMCID: PMC7571138 DOI: 10.3390/molecules25184036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabis is an annual plant with a long history of use as food, feed, fiber, oil, medicine, and narcotics. Despite realizing its true value, it has not yet found its true place. Cannabis has had a long history with many ups and downs, and now it is our turn to promote it. Cannabis contains approximately 600 identified and many yet unidentified potentially useful compounds. Cannabinoids, phenolic compounds, terpenoids, and alkaloids are some of the secondary metabolites present in cannabis. However, among a plethora of unique chemical compounds found in this plant, the most important ones are phytocannabinoids (PCs). Over hundreds of 21-22-carbon compounds exclusively produce in cannabis glandular hairs through either polyketide and or deoxyxylulose phosphate/methylerythritol phosphate (DOXP/MEP) pathways. Trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are those that first come to mind while talking about cannabis. Nevertheless, despite the low concentration, cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabinodiol (CBND), and cannabinidiol (CBDL) may have potentially some medical effects. PCs and endocannabinoids (ECs) mediate their effects mainly through CB1 and CB2 receptors. Despite all concerns regarding cannabis, nobody can ignore the use of cannabinoids as promising tonic, analgesic, antipyretic, antiemetic, anti-inflammatory, anti-epileptic, anticancer agents, which are effective for pain relief, depression, anxiety, sleep disorders, nausea and vomiting, multiple sclerosis, cardiovascular disorders, and appetite stimulation. The scientific community and public society have now increasingly accepted cannabis specifically hemp as much more than a recreational drug. There are growing demands for cannabinoids, mainly CBD, with many diverse therapeutic and nutritional properties in veterinary or human medicine. The main objective of this review article is to historically summarize findings concerning cannabinoids, mainly THC and CBD, towards putting these valuable compounds into food, feed and health baskets and current and future trends in the consumption of products derived from cannabis.
Collapse
Affiliation(s)
- Seyed Alireza Salami
- Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria (PA), Italy;
| | - Ava Bachari
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, Bundoora, VIC 3083, Australia; (A.B.); (N.M.)
| |
Collapse
|
42
|
Buchwald D, Brønnum D, Melgaard D, Leutscher PD. Living with a Hope of Survival Is Challenged by a Lack of Clinical Evidence: An Interview Study among Cancer Patients Using Cannabis-Based Medicine. J Palliat Med 2020; 23:1090-1093. [DOI: 10.1089/jpm.2019.0298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Dorte Buchwald
- Palliative Care Team, North Denmark Regional Hospital, Hjørring, Denmark
| | - Dorte Brønnum
- Center for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Dorte Melgaard
- Center for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Peter D.C. Leutscher
- Center for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
43
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
44
|
Mazuz M, Tiroler A, Moyal L, Hodak E, Nadarajan S, Vinayaka AC, Gorovitz-Haris B, Lubin I, Drori A, Drori G, Cauwenberghe OV, Faigenboim A, Namdar D, Amitay-Laish I, Koltai H. Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo. Oncotarget 2020; 11:1141-1156. [PMID: 32284791 PMCID: PMC7138167 DOI: 10.18632/oncotarget.27528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa produces hundreds of phytocannabinoids and terpenes. Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood. This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells. Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Cytotoxic activity was determined using the XTT assay on My-La and HuT-78 cell lines as well as peripheral blood lymphocytes from Sézary patients (SPBL). Annexin V assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle. RNA sequencing and quantitative PCR were used to determine gene expression. Active cannabis compounds presenting high cytotoxic activity on My-La and HuT-78 cell lines were identified in crude extract fractions designated S4 and S5, and their synergistic mixture was specified. This mixture induced cell cycle arrest and cell apoptosis; a relatively selective apoptosis was also recorded on the malignant CD4+CD26- SPBL cells. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5. The gene expression profile was distinct in My-La and HuT-78 cells treated with the S4 and S5 synergistic mixture. We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.
Collapse
Affiliation(s)
- Moran Mazuz
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the first author
| | - Amir Tiroler
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,These authors equally contributed as the first author
| | - Lilach Moyal
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stalin Nadarajan
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | | | - Batia Gorovitz-Haris
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Drori
- MedC Biopharma Corporation, Ontario, Canada
| | - Guy Drori
- MedC Biopharma Corporation, Ontario, Canada
| | | | - Adi Faigenboim
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Dvora Namdar
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Iris Amitay-Laish
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,These authors equally contributed as the last author
| | - Hinanit Koltai
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the last author
| |
Collapse
|
45
|
Laezza C, Pagano C, Navarra G, Pastorino O, Proto MC, Fiore D, Piscopo C, Gazzerro P, Bifulco M. The Endocannabinoid System: A Target for Cancer Treatment. Int J Mol Sci 2020; 21:ijms21030747. [PMID: 31979368 PMCID: PMC7037210 DOI: 10.3390/ijms21030747] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, the endocannabinoid system has received great interest as a potential therapeutic target in numerous pathological conditions. Cannabinoids have shown an anticancer potential by modulating several pathways involved in cell growth, differentiation, migration, and angiogenesis. However, the therapeutic efficacy of cannabinoids is limited to the treatment of chemotherapy-induced symptoms or cancer pain, but their use as anticancer drugs in chemotherapeutic protocols requires further investigation. In this paper, we reviewed the role of cannabinoids in the modulation of signaling mechanisms implicated in tumor progression.
Collapse
Affiliation(s)
- Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, 80131 Naples, Italy
- Correspondence: (C.L.); (M.B.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Olga Pastorino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (M.C.P.); (D.F.); (C.P.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy; (C.P.); (G.N.); (O.P.)
- Correspondence: (C.L.); (M.B.)
| |
Collapse
|
46
|
Kumawat VS, Kaur G. Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur J Pharmacol 2019; 862:172628. [PMID: 31461639 DOI: 10.1016/j.ejphar.2019.172628] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023]
Abstract
The biological effects of endocannabinoid system are mediated by two types of receptors, cannabinoid 1 (CB1) and cannabinoid 2 receptor (CB2). They play a pivotal role in the management of pain, inflammation, cancer, obesity and diabetes mellitus. CB2 receptor activity downregulation is hallmark of inflammation and oxidative stress. Strong evidence display the relation between activation of CB2 receptors with decrease in the pro-inflammatory cytokines and pro-apoptotic factors. Numerous in vitro and in vivo studies have been validated to confirm the role of CB2 receptor in the management of obesity, hyperlipidemia and diabetes mellitus by regulating glucose and lipid metabolism. Activation of CB2 receptor has led to reduction of inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6), Nuclear factor kappa beta (NF-κβ) and also amelioration of reactive oxygen species and reactive nitrogen species playing role in apoptosis. Many studies confirmed the role of CB2 receptors in the insulin secretion via facilitating calcium entry into the pancreatic β-cells. CB2 receptors also displayed improvement in the neuronal and renal functions by decreasing the oxidative stress and downregulating inflammatory cascade. The present review addresses, potential role of CB2 receptor activation in management of diabetes and its complications. It also includes the role of CB2 receptors as an anti-oxidant, anti-apoptotic and anti-inflammatory for the treatment of DM and its complications. Also, an informative summary of CB2 receptor agonist drugs is provided with their potential role in the reduction of glucose levels, increment in the insulin levels, decrease in the hyperglycaemic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Vivek S Kumawat
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
47
|
Xu S, Ma H, Bo Y, Shao M. The oncogenic role of CB2 in the progression of non-small-cell lung cancer. Biomed Pharmacother 2019; 117:109080. [PMID: 31176172 DOI: 10.1016/j.biopha.2019.109080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Several studies have verified the important role of cannabinoid and cannabinoid receptor agonists in tumor progression. However, little is known about the precise role of CB2 expression level in the progression of non-small-cell lung cancer (NSCLC). METHODS The expression of CB2 in NSCLC tissues and corresponding paracancerous tissues was examined using immunohistochemical staining assay. The expression of CB2 was silenced by siRNA interference and loss-of-function assays were performed to investigate the biological function of CB2 in the proliferation, migration, invasion, and apoptosis of NSCLC cells. The expression of related proteins was detected using western blot analysis. RESULTS In this study, we observed that CB2 was up-regulated in NSCLC tissues and the up-regulation was correlated with tumor size and advanced NSCLC pathological grading. Moreover, compared with the control group, silencing of CB2 decreased the proliferation, migration and invasion abilities of A549 and H1299 cells, and induced apoptosis by regulation of Bcl-2/Bax axis and active Caspase3. Furthermore, CB2 knockdown inactivated the Akt/mTOR/P70S6K pathway by decreasing the level of p-Akt, p-mTOR and expression of P70S6K in A549 and H1299 cells. CONCLUSION Our data suggested that targeting CB2 may inhibit the growth and survival of NSCLC cells, which the Akt/mTOR/P70S6K pathway may be involved in. These results confer the pro-oncogenic role of CB2 in the progression of NSCLC, thus improving our understanding of CB2 in tumor progression.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Respiratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Hanchen Ma
- Department of Respiratory, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Yuhong Bo
- Weihai Municipal Hospital, Weihai 264200, Shandong Province, China
| | - Mingju Shao
- Department of Emergency Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan 250033, Shandong Province, China.
| |
Collapse
|
48
|
Bisi A, Mokhtar Mahmoud A, Allará M, Naldi M, Belluti F, Gobbi S, Ligresti A, Rampa A. Polycyclic Maleimide-based Scaffold as New Privileged Structure for Navigating the Cannabinoid System Opportunities. ACS Med Chem Lett 2019; 10:596-600. [PMID: 30996802 DOI: 10.1021/acsmedchemlett.8b00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the relevant role played by a dysregulation of the endogenous cannabinoid system in several pathological conditions has prompted an extensive research in this field. In this Letter, a series of cannabinoid receptor ligands bearing a previously unexplored polycyclic scaffold was designed and synthesized, in order to evaluate the potential of a new easily affordable privileged structure. The new compounds showed an appreciable affinity and a significant selectivity for the CB2 receptor and are endowed with an intriguing noncompetitive antagonist behavior. Due to the ability of the polycyclic structure to be easily modified in different ways, these compounds could represent convenient chemical tools to be exploited in order to better understand the endocannabinoid system impact on physiopathological conditions.
Collapse
Affiliation(s)
- Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alì Mokhtar Mahmoud
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Marco Allará
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Marina Naldi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
49
|
Ayakannu T, Taylor AH, Marczylo TH, Konje JC. New Insights of Uterine Leiomyoma Pathogenesis: Endocannabinoid System. Med Sci Monit Basic Res 2019; 25:76-87. [PMID: 30842391 PMCID: PMC6421936 DOI: 10.12659/msmbr.914019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to determine if components of the endocannabinoid system are modulated in uterine leiomyomas (fibroids). Components studied included cannabinoid receptors 1 (CB1) and 2 (CB2); the G protein-coupled receptor GPR55; transient potential vanilloid receptor 1 (TRPV1) and the endocannabinoid modulating enzymes N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and their N-acylethanolamine (NAE) ligands: N-arachidonylethanolamine (AEA), N-oleoylethanolamine (OEA), and N-palmityolethanaolamine (PEA). Material/Methods Transcript levels of CB1, CB2, TRPV1, GPR55, NAPE-PLD, and FAAH were measured using RT-PCR and correlated with the tissue levels of the 3 NAEs in myometrial tissues. The tissues studied were: 1) fibroids, 2) myometrium adjacent/juxtaposed to the fibroid lesions, and 3) normal myometrium. Thirty-seven samples were processed for NAE measurements and 28 samples were used for RT-PCR analyses. Results FAAH expression was significantly lower in fibroids, resulting in a NAPE-PLD: FAAH ratio that favors higher AEA levels in pre-menopausal tissues, whilst PEA levels were significantly lower, particularly in post-menopausal women, suggesting PEA protects against fibroid pathogenesis. The CB1: CB2 ratio was lower in fibroids, suggesting that loss of CB1 expression affects the fibroid cell phenotype. Significant correlations between reduced FAAH, CB1, and GPR55 expression and PEA in fibroids indicate that the loss of these endocannabinoid system components are biomarkers of leiomyomata. Conclusions Loss of expression of CB1, FAAH, GPR55, and PEA production are linked to the pathogenesis of uterine fibroids and further understanding of this might eventually lead to better disease indicators or the development of therapeutic potentials that might eventually be used in the management of uterine fibroids.
Collapse
Affiliation(s)
- Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Obstetrics and Gynaecology, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Anthony H Taylor
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Molecular and Cellular Biology, University of Leicester, Leicester, United Kingdom
| | - Timothy H Marczylo
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Public Health England, Chilton, Oxford, United Kingdom
| | - Justin C Konje
- Endocannabinoid Research Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.,Department of Obstetrics and Gynaecology, Sidra Medicine, Doha and Wellness Women's Research Centre, Doha, Qatar
| |
Collapse
|
50
|
Dariš B, Tancer Verboten M, Knez Ž, Ferk P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn J Basic Med Sci 2019; 19:14-23. [PMID: 30172249 DOI: 10.17305/bjbms.2018.3532] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids. The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes. Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer. In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite. In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types. Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries. In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration. Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients. The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.
Collapse
Affiliation(s)
- Barbara Dariš
- Department of Cell Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|