1
|
Xiang F, Zhang Z, Li Y, Li M, Xie J, Sun M, Peng Q, Lin L. Research progress in the treatment of schistosomiasis with traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118501. [PMID: 38944361 DOI: 10.1016/j.jep.2024.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schistosomiasis, caused by infection with organisms of the Schistoma genus, is a parasitic and infectious disease that poses a significant risk to human health. Schistosomiasis has been a widespread issue in China for at least 2000 years. Traditional Chinese medicine (TCM) has a rich history of treating this disease, and the significant theoretical and practical knowledge attained therein may be useful in modern practice. AIM OF THE STUDY To comprehensively review TCM for the treatment of schistosomiasis, summarize the molecular basis, mechanism of action, active ingredients and formulas of TCM, and clarify the value of TCM for expanding drug options for the clinical treatment of schistosomiasis. MATERIALS AND METHODS In PubMed, Web of Science, ScienceDirect, Google Scholar and CNKI databases, "Schistosomiasis", "Schistosoma mansoni", "Schistosoma japonicum", "Liver fibrosis" and "Granuloma" were used as the key words. Information related to in vivo animal studies and clinical studies of TCM for the treatment of schistosomiasis in the past 25 years was retrieved, and the inclusion criteria focused on medicinal plants that had a history of use in China. RESULTS In this study, we collected and organized a large amount of literature on the treatment of schistosomiasis by TCM. TCM exerts therapeutic effects through antischistosomal and immunomodulatory effects, suppresses HSC activation and proliferation, reduces ECM deposition, and inhibits oxidative stress and other activities. The treatment of schistosomiasis by TCM has a unique advantage, especially for the treatment of schistosomal liver fibrosis, and the treatment of schistosomiasis with TCM in combination with praziquantel is superior to monotherapy. CONCLUSION Schistosomiasis remains a global public health problem, and TCM has made significant progress in the prevention and treatment of schistosomiasis and is a potential source of drugs for the treatment of schistosomiasis. However, research on drug screening and the mechanism of action of TCM for the treatment of schistosomiasis is lacking, and further studies and research are needed.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Minjie Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Miao Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Qinghua Peng
- Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, No.300 Xueshi Road, Changsha, 410208, China.
| |
Collapse
|
2
|
Lou Y, Luan YT, Rong WQ, Gai Y. Corilagin alleviates podocyte injury in diabetic nephropathy by regulating autophagy via the SIRT1-AMPK pathway. World J Diabetes 2024; 15:1916-1931. [PMID: 39280180 PMCID: PMC11372637 DOI: 10.4239/wjd.v15.i9.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 μM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 μM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.
Collapse
Affiliation(s)
- Yu Lou
- Department of Preventive Treatment of Disease, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu-Ting Luan
- Department of Infectious Diseases, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Wen-Qing Rong
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yun Gai
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
3
|
Zhang X, Tian B, Cong X, Ning Z. Corilagin Alleviates Ang II-Induced Cardiac Fibrosis by Regulating the PTEN/AKT/mTOR Pathway. Dose Response 2024; 22:15593258241261198. [PMID: 39301185 PMCID: PMC11412214 DOI: 10.1177/15593258241261198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 09/22/2024] Open
Abstract
This research aimed to evaluate the therapeutic effect of corilagin (Cor) against angiotensin II (Ang II)-induced cardiac fibrosis and its underlying mechanisms. C57BL/6 mice (male, 8-10 weeks) received saline or Ang II (2.0 mg/kg/day) via subcutaneous infusion and intraperitoneal injection of Cor (30 mg/kg) for 28 days. Ang II induction increased the fibrotic area, whereas Cor treatment inhibited the fibrotic area significantly. Cor markedly reduced the Ang II-induced cardiac fibroblasts. Cor significantly inhibited Ang II-induced increase in expressions of smooth muscle alpha-actin (α-SMA), collagen I, collagen III, transforming growth factor beta 1 (TGF-β1), fibronectin, and connective tissue growth factor (CTGF). Cor suppressed the intracellular reactive oxygen species (ROS) production. Cor therapy reduced Ang II-induced malondialdehyde (MDA) content, whereas superoxide dismutase (SOD) and catalase (CAT) activities were increased (all, P < .001). Moreover, Ang II induction elevated the expression of phosphorylated phosphatase and tensin homolog (p-PTEN), phosphorylated protein kinase B (p-AKT) (Ser473) and phosphorylated mammalian target of rapamycin (p-mTOR) (Ser 2448), whereas Cor reduced their expressions. Cor treatment inhibited the migration ability of the cardiac fibroblast, whereas a PTEN inhibitor, VO-ohpic, increased the migration capability. Cor could have a protective effect against Ang II-induced cardiac fibrosis via inhibition of the PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Bei Tian
