1
|
Song Y, Burns GW, Joshi NR, Arora R, Kim JJ, Fazleabas AT. Spheroids as a model for endometriotic lesions. JCI Insight 2023; 8:e160815. [PMID: 37104033 PMCID: PMC10393231 DOI: 10.1172/jci.insight.160815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
The development and progression of endometriotic lesions are poorly understood, but immune cell dysfunction and inflammation are closely associated with the pathophysiology of endometriosis. There is a need for 3D in vitro models to permit the study of interactions between cell types and the microenvironment. To address this, we developed endometriotic spheroids (ES) to explore the role of epithelial-stromal interactions and model peritoneal invasion associated with lesion development. Using a nonadherent microwell culture system, spheroids were generated with immortalized endometriotic epithelial cells (12Z) combined with endometriotic stromal (iEc-ESC) or uterine stromal (iHUF) cell lines. Transcriptomic analysis found 4,522 differentially expressed genes in ES compared with spheroids containing uterine stromal cells. The top increased gene sets were inflammation-related pathways, and an overlap with baboon endometriotic lesions was highly significant. Finally, to mimic invasion of endometrial tissue into the peritoneum, a model was developed with human peritoneal mesothelial cells in an extracellular matrix. Invasion was increased in the presence of estradiol or pro-inflammatory macrophages and suppressed by a progestin. Taken together, our results strongly support the concept that ES are an appropriate model for dissecting mechanisms that contribute to endometriotic lesion development.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - J. Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
2
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Differentiated kidney tubular cell-derived extracellular vesicles enhance maturation of tubuloids. J Nanobiotechnology 2022; 20:326. [PMID: 35841001 PMCID: PMC9284832 DOI: 10.1186/s12951-022-01506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The prevalence of end-stage kidney disease (ESKD) is rapidly increasing with the need for regenerative therapies. Adult stem cell derived kidney tubuloids have the potential to functionally mimic the adult kidney tubule, but still lack the expression of important transport proteins needed for waste removal. Here, we investigated the potential of extracellular vesicles (EVs) obtained from matured kidney tubular epithelial cells to modulate in vitro tubuloids functional maturation. We focused on organic anion transporter 1 (OAT1), one of the most important proteins involved in endogenous waste excretion. First, we show that EVs from engineered proximal tubule cells increased the expression of several transcription factors and epithelial transporters, resulting in improved OAT1 transport capacity. Next, a more in-depth proteomic data analysis showed that EVs can trigger various biological pathways, including mesenchymal-to-epithelial transition, which is crucial in the tubular epithelial maturation. Moreover, we demonstrated that the combination of EVs and tubuloid-derived cells can be used as part of a bioartificial kidney to generate a tight polarized epithelial monolayer with formation of dense cilia structures. In conclusion, EVs from kidney tubular epithelial cells can phenotypically improve in vitro tubuloid maturation, thereby enhancing their potential as functional units in regenerative or renal replacement therapies.
Collapse
|
4
|
Promotion of Cyst Formation from a Renal Stem Cell Line Using Organ-Specific Extracellular Matrix Gel Format Culture System. Gels 2022; 8:gels8050312. [PMID: 35621610 PMCID: PMC9140708 DOI: 10.3390/gels8050312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Researchers have long awaited the technology to develop an in vitro kidney model. Here, we establish a rapid fabricating technique for kidney-like tissues (cysts) using a combination of an organ-derived extracellular matrix (ECM) gel format culture system and a renal stem cell line (CHK-Q cells). CHK-Q cells, which are spontaneously immortalized from the renal stem cells of the Chinese hamster, formed renal cyst-like structures in a type-I collagen gel sandwich culture on day 1 of culture. The cysts fused together and expanded while maintaining three-dimensional structures. The expression of genes related to kidney development and maturation was increased compared with that in a traditional monolayer. Under the kidney-derived ECM (K-ECM) gel format culture system, cyst formation and maturation were induced rapidly. Gene expressions involved in cell polarities, especially for important material transporters (typical markers Slc5a1 and Kcnj1), were restored. K-ECM composition was an important trigger for CHK-Q cells to promote kidney-like tissue formation and maturation. We have established a renal cyst model which rapidly expressed mature kidney features via the combination of K-ECM gel format culture system and CHK-Q cells.
Collapse
|
5
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Xu X, Li Z, Ai X, Tang Y, Yang D, Dou L. Human three-dimensional dental pulp organoid model for toxicity screening of dental materials on dental pulp cells and tissue. Int Endod J 2021; 55:79-88. [PMID: 34587308 DOI: 10.1111/iej.13641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023]
Abstract
AIM To establish a 3D model for screening the biocompatibility of dental materials/drugs on dental pulp cells and tissue. METHODOLOGY Human dental pulp cells (hDPC) and endothelial cells (EC) were mixed with or without human dental pulp derived extracellular matrix (hDP-ECM) according to several protocols and cultured in 3D plates to fabricate 3D organoids. Cell viability and proliferation in organoids were evaluated using Live/Dead cell viability assay and ATPase assay. Organoids were fixed, cut and stained with a H&E staining kit. The expressions of DSPP, DMP-1, CD31, vWF and COL1A in 3D organoids were evaluated using immunofluorescence. To assess the feasibility of 3D organoids on drug/material toxicity screening, the organoids were treated with lipopolysaccharides (LPS) or iRoot BP. Then, cell viability and apoptosis were assessed. The expressions of IL-6, TNF-α, and IL-1β were compared in LPS-treated and non-treated organoids. Alizarin Red S staining was used to evaluate calcium deposit formation in organoids. Data were analysed using one-way anova followed by Tukey's post hoc comparison. RESULTS The 3D spheres/organoids were formed at day 1 or day 2. Cells in 3D organoids maintained a high viability rate and low proliferation activity. The level of CD31 increased significantly (p < .05) when EC were added to coculture with hDPC. The expressions of odontogenesis-associated proteins (DSPP, COL1A) upregulated (p < .05) with the addition of hDP-ECM. Level of IL-6 expression and rates of dead and apoptotic cells in 3D organoids were increased significantly (p < .05) in response to LPS. Calcium deposit formation was observed in iRoot BP-treated organoids. CONCLUSIONS Coculture of hDPC and EC in the presence of hDP-ECM formed functional dental pulp organoids. The experimental model provides an alternative tool for toxicity screening of dental pulp capping agents and dental pulp regeneration research.
Collapse
Affiliation(s)
- Xiaoqi Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoqing Ai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Tang
- University of Southern California Herman Ostrow School of Dentistry, Los Angeles, California, USA
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lei Dou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Schumacher A, Rookmaaker MB, Joles JA, Kramann R, Nguyen TQ, van Griensven M, LaPointe VLS. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen Med 2021; 6:45. [PMID: 34381054 PMCID: PMC8357940 DOI: 10.1038/s41536-021-00156-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
The kidney is among the most complex organs in terms of the variety of cell types. The cellular complexity of human kidneys is not fully unraveled and this challenge is further complicated by the existence of multiple progenitor pools and differentiation pathways. Researchers disagree on the variety of renal cell types due to a lack of research providing a comprehensive picture and the challenge to translate findings between species. To find an answer to the number of human renal cell types, we discuss research that used single-cell RNA sequencing on developing and adult human kidney tissue and compares these findings to the literature of the pre-single-cell RNA sequencing era. We find that these publications show major steps towards the discovery of novel cell types and intermediate cell stages as well as complex molecular signatures and lineage pathways throughout development. The variety of cell types remains variable in the single-cell literature, which is due to the limitations of the technique. Nevertheless, our analysis approaches an accumulated number of 41 identified cell populations of renal lineage and 32 of non-renal lineage in the adult kidney, and there is certainly much more to discover. There is still a need for a consensus on a variety of definitions and standards in single-cell RNA sequencing research, such as the definition of what is a cell type. Nevertheless, this early-stage research already proves to be of significant impact for both clinical and regenerative medicine, and shows potential to enhance the generation of sophisticated in vitro kidney tissue.
Collapse
Affiliation(s)
- A Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - M B Rookmaaker
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - R Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - V L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Facioli R, Lojudice FH, Anauate AC, Maquigussa E, Nishiura JL, Heilberg IP, Sogayar MC, Boim MA. Kidney organoids generated from erythroid progenitors cells of patients with autosomal dominant polycystic kidney disease. PLoS One 2021; 16:e0252156. [PMID: 34339420 PMCID: PMC8328284 DOI: 10.1371/journal.pone.0252156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background Kidney organoids have been broadly obtained from commercially available induced pluripotent stem cells (iPSCs); however, it has been a great challenge to efficiently produce renal organoid models from patients with autosomal dominant polycystic kidney disease (ADPKD) that recapitulate both embryogenesis and the mechanisms of cystogenesis. Methods Blood erythroid progenitors (EPs) from two ADPKD patients and one healthy donor (HC) was used as a comparative control to normalize the many technical steps for reprogramming EPs and for the organoids generation. EPs were reprogrammed by an episomal vector into iPSCs, which were differentiated into renal tubular organoids and then stimulated by forskolin to induce cysts formation. Results iPSCs derived from EPs exhibited all characteristics of pluripotency and were able to differentiate into all three germ layers. 3D tubular organoids were generated from single cells after 28 days in Matrigel. HC and ADPKD organoids did not spontaneously form cysts, but upon forskolin stimulation, cysts-like structures were observed in the ADPKD organoids but not in the HC-derived organoids. Conclusion The findings of this study showed that kidney organoids were successfully generated from the blood EP cells of ADPKD patients and a healthy control donor. This approach should contribute as a powerful tool for embryonic kidney development model, which is able to recapitulate the very early pathophysiological mechanisms involved in cytogenesis.
Collapse
Affiliation(s)
- Roberta Facioli
- Nephrology Division–Federal University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Fernando Henrique Lojudice
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Edgar Maquigussa
- Nephrology Division–Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
9
|
Trivedi N, Kumar D. Fibroblast growth factor and kidney disease: Updates for emerging novel therapeutics. J Cell Physiol 2021; 236:7909-7925. [PMID: 34196395 DOI: 10.1002/jcp.30497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The discovery of fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) provided a profound new insight into physiological and metabolic functions. FGF has a large family by having divergent structural elements and enable functional divergence and specification. FGF and FGFRs are highly expressed during kidney development. Signals from the ureteric bud regulate morphogenesis, nephrogenesis, and nephron progenitor survival. Thus, FGF signaling plays an important role in kidney progenitor cell aggregation at the sites of new nephron formation. This review will summarize the current knowledge about functions of FGF signaling in kidney development and their ability to promote regeneration in injured kidneys and its use as a biomarker and therapeutic target in kidney diseases. Further studies are essential to determine the predictive significance of the various FGF/FGFR deviations and to integrate them into clinical algorithms.
Collapse
Affiliation(s)
- Neerja Trivedi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
10
|
Song Y, Fazleabas AT. Endometrial Organoids: A Rising Star for Research on Endometrial Development and Associated Diseases. Reprod Sci 2021; 28:1626-1636. [PMID: 33533008 DOI: 10.1007/s43032-021-00471-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
The endometrium is one of the most dynamic organs in the human body. Until now, cell lines have furthered the understanding of endometrial biology and associated diseases, but they failed to recapitulate the key physiological aspects of the endometrium, especially as it relates to its complex architecture and functions. Organoid culture systems have become an alternative approach to reproduce biological functions of tissues in vitro. Endometrial organoids have now been established from stem/progenitor cells and/or differentiated cells by several methods, which represents a promising tool to gain a deeper understanding of this dynamic organ. In this review, we will discuss the establishment, characteristics, applications, and potential challenges and directions of endometrial organoids.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, 49503, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, 49503, USA.
| |
Collapse
|
11
|
CXCR4 Regulates Temporal Differentiation via PRC1 Complex in Organogenesis of Epithelial Glands. Int J Mol Sci 2021; 22:ijms22020619. [PMID: 33435128 PMCID: PMC7826811 DOI: 10.3390/ijms22020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
CXC-chemokine receptor type 4 (CXCR4), a 7-transmembrane receptor family member, displays multifaceted roles, participating in immune cell migration, angiogenesis, and even adipocyte metabolism. However, the activity of such a ubiquitously expressed receptor in epithelial gland organogenesis has not yet been fully explored. To investigate the relationship between CXCL12/CXCR4 signaling and embryonic glandular organogenesis, we used an ex vivo culture system with live imaging and RNA sequencing to elucidate the transcriptome and protein-level signatures of AMD3100, a potent abrogating reagent of the CXCR4-CXCL12 axis, imprinted on the developing organs. Immunostaining results showed that CXCR4 was highly expressed in embryonic submandibular gland, lung, and pancreas, especially at the periphery of end buds containing numerous embryonic stem/progenitor cells. Despite no significant increase in apoptosis, AMD3100-treated epithelial organs showed a retarded growth with significantly slower branching and expansion. Further analyses with submandibular glands revealed that such responses resulted from the AMD3100-induced precocious differentiation of embryonic epithelial cells, losing mitotic activity. RNA sequencing analysis revealed that inhibition of CXCR4 significantly down-regulated polycomb repressive complex (PRC) components, known as regulators of DNA methylation. Treatment with PRC inhibitor recapitulated the AMD3100-induced precocious differentiation. Our results indicate that the epigenetic modulation by the PRC-CXCR12/CXCR4 signaling axis is crucial for the spatiotemporal regulation of proliferation and differentiation of embryonic epithelial cells during embryonic glandular organogenesis.
Collapse
|
12
|
Emerson AE, Slaby EM, Weaver JD. A Method for Organoid Transplantation and Whole-Mount Visualization of Post-Engraftment Vascularization. Methods Mol Biol 2021; 2258:259-272. [PMID: 33340366 DOI: 10.1007/978-1-0716-1174-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
As the field of organoid development matures, the need to transplant organoids to evaluate and characterize their functionality grows. Decades of research developing islet organoid transplantation for the treatment of type 1 diabetes can contribute substantially to accelerating diverse tissue organoid transplantation. Biomaterials-based organoid delivery methods offer the potential to maximize organoid survival and engraftment. In this protocol, we describe a vasculogenic degradable hydrogel vehicle and a method to deliver organoids to intraperitoneal tissue. Further, we describe a method to fluorescently label and image functional vasculature within the graft as a tool to investigate organoid engraftment.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Emily M Slaby
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Sun G, Ding B, Wan M, Chen L, Jackson J, Atala A. Formation and optimization of three-dimensional organoids generated from urine-derived stem cells for renal function in vitro. Stem Cell Res Ther 2020; 11:309. [PMID: 32698872 PMCID: PMC7374873 DOI: 10.1186/s13287-020-01822-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background Organoids play an important role in basic research, drug screening, and regenerative medicine. Here, we aimed to develop a novel kind of three-dimensional (3D) organoids generated from urine-derived stem cells (USCs) and to explore whether kidney-specific extracellular matrix (kECM) could enable such organoids for renal function in vitro. Methods USCs were isolated from human urine samples and cultured with kECM extraction to generate 3D organoids in vitro. Eight densities from 1000 to 8000 cells per organoids were prepared, and both ATP assay and Live/Dead staining were used to determine the optimal USC density in forming organoids and kECM additive concentration. The morphology and histology of as-made organoids were evaluated by hematoxylin and eosin (H.E.) staining, immunofluorescence staining and whole mount staining. Additionally, RT-qPCR was implemented to detect renal-related gene expression. Drug toxicity test was conducted to evaluate the potential application for drug screening. The renal organoids generated from whole adult kidney cells were used as a positive control in multiple assessments. Results The optimized cell density to generate ideal USC-derived organoids (USC-organoids) was 5000 cells/well, which was set as applying density in the following experiments. Besides, the optimal concentration of kECM was revealed to be 10%. On this condition, Live/Dead staining showed that USC-organoids were well self-organized without significant cell death. Moreover, H.E. staining showed that compact and viable organoids were generated without obvious necrosis inside organoids, which were very close to renal organoids morphologically. Furthermore, specific proximal tubule marker Aquaporin-1 (AQP1), kidney endocrine product erythropoietin (EPO), kidney glomerular markers Podocin and Synaptopodin were detected positively in USC-organoids with kECM. Nephrotoxicity testing showed that aspirin, penicillin G, and cisplatin could exert drug-induced toxicity on USC-organoids with kECM. Conclusions USC-organoids could be developed from USCs via an optimal procedure. Combining culture with kECM, USC-organoid properties including morphology, histology, and specific gene expression were identified to be similar with real renal organoids. Additionally, USC-organoids posed kECM in vitro showed the potential to be a drug screening tool which might take the place of renal organoids to some extent in the future.
Collapse
Affiliation(s)
- Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, 430030, HB, China
| | - Beichen Ding
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, HLJ, China
| | - Meimei Wan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou, Wuhan, 430030, HB, China. .,Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
14
|
Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9:E1326. [PMID: 32466429 PMCID: PMC7349753 DOI: 10.3390/cells9061326] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis. After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme, their reciprocal interaction causes self-organization and patterning in vitro to generate nephron structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium. Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling, (3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently, organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic, and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid biobank was established, which allows studies of pathogenic mutations and novel drug targets in a large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and their current and future applications in science and medicine.
Collapse
Affiliation(s)
- Fjodor A. Yousef Yengej
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands;
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Hans Clevers
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
15
|
Keshel SH, Rahimi A, Hancox Z, Ebrahimi M, Khojasteh A, Sefat F. The promise of regenerative medicine in the treatment of urogenital disorders. J Biomed Mater Res A 2020; 108:1747-1759. [PMID: 32270582 DOI: 10.1002/jbm.a.36942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Polymers and scaffolds are the most significant tools in regenerative medicine. Urogenital disorders are an important group of diseases that greatly affect the patient's life expectancy and quality. Reconstruction of urogenital defects is one of the current challenges in regenerative medicine. Regenerative medicine, as well as tissue engineering, may offer suitable approaches, while the tools needed are appropriate materials and cells. Autologous urothelial cells obtained from biopsy, bone marrow-derived stem cells, adipose stem cells and urine-derived stem cells that expressed mesenchymal cell markers are the cells that mainly used. In addition, two main types of biomaterials mainly exist; synthetic polymers and composite scaffolds that are biodegradable polymers with controllable properties and naturally derived biomaterials such as extracellular matrix components and acellular tissue matrices. In this review, we present and evaluate the most appropriate and suitable scaffolds (naturally derived and synthetic polymers) and cells applied in urogenital reconstruction.
Collapse
Affiliation(s)
- Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Maryam Ebrahimi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
16
|
Novikova YP, Poplinskaya VA, Grigoryan EN. Organotypic Culturing as a Way to Study Recovery Opportunities of the Eye Retina in Vertebrates and Humans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Chhibber T, Bagchi S, Lahooti B, Verma A, Al-Ahmad A, Paul MK, Pendyala G, Jayant RD. CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discov Today 2020; 25:456-465. [PMID: 31783130 PMCID: PMC7039749 DOI: 10.1016/j.drudis.2019.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The paradigm of central nervous system (CNS) drug discovery has mostly relied on traditional approaches of rodent models or cell-based in vitro models. Owing to the issues of species differences between humans and rodents, it is difficult to correlate the robustness of data for neurodevelopmental studies. With advances in the stem-cell field, 3D CNS organoids have been developed and explored owing to their resemblance to the human brain architecture and functions. Further, CNS organoids provide a unique opportunity to mimic the human brain physiology and serve as a modeling tool to study the normal versus pathological brain or the elucidation of mechanisms of neurological disorders. Here, we discuss the recent application of a CNS organoid explored for neurodevelopment disease or a screening tool for CNS drug development.
Collapse
Affiliation(s)
- Tanya Chhibber
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Angela Verma
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Rahul Dev Jayant
- Department of Pharmaceutical Sciences, JH School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX 79106, USA.
| |
Collapse
|
18
|
Musafargani S, Mishra S, Gulyás M, Mahalakshmi P, Archunan G, Padmanabhan P, Gulyás B. Blood brain barrier: A tissue engineered microfluidic chip. J Neurosci Methods 2020; 331:108525. [DOI: 10.1016/j.jneumeth.2019.108525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
|
19
|
Lee PS, Hess R, Friedrichs J, Haenchen V, Eckert H, Cuniberti G, Rancourt D, Krawetz R, Hintze V, Gelinsky M, Scharnweber D. Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approaches. J Tissue Eng Regen Med 2019; 13:1672-1684. [PMID: 31250556 DOI: 10.1002/term.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 11/08/2022]
Abstract
Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures. Hence, alternative growth factor-free differentiation approaches are designed and their efficacy to achieve different osteochondral cell types is investigated. Briefly, a dynamic niche is achieved by varying medium pH, oxygen tension (pO2 ) distribution in bioreactor, initiating chondrogenic differentiation with chondroitin sulphate A (CSA), and implementing systematic differentiation regimes. In this study, we demonstrated that CSA is a potent chondrogenic inducer, specifically in combination with acidic medium and low pO2 . Further, endochondral ossification is recapitulated through a systematic chondrogenic-osteogenic (ch-os) differentiation regime, and multiple osteochondral cell types are derived. Chondrogenic hypertrophy was also enhanced specifically in high pO2 regions. Consequently, mineralised constructs with higher structural integrity, volume, and tailored dimensions are achieved. In contrast, a continuous osteogenic differentiation regime (os-os) has derived compact and dense constructs, whereas a continuous chondrogenic differentiation regime (ch-ch) has attenuated construct mineralisation and impaired development. In conclusion, a growth factor-free differentiation approach is achieved through interplay of pO2 , medium pH, and systematic differentiation regimes. The controlled dynamic niches have recapitulated endochondral ossification and can potentially be exploited to derive larger bone constructs with near physiological properties.
Collapse
Affiliation(s)
- Poh Soo Lee
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricarda Hess
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden e. V., Dresden, Germany
| | - Vanessa Haenchen
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hagen Eckert
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Derrick Rancourt
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vera Hintze
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Grassi L, Alfonsi R, Francescangeli F, Signore M, De Angelis ML, Addario A, Costantini M, Flex E, Ciolfi A, Pizzi S, Bruselles A, Pallocca M, Simone G, Haoui M, Falchi M, Milella M, Sentinelli S, Di Matteo P, Stellacci E, Gallucci M, Muto G, Tartaglia M, De Maria R, Bonci D. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis 2019; 10:201. [PMID: 30814510 PMCID: PMC6393468 DOI: 10.1038/s41419-019-1453-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
The pressure towards innovation and creation of new model systems in regenerative medicine and cancer research has fostered the development of novel potential therapeutic applications. Kidney injuries provoke a high request of organ transplants making it the most demanding system in the field of regenerative medicine. Furthermore, renal cancer frequently threaten patients’ life and aggressive forms still remain difficult to treat. Ethical issues related to the use of embryonic stem cells, has fueled research on adult, patient-specific pluripotent stem cells as a model for discovery and therapeutic development, but to date, normal and cancerous renal experimental models are lacking. Several research groups are focusing on the development of organoid cultures. Since organoids mimic the original tissue architecture in vitro, they represent an excellent model for tissue engineering studies and cancer therapy testing. We established normal and tumor renal cell carcinoma organoids previously maintained in a heterogeneous multi-clone stem cell-like enriching medium. Starting from adult normal kidney specimens, we were able to isolate and propagate organoid 3D-structures composed of both differentiated and undifferentiated cells while expressing nephron specific markers. Furthermore, we were capable to establish organoids derived from cancer tissues although with a success rate inferior to that of their normal counterpart. Cancer cultures displayed epithelial and mesenchymal phenotype while retaining tumor specific markers. Of note, tumor organoids recapitulated neoplastic masses when orthotopically injected into immunocompromised mice. Our data suggest an innovative approach of long-term establishment of normal- and cancer-derived renal organoids obtained from cultures of fleshly dissociated adult tissues. Our results pave the way to organ replacement pioneering strategies as well as to new models for studying drug-induced nephrotoxicity and renal diseases. Along similar lines, deriving organoids from renal cancer patients opens unprecedented opportunities for generation of preclinical models aimed at improving therapeutic treatments.
Collapse
Affiliation(s)
- Ludovica Grassi
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Department of Internal Medicine and Medical Specialties, "La Sapienza" University, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy.,Istituto di Patologia Generale Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | | | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Costantini
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy.,Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giuseppe Simone
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Mustapha Haoui
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine, Verona, Italy.,Verona University, Hospital Trust, Verona, Italy
| | | | - Paola Di Matteo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Gallucci
- Oncological Urology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy. .,Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S. Largo Francesco Vito 1-8, 00168, Rome, Italy.
| | - Désirée Bonci
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy. .,Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
21
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
22
|
Regenerative medicine in kidney disease: where we stand and where to go. Pediatr Nephrol 2018; 33:1457-1465. [PMID: 28735502 DOI: 10.1007/s00467-017-3754-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
Collapse
|
23
|
Rahman MS, Spitzhorn LS, Wruck W, Hagenbeck C, Balan P, Graffmann N, Bohndorf M, Ncube A, Guillot PV, Fehm T, Adjaye J. The presence of human mesenchymal stem cells of renal origin in amniotic fluid increases with gestational time. Stem Cell Res Ther 2018; 9:113. [PMID: 29695308 PMCID: PMC5918774 DOI: 10.1186/s13287-018-0864-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Established therapies for managing kidney dysfunction such as kidney dialysis and transplantation are limited due to the shortage of compatible donated organs and high costs. Stem cell-based therapies are currently under investigation as an alternative treatment option. As amniotic fluid is composed of fetal urine harboring mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic fluid could be a novel source of renal progenitor and differentiated cells. Methods Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in distinct media. These cells were characterized as renal progenitor cells with respect to cell morphology, cell surface marker expression, transcriptome and differentiation into chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative albumin endocytosis assay was performed using AF-MSCs and commercially available renal cells derived from kidney biopsies. Comparative transcriptome analyses of first, second and third trimester-derived AF-MSCs were conducted to monitor expression of renal-related genes. Results Regardless of the media used, AFCs showed expression of pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progenitor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL, LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and downregulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis and semiquantitative PCR revealed increasing expression levels of renal-specific genes (e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more genes with human kidney cells than with native MSCs and gene ontology terms revealed involvement of biological processes associated with kidney morphogenesis. Conclusions Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel source of kidney progenitors may have enormous future potentials for disease modeling, renal repair and drug screening. Electronic supplementary material The online version of this article (10.1186/s13287-018-0864-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Carsten Hagenbeck
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Percy Balan
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, London, WC1E 6HX, UK
| | - Tanja Fehm
- Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Turunen S, Kaisto S, Skovorodkin I, Mironov V, Kalpio T, Vainio S, Rak-Raszewska A. 3D bioprinting of the kidney—hype or hope? ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.3.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater 2017; 13:015006. [PMID: 29165317 DOI: 10.1088/1748-605x/aa8dde] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a pressing need for further advancement in tissue engineering of functional organs with a view to providing a more clinically relevant model for drug development and reduce the dependence on organ donation. Polymer-based scaffolds, such as polycaprolactone (PCL), have been highlighted as a potential avenue for tissue engineered kidneys, but there is little investigation down this stream. Focus within kidney tissue engineering has been on two-dimensional cell culture and decellularised tissue. Electrospun polymer scaffolds can be created with a variety of fibre diameters and have shown a great potential in many areas. The variation in morphology of tissue engineering scaffold has been shown to effect the way cells behave and integrate. In this study we examined the cellular response to scaffold architecture of novel electrospun scaffold for kidney tissue engineering. Fibre diameters of 1.10 ± 0.16 μm and 4.49 ± 0.47 μm were used with three distinct scaffold architectures. Traditional random fibres were spun onto a mandrel rotating at 250 rpm, aligned at 1800 rpm with novel cryogenic fibres spun onto a mandrel loaded with dry ice rotating at 250 rpm. Human kidney epithelial cells were grown for 1 and 2 weeks. Fibre morphology had no effect of cell viability in scaffolds with a large fibre diameter but significant differences were seen in smaller fibres. Fibre diameter had a significant effect in aligned and cryogenic scaffold. Imaging detailed the differences in cell attachment due to scaffold differences. These results show that architecture of the scaffold has a profound effect on kidney cells; whether that is effects of fibre diameter on the cell attachment and viability or the effect of fibre arrangement on the distribution of cells and their alignment with fibres. Results demonstrate that PCL scaffolds have the capability to maintain kidney cells life and should be investigated further as a potential scaffold in kidney tissue engineering.
Collapse
Affiliation(s)
- Todd P Burton
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | | | |
Collapse
|
26
|
Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov 2017; 12:305-316. [DOI: 10.1080/17460441.2017.1284198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|
28
|
Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-Based Cell Therapies for Kidney Regeneration: Current Trends in Biofabrication and In Vivo Repair. Curr Pharm Des 2017; 23:3845-3857. [PMID: 28699526 PMCID: PMC6302346 DOI: 10.2174/1381612823666170710155726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 01/14/2023]
Abstract
Facing the problems of limited renal regeneration capacity and the persistent shortage of donor kidneys, dialysis remains the only treatment option for many end-stage renal disease patients. Unfortunately, dialysis is only a medium-term solution because large and protein-bound uremic solutes are not efficiently cleared from the body and lead to disease progression over time. Current strategies for improved renal replacement therapies (RRTs) range from whole organ engineering to biofabrication of renal assist devices and biological injectables for in vivo regeneration. Notably, all approaches coincide with the incorporation of cellular components and biomimetic micro-environments. Concerning the latter, hydrogels form promising materials as scaffolds and cell carrier systems due to the demonstrated biocompatibility of most natural hydrogels, tunable biochemical and mechanical properties, and various application possibilities. In this review, the potential of hydrogel-based cell therapies for kidney regeneration is discussed. First, we provide an overview of current trends in the development of RRTs and in vivo regeneration options, before examining the possible roles of hydrogels within these fields. We discuss major application-specific hydrogel design criteria and, subsequently, assess the potential of emergent biofabrication technologies, such as micromolding, microfluidics and electrodeposition for the development of new RRTs and injectable stem cell therapies.
Collapse
Affiliation(s)
- Katja Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Carl C L Schuurmans
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Jitske Jansen
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Rosalinde Masereeuw
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| | - Tina Vermonden
- Utrecht University Div. Pharmacology Department of Pharmaceutical Sciences Universiteitsweg 99, 3584 CG Utrecht. Netherlands
| |
Collapse
|
29
|
Chuah JKC, Zink D. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications. Biotechnol Adv 2016; 35:150-167. [PMID: 28017905 DOI: 10.1016/j.biotechadv.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 02/09/2023]
Abstract
The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs.
Collapse
Affiliation(s)
- Jacqueline Kai Chin Chuah
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
30
|
Kaisar MA, Sajja RK, Prasad S, Abhyankar VV, Liles T, Cucullo L. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov 2016; 12:89-103. [PMID: 27782770 DOI: 10.1080/17460441.2017.1253676] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered: This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion: Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms.
Collapse
Affiliation(s)
- Mohammad A Kaisar
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Ravi K Sajja
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Shikha Prasad
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Vinay V Abhyankar
- c Biological Microsystems Division at The University of Texas at Arlington Research Institute , Fort Worth , TX , USA
| | - Taylor Liles
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| | - Luca Cucullo
- a Department of Pharmaceutical Sciences , Texas Tech University Health Sciences Center , Amarillo , TX , USA.,b Center for Blood Brain Barrier Research , Texas Tech University Health Sciences Center , Amarillo , TX , USA
| |
Collapse
|
31
|
Brok J, Treger TD, Gooskens SL, van den Heuvel-Eibrink MM, Pritchard-Jones K. Biology and treatment of renal tumours in childhood. Eur J Cancer 2016; 68:179-195. [PMID: 27969569 DOI: 10.1016/j.ejca.2016.09.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
In Europe, almost 1000 children are diagnosed with a malignant renal tumour each year. The vast majority of cases are nephroblastoma, also known as Wilms' tumour (WT). Most children are treated according to Société Internationale d'Oncologie Pédiatrique Renal Tumour Study Group (SIOP-RTSG) protocols with pre-operative chemotherapy, surgery, and post-operative treatment dependent on stage and histology. Overall survival approaches 90%, but a subgroup of WT, with high-risk histology and/or relapsed disease, still have a much poorer prognosis. Outcome is similarly poor for the rare non-WT, particularly for malignant rhabdoid tumour of the kidney, metastatic clear cell sarcoma of the kidney (CCSK), and metastatic renal cell carcinoma (RCC). Improving outcome and long-term quality of life requires more accurate risk stratification through biological insights. Biomarkers are also needed to signpost potential targeted therapies for high-risk subgroups. Our understanding of Wilms' tumourigenesis is evolving and several signalling pathways, microRNA processing and epigenetics are now known to play pivotal roles. Most rhabdoid tumours display somatic and/or germline mutations in the SMARCB1 gene, whereas CCSK and paediatric RCC reveal a more varied genetic basis, including characteristic translocations. Conducting early-phase trials of targeted therapies is challenging due to the scarcity of patients with refractory or relapsed disease, the rapid progression of relapse and the genetic heterogeneity of the tumours with a low prevalence of individual somatic mutations. A further consideration in improving population survival rates is the geographical variation in outcomes across Europe. This review provides a comprehensive overview of the current biological knowledge of childhood renal tumours alongside the progress achieved through international collaboration. Ongoing collaboration is needed to ensure consistency of outcomes through standardised diagnostics and treatment and incorporation of biomarker research. Together, these objectives constitute the rationale for the forthcoming SIOP-RTSG 'UMBRELLA' study.
Collapse
Affiliation(s)
- Jesper Brok
- Cancer Section, University College London, Institute of Child Health, UK; Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Taryn D Treger
- Cancer Section, University College London, Institute of Child Health, UK
| | - Saskia L Gooskens
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands; Department of Paediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands
| | | |
Collapse
|