- Department of Nursing, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai, China
| |
Collapse
|
4
|
Liu C, Fisher D, Pronyuk K, Musabaev E, Thu Hien NT, Dang Y, Zhao L. Therapeutic potential of natural products in schistosomiasis-associated liver fibrosis. Front Pharmacol 2024; 15:1332027. [PMID: 38770001 PMCID: PMC11102961 DOI: 10.3389/fphar.2024.1332027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease that endangers human health and social development. The granulomatous reaction of Schistosoma eggs in the liver is the main cause of hepatosplenomegaly and fibrotic lesions. Anti liver fibrosis therapy is crucial for patients with chronic schistosomiasis. Although Praziquantel is the only clinical drug used, it is limited in insecticide treatment and has a long-term large-scale use, which is forcing the search for cost-effective alternatives. Previous research has demonstrated that plant metabolites and extracts have effective therapeutic effects on liver fibrosis associated with schistosomiasis. This paper summarizes the mechanisms of action of metabolites and some plant extracts in alleviating schistosomiasis-associated liver fibrosis. The analysis was conducted using databases such as PubMed, Google Scholar, and China National Knowledge Infrastructure (CNKI) databases. Some plant metabolites and extracts ameliorate liver fibrosis by targeting multiple signaling pathways, including reducing inflammatory infiltration, oxidative stress, inhibiting alternate macrophage activation, suppressing hepatic stellate cell activation, and reducing worm egg load. Natural products improve liver fibrosis associated with schistosomiasis, but further research is needed to elucidate the effectiveness of natural products in treating liver fibrosis caused by schistosomiasis, as there is no reported data from clinical trials in the literature.
Collapse
Affiliation(s)
- Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Khrystyna Pronyuk
- Infectious Diseases Department, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- The Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | | | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liang W, Huang X, Shi J. Macrophages Serve as Bidirectional Regulators and Potential Therapeutic Targets for Liver Fibrosis. Cell Biochem Biophys 2023; 81:659-671. [PMID: 37695501 DOI: 10.1007/s12013-023-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Liver fibrosis is a dynamic pathological process in which the structure and function of the liver abnormally change due to long-term complex inflammatory reactions and chronic liver injury caused by multiple internal and external factors. Previous studies believed that the activation of hepatic stellate cells is a critical part of the occurrence and development of liver fibrosis. However, an increasing number of studies have indicated that the macrophage plays an important role as a central regulator in liver fibrosis, and it directly affects the development and recovery of liver fibrosis. Studies of macrophages and liver fibrosis in the recent 10 years will be reviewed in this paper. This review will not only clarify the molecular mechanism of liver fibrosis regulated by macrophages but also provide new strategies and methods for ameliorating and treating liver fibrosis.
Collapse
Affiliation(s)
- Wei Liang
- Clinical Medical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Xianing Huang
- Guangxi International Travel Healthcare Centre (Port Clinic of Nanning Customs District), Nanning, 530021, Guangxi, China
| | - Jingjing Shi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
6
|
Wang M, Cao L. Hydrolysable tannins as a potential therapeutic drug for the human fibrosis-associated disease. Drug Dev Res 2023; 84:1096-1113. [PMID: 37386756 DOI: 10.1002/ddr.22089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Fibrosis is a pathological change with abnormal tissue regeneration due to a response to persistent injury, which is extensively related to organ damage and failure, leading to high morbidity and mortality worldwide. Although the pathogenesis of fibrosis has been comprehensively elucidated, there are few effective therapies for treating fibrotic diseases. Natural products are increasingly regarded as an effective strategy for fibrosis with numerous favorable functions. Hydrolysable tannins (HT) are a type of natural products that have the potential to treat the fibrotic disease. In this review, we describe some biological activities and the therapeutic prospects of HT in organ fibrosis. Furthermore, the underlying mechanisms of inhibition of HT on fibrotic organs in relation to inflammation, oxidative stress, epithelial-mesenchymal transition, fibroblast activation and proliferation, and extracellular matrix accumulation are discussed. Understanding the mechanism of HT against fibrotic diseases will provide a new strategy for the prevention and attenuation of fibrosis progression.
Collapse
Affiliation(s)
- Meiwei Wang
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Linghui Cao
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
7
|
Lv X, Chen Q, Zhang Z, Du K, Huang Y, Li X, Zeng Y. αCGRP deficiency aggravates pulmonary fibrosis by activating the PPARγ signaling pathway. Genes Immun 2023:10.1038/s41435-023-00206-x. [PMID: 37231189 DOI: 10.1038/s41435-023-00206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
In order to explore whether αCGRP (Calca) deficiency aggravates pulmonary fibrosis (PF). Clinical data from patients with PF (n = 52) were retrospectively analyzed. Lung tissue from a bleomycin (BLM)-induced rat model was compared with that of Calca-knockout (KO) and wild type (WT) using immunohistochemistry, RNA-seq, and UPLC-MS/MS metabolomic analyses. The results showed that decreased αCGRP expression and activation of the type 2 immune response were detected in patients with PF. In BLM-induced and Calca-KO rats, αCGRP deficiency potentiated apoptosis of AECs and induced M2 macrophages. RNA-seq identified enrichment of pathways involved in nuclear translocation and immune system disorders in Calca-KO rats compared to WT. Mass spectrometry of lung tissue from Calca-KO rats showed abnormal lipid metabolism, including increased levels of LTB4, PDX, 1-HETE. PPAR pathway signaling was significantly induced in both transcriptomic and metabolomic datasets in Calca-KO rats, and immunofluorescence analysis confirmed that the nuclear translocation of PPARγ in BLM-treated and Calca-KO rats was synchronized with STAT6 localization in the cytoplasmic and nuclear fractions. In conclusion, αCGRP is protective against PF, and αCGRP deficiency promotes M2 polarization of macrophages, probably by activating the PPARγ pathway, which leads to activation of the type 2 immune response and accelerates PF development.
Collapse
Affiliation(s)
- Xiaoting Lv
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China
| | - Qingquan Chen
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, China
| | - Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, the Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
8
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
9
|
Liu J, Lei Y, Diao Y, Lu Y, Teng X, Chen Q, Liu L, Zhong J. Altered whole-brain gray matter volume in form-deprivation myopia rats based on voxel-based morphometry: A pilot study. Front Neurosci 2023; 17:1113578. [PMID: 37144093 PMCID: PMC10151753 DOI: 10.3389/fnins.2023.1113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Myopia is one of the major public health problems worldwide. However, the exact pathogenesis of myopia remains unclear. This study proposes using voxel-based morphometry (VBM) to investigate potential morphological alterations in gray matter volume (GMV) in form-deprivation myopia (FDM) rats. Methods A total of 14 rats with FDM (FDM group) and 15 normal controls (NC group) underwent high-resolution magnetic resonance imaging (MRI). Original T2 brain images were analyzed using VBM method to identify group differences in GMV. Following MRI examination, all rats were perfused with formalin, and immunohistochemical analysis of NeuN and c-fos levels was performed on the visual cortex. Results In the FDM group, compared to the NC group, significantly decreased GMVs were found in the left primary visual cortex, left secondary visual cortex, right subiculum, right cornu ammonis, right entorhinal cortex and bilateral molecular layer of the cerebellum. Additionally, significantly increased GMVs were found in the right dentate gyrus, parasubiculum, and olfactory bulb. Conclusions Our study revealed a positive correlation between mGMV and the expression of c-fos and NeuN in the visual cortex, suggesting a molecular relationship between cortical activity and macroscopic measurement of visual cortex structural plasticity. These findings may help elucidate the potential neural pathogenesis of FDM and its relationship to changes in specific brain regions.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Ophthalmology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Yahui Lei
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuyao Diao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yamei Lu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Xingbo Teng
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qingting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lian Liu
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, China
- *Correspondence: Jingxiang Zhong,
| |
Collapse
|
10
|
Liu Z, Zhang L, Liang Y, Lu L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front Cell Infect Microbiol 2022; 12:1035765. [PMID: 36389166 PMCID: PMC9650140 DOI: 10.3389/fcimb.2022.1035765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis has been widely disseminated around the world, and poses a significant threat to human health. Schistosoma eggs and soluble egg antigen (SEA) mediated inflammatory responses promote the formation of egg granulomas and liver fibrosis. With continuous liver injuries and inflammatory stimulation, liver fibrosis can develop into liver cirrhosis and liver cancer. Therefore, anti-fibrotic therapy is crucial to increase the survival rate of patients. However, current research on antifibrotic treatments for schistosomiasis requires further exploration. In the complicated microenvironment of schistosome infections, it is important to understand the mechanism and pathology of schistosomiasis-associated liver fibrosis(SSLF). In this review, we discuss the role of SEA in inhibiting liver fibrosis, describe its mechanism, and comprehensively explore the role of host-derived and schistosome-derived microRNAs (miRNAs) in SSLF. Inflammasomes and cytokines are significant factors in promoting SSLF, and we discuss the mechanisms of some critical inflammatory signals and pro-fibrotic cytokines. Natural killer(NK) cells and Natural killer T(NKT) cells can inhibit SSLF but are rarely described, therefore, we highlight their significance. This summarizes and provides insights into the mechanisms of key molecules involved in SSLF development.
Collapse
Affiliation(s)
- Zhilong Liu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Lichen Zhang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| | - Liaoxun Lu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, Xinxiang, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Liaoxun Lu,
| |
Collapse
|
11
|
Zhong H, Jin Y. Multifunctional Roles of MicroRNAs in Schistosomiasis. Front Microbiol 2022; 13:925386. [PMID: 35756064 PMCID: PMC9218868 DOI: 10.3389/fmicb.2022.925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is caused by helminths of the genus Schistosoma. The dioecious schistosomes mate and lay eggs after undergoing a complex life cycle. Schistosome eggs are mostly responsible for the transmission of schistosomiasis and chronic fibrotic disease induced by egg antigens is the main cause of the high mortality rate. Currently, chemotherapy with praziquantel (PZQ) is the only effective treatment against schistosomiasis, although the potential of drug resistance remains a concern. Hence, there is an urgent demand for new and effective strategies to combat schistosomiasis, which is the second most prevalent parasitic disease after malaria. MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal regulatory roles in many organisms, including the development and sexual maturation of schistosomes. Thus, miRNAs are potential targets for treatment of schistosomiasis. Moreover, miRNAs can serve as multifunctional “nano-tools” for cross-species delivery in order to regulate host-parasite interactions. In this review, the multifunctional roles of miRNAs in the growth and development of schistosomes are discussed. The various regulatory functions of host-derived and worm-derived miRNAs on the progression of schistosomiasis are also thoroughly addressed, especially the promotional and inhibitory effects on schistosome-induced liver fibrosis. Additionally, the potential of miRNAs as biomarkers for the diagnosis and treatment of schistosomiasis is considered.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Yan F, Cheng D, Wang H, Gao M, Zhang J, Cheng H, Wang C, Zhang H, Xiong H. Corilagin Ameliorates Con A-Induced Hepatic Injury by Restricting M1 Macrophage Polarization. Front Immunol 2022; 12:807509. [PMID: 35095894 PMCID: PMC8792905 DOI: 10.3389/fimmu.2021.807509] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hongyan Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Li H, Wang Y, Su R, Jia Y, Lai X, Su H, Fan Y, Wang Y, Xing W, Qin J. Dimethyl Fumarate Combined With Vemurafenib Enhances Anti-Melanoma Efficacy via Inhibiting the Hippo/YAP, NRF2-ARE, and AKT/mTOR/ERK Pathways in A375 Melanoma Cells. Front Oncol 2022; 12:794216. [PMID: 35141161 PMCID: PMC8820202 DOI: 10.3389/fonc.2022.794216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a deadly form of skin cancer with high rates of resistance to traditional chemotherapy and radiotherapy. BRAF inhibitors (BRAFi) can achieve initial efficacy when used to treat melanoma patients, but drug resistance and relapse are common, emphasizing the need for new therapeutic strategies. Herein, we reported that combination of dimethyl fumarate (DMF) and vemurafenib (Vem) inhibited melanoma cell proliferation more significantly and induced more cell death than single agent did both in vitro and in vivo. DMF/Vem treatment induced cell death through inhibiting the expression and transcriptional activity of NRF2 thereby resulting in more reactive oxygen species (ROS) and via inhibiting the expression of YAP, a key downstream effector of Hippo pathway. DMF/Vem treatment also reduced phosphorylation of AKT, 4EBP1, P70S6K and ERK in AKT/mTOR/ERK signaling pathways. RNA-seq analysis revealed that DMF/Vem treatment specifically suppressed 4561 genes which belong to dozens of cell signaling pathways. These results indicated that DMF/Vem treatment manifested an enhanced antitumor efficacy through inhibiting multiple cell signaling pathways, and thus would be a novel promising therapeutic approach targeted for melanoma.
Collapse
Affiliation(s)
- Hongxia Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuchen Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiong Lai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaochun Fan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Hohhot, China
| | - Yuewu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| | - Jianzhong Qin
- College of Biological Sciences and Biotechnology, Dalian University, Dalian, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| |
Collapse
|
14
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 226] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Jiao B, An C, Du H, Tran M, Wang P, Zhou D, Wang Y. STAT6 Deficiency Attenuates Myeloid Fibroblast Activation and Macrophage Polarization in Experimental Folic Acid Nephropathy. Cells 2021; 10:3057. [PMID: 34831280 PMCID: PMC8623460 DOI: 10.3390/cells10113057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/02/2023] Open
Abstract
Renal fibrosis is a pathologic feature of chronic kidney disease, which can lead to end-stage kidney disease. Myeloid fibroblasts play a central role in the pathogenesis of renal fibrosis. However, the molecular mechanisms pertaining to myeloid fibroblast activation remain to be elucidated. In the present study, we examine the role of signal transducer and activator of transcription 6 (STAT6) in myeloid fibroblast activation, macrophage polarization, and renal fibrosis development in a mouse model of folic acid nephropathy. STAT6 is activated in the kidney with folic acid nephropathy. Compared with folic-acid-treated wild-type mice, STAT6 knockout mice had markedly reduced myeloid fibroblasts and myofibroblasts in the kidney with folic acid nephropathy. Furthermore, STAT6 knockout mice exhibited significantly less CD206 and PDGFR-β dual-positive fibroblast accumulation and M2 macrophage polarization in the kidney with folic acid nephropathy. Consistent with these findings, STAT6 knockout mice produced less extracellular matrix protein, exhibited less severe interstitial fibrosis, and preserved kidney function in folic acid nephropathy. Taken together, these results have shown that STAT6 plays a critical role in myeloid fibroblasts activation, M2 macrophage polarization, extracellular matrix protein production, and renal fibrosis development in folic acid nephropathy. Therefore, targeting STAT6 may provide a novel therapeutic strategy for fibrotic kidney disease.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA;
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA; (B.J.); (C.A.); (H.D.); metr (M.T.); (D.Z.)
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
16
|
Liu L, Peng S, Duan M, Liu C, Li L, Zhang X, Ren B, Tian H. The role of C/EBP homologous protein (CHOP) in regulating macrophage polarization in RAW264.7 cells. Microbiol Immunol 2021; 65:531-541. [PMID: 34491597 DOI: 10.1111/1348-0421.12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 11/27/2022]
Abstract
Schistosomiasis is a zoonotic parasitic disease that is endemic in Asia. Macrophages are mainly involved in the inflammatory response of late schistosoma infection. Our previous study found that C/EBP homologous protein (CHOP) expression is significantly increased, and M2 macrophages are activated in schistosome-induced liver fibrosis mice. However, the role of CHOP in the regulation of macrophage polarization remains to be further studied. Western blotting or quantitative PCR revealed that IL-4 increased the expression of arginase-1, macrophage mannose receptor 1, phosphorylation signal transducer and activator of transcription 6 (p-STAT6), Krüppel-like factor 4 (KLF4), CHOP, and IL-13 receptor alpha (IL-13Rα) and induced M2 polarization in RAW264.7 as measured by flow cytometry. Inhibiting STAT6 phosphorylation (AS1517499) reduced the IL-4-induced expression of KLF4, CHOP, and IL-13Rα and also the number of M2 macrophages. The overexpression of CHOP stimulated M2 polarization, but AS1517499 inhibited this effect. CHOP increased the protein expression of KLF4 but did not change the expression of p-STAT6. Soluble egg antigen (SEA) could promote the IL-4-induced protein expression of p-STAT6, CHOP, and KLF4. Overall, the findings show that SEA can promote the activation of M2 macrophages by causing increased CHOP-induced KLF4 levels and activation of STAT6 phosphorylation.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Cuiliu Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Lingrui Li
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Xing Zhang
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou, China
| | - Hongyang Tian
- Department of Hepatobiliary Surgery, Wusan Hospital, Jingmen, China
| |
Collapse
|
17
|
Jiao B, An C, Tran M, Du H, Wang P, Zhou D, Wang Y. Pharmacological Inhibition of STAT6 Ameliorates Myeloid Fibroblast Activation and Alternative Macrophage Polarization in Renal Fibrosis. Front Immunol 2021; 12:735014. [PMID: 34512669 PMCID: PMC8426438 DOI: 10.3389/fimmu.2021.735014] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
A hallmark of chronic kidney disease is renal fibrosis, which can result in progressive loss of kidney function. Currently, there is no effective therapy for renal fibrosis. Therefore, there is an urgent need to identify potential drug targets for renal fibrosis. In this study, we examined the effect of a selective STAT6 inhibitor, AS1517499, on myeloid fibroblast activation, macrophage polarization, and development of renal fibrosis in two experimental murine models. To investigate the effect of STAT6 inhibition on myeloid fibroblast activation, macrophage polarization, and kidney fibrosis, wild-type mice were subjected to unilateral ureteral obstruction or folic acid administration and treated with AS1517499. Mice treated with vehicle were used as control. At the end of experiments, kidneys were harvested for analysis of myeloid fibroblast activation, macrophage polarization, and renal fibrosis and function. Unilateral ureteral obstruction or folic acid administration induced STAT6 activation in interstitial cells of the kidney, which was significantly abolished by AS1517499 treatment. Mice treated with AS1517499 accumulated fewer myeloid fibroblasts and myofibroblasts in the kidney with ureteral obstruction or folic acid nephropathy compared with vehicle-treated mice. Moreover, AS1517499 significantly suppressed M2 macrophage polarization in the injured kidney. Furthermore, AS1517499 markedly reduced the expression levels of extracellular matrix proteins, and development of kidney fibrosis and dysfunction. These findings suggest that AS1517499 inhibits STAT6 activation, suppresses myeloid fibroblast activation, reduces M2 macrophage polarization, attenuates extracellular matrix protein production, and preserves kidney function. Therefore, targeting STAT6 with AS1517499 is a novel therapeutic approach for chronic kidney disease.
Collapse
Affiliation(s)
- Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Melanie Tran
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Hao Du
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Penghua Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, CT, United States
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
18
|
Ding Y, Xu J, Cheng LB, Huang YQ, Wang YQ, Li H, Li Y, Ji JY, Zhang JH, Zhao L. Effect of Emodin on Coxsackievirus B3m-Mediated Encephalitis in Hand, Foot, and Mouth Disease by Inhibiting Toll-Like Receptor 3 Pathway In Vitro and In Vivo. J Infect Dis 2021; 222:443-455. [PMID: 32115640 DOI: 10.1093/infdis/jiaa093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-β in serum were tested with enzyme-linked immunosorbent assay. RESULTS Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-β, in serum. CONCLUSIONS Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Medical and Health Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei Province, People's Republic of China.,Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Liang-Bin Cheng
- Department of Liver Diseases, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yong-Qian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - You-Qin Wang
- Department of Pediatrics, Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Yichang Central People's Hospital, Yichang, Hubei Province, People's Republic of China
| | - Jing-Yu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ji-Hong Zhang
- Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
19
|
Hu Y, Wang X, Wei Y, Liu H, Zhang J, Shen Y, Cao J. Functional Inhibition of Natural Killer Cells in a BALB/c Mouse Model of Liver Fibrosis Induced by Schistosoma japonicum Infection. Front Cell Infect Microbiol 2020; 10:598987. [PMID: 33330140 PMCID: PMC7710793 DOI: 10.3389/fcimb.2020.598987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Aims Schistosomiasis japonica is a widespread human zoonotic disease, and in China, there are many patients with schistosomiasis suffering from liver fibrosis. Many studies have shown that natural killer (NK) cells could reduce the progression of hepatic fibrosis by directly killing hepatic stellate cells (HSCs). However, NK cells could not inhibit the progress of liver fibrosis induced by Schistosoma japonicum infection. We aimed to investigate the function of NK cells in schistosomiasis. Methods BALB/c mice were infected with S. japonicum cercariae. The receptors and their proportions expressed on NK cells in the liver and spleen from infected mice were detected using flow cytometry. Levels of IFN-γ, perforin, and granzyme of NK cells, and collagen I, III, and α-SMA of hepatic tissue, were detected using quantitative real-time PCR. Changes in cytokine levels in sera were detected using a cytometric bead array. Liver fibrosis was evaluated using hematoxylin and eosin and Masson staining. NK function in the schistosomiasis model was analyzed. Results From 2 to 4 weeks post-infection, NK cells were activated, with significantly increased levels of effector molecules (IFN-γ, perforin, and granzyme) that peaked at 4 weeks after infection. The proportion of NK cells increased in the liver and spleen from 6 to 10 weeks post-infection. However, the function of NK cells was inhibited from 6 to 10 weeks post-infection with significantly decreased levels of activated receptors (AR), inhibitory receptors (IR), and effector molecules. The levels of IFN-γ, IL-12, and IL-6 in mouse serum peaked at 6 weeks post-infection, and IL-10 and IL-21 levels peaked at 8 weeks post-infection. Hepatic fibrosis markers increased significantly at 6 weeks after infection. Conclusion Our study suggested that NK cells were activated from 2 to 4 weeks post-infection and participated in inflammation in the mouse model. After the S. japonicum laid their eggs, NK cells became inhibited, with decreased levels of both activating and inhibitory NK cell receptors, as well as cytotoxic molecules. In addition, liver fibrosis formed. In mice infected with S. japonicum, the process of liver fibrosis might be alleviated by removing the functional inhibition of NK cells.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Xiaoling Wang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yuhuan Wei
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jing Zhang
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|
20
|
Deng R, Lu J, Liu X, Peng XH, Wang J, Li XP. PD-L1 Expression is Highly Associated with Tumor-Associated Macrophage Infiltration in Nasopharyngeal Carcinoma. Cancer Manag Res 2020; 12:11585-11596. [PMID: 33209062 PMCID: PMC7669506 DOI: 10.2147/cmar.s274913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Tumour-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and provide a barrier against the cytotoxic effector functions of T cells and natural killer (NK) cells. Recently, TAMs have become increasingly recognised as an attractive target in combination therapy with PD-1/PD-L1 immuno-checkpoint blockades (ICBs). However, the relationship between PD-L1 expression and TAMs remains unknown in nasopharyngeal carcinoma (NPC). Patients and Methods A total of 212 NPC patients from Nanfang hospital were collected in this study. We evaluated the expression of PD-L1 in tumor cells, CD68 (pan-macrophages), and CD163 (M2-like macrophage) in NPC tissues using immunohistochemical (IHC) staining. Results The positivity of PD-L1 on tumor cells was 61.3% (130/212). The infiltration densities of CD68+ cells and CD163+ cells in PD-L1-positive NPC tissues were significantly higher than those in PD-L1-negative NPC tissues (P=0.0012 for CD68; P<0.0001 for CD163). Logistic regression analysis showed that high densities of CD68+ macrophages and CD163+ TAMs were significantly associated with increased PD-L1 expression. Subgroup analyses demonstrated that a positive PD-L1 expression on tumor cells in combination with lower CD163+ TAMs density was significantly associated with favorable prognosis, whereas negative PD-L1 expression on tumor cells with higher CD163+ TAMs density was associated with worse prognosis. Conclusion The PD-L1 expression in tumor cells was positively correlated with TAMs density in tumor microenvironment of NPC, suggesting TAMs as a new target for combination therapy to improve the response rate of ICBs in NPC treatment.
Collapse
Affiliation(s)
- Rui Deng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Juan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiao-Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiang-Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Wang L, Liao Y, Yang R, Yu Z, Zhang L, Zhu Z, Wu X, Shen J, Liu J, Xu L, Wu Z, Sun X. Sja-miR-71a in Schistosome egg-derived extracellular vesicles suppresses liver fibrosis caused by schistosomiasis via targeting semaphorin 4D. J Extracell Vesicles 2020; 9:1785738. [PMID: 32944173 PMCID: PMC7480424 DOI: 10.1080/20013078.2020.1785738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schistosomiasis is characterized by liver fibrosis, and studies have indicated that Schistosoma japonicum (S. japonicum) eggs can limit the progression of liver fibrosis. However, the detailed molecular mechanisms are yet unclear. Extracellular vesicles (EVs) contain a selection of miRNAs for long-distance exchange of information and act as an important pathway for host-parasite communication. This study aimed to explore the potential role of S. japonicum egg-derived EVs and its key miRNA in liver fibrosis. Herein, we found that S. japonicum egg-derived EVs can inhibit the activation of hepatic stellate cells, which is mediated via the high expression of Sja-miR-71a. Sja-miR-71a in EVs attenuates the pathological progression and liver fibrosis in S. japonicum infection. Sja-miR-71a inhibiting TGF-β1/SMAD and interleukin (IL)-13/STAT6 pathways via directly targeting semaphorin 4D (Sema4D). In addition, Sja-miR-71a can also suppress liver fibrosis by regulating Th1/Th2/Th17 and Treg balance. This study contributes to further understanding of the molecular mechanisms underlying Schistosoma-host interactions, and Sema4D may be a potential target for schistosomiasis liver fibrosis treatment.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Ruibing Yang
- Medical Department of Xizang Minzu University, Xianyang, China
| | - Zilong Yu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiahua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lian Xu
- Nantong University, Nantong, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
22
|
Zhou X, Xiong J, Lu S, Luo L, Chen ZL, Yang F, Jin F, Wang Y, Ma Q, Luo YY, Wang YJ, Zhou JB, Liu P, Zhao L. Inhibitory Effect of Corilagin on miR-21-Regulated Hepatic Fibrosis Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1541-1569. [PMID: 31752524 DOI: 10.1142/s0192415x19500794] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Corilagin is a polyphenol that can be extracted from many medicinal plants and shows multiple pharmacological effects. We aimed to investigate the role of corilagin on miR-21-regulated hepatic fibrosis, especially miR-21-regulated TGF-β1/Smad signaling pathway, in hepatic stellate LX2 cell line and Sprague-Dawley rats. The mRNA or protein levels of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), collagen type I alpha 1 (COL1A1), Smad2, Smad3, Smad2/3, p-Smad2, p-Smad3, p-Smad2/3, and transforming growth factor-β1 (TGF-β1) in LX2 cells and liver tissues were determined. Furthermore, gain-of and loss-of function of miR-21 in miR-21-regulated TGF-β1/Smad signaling pathway were analyzed in LX2 cells. Liver tissues and serum were collected for pathological analysis, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Corilagin treatment reduced mRNA or protein levels of miR-21, CTGF, α-SMA, TIMP-1, TGF-β1, COL1A1, p-Smad2, p-Smad3, and p-Smad2/3 both in vitro and in vivo. While corilagin increased mRNA and protein levels of Smad7 and MMP-9. After gain-of and loss-of function of miR-21, the downstream effectors of miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells changed accordingly, and the changes were inhibited by corilagin. Simultaneously, administration of corilagin not only ameliorated pathological manifestation of liver fibrosis but also reduced levels of α-SMA and COL1A1 in liver tissues and TGF-β1, ALT levels in serum. Corilagin is able to potentially prevent liver fibrosis by blocking the miR-21-regulated TGF-β1/Smad signaling pathway in LX2 cells and CCl4-induced liver fibrosis rats, which may provide a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jun Xiong
- Department of Hepatobiliary Surgery, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shi Lu
- Department of Obstetrics and Gynaecology, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, P. R. China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University & Shangdong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, Shandong, P. R. China
| | - Yao Wang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, P. R. China
| | - Ying-Ying Luo
- Department of Integrated Traditional and Western Medicine, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jia-Bin Zhou
- School of Clinical Medical, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, P. R. China
| | - Lei Zhao
- Department of Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
23
|
Duan M, Yang Y, Peng S, Liu X, Zhong J, Guo Y, Lu M, Nie H, Ren B, Zhang X, Liu L. C/EBP Homologous Protein (CHOP) Activates Macrophages and Promotes Liver Fibrosis in Schistosoma japonicum-Infected Mice. J Immunol Res 2019; 2019:5148575. [PMID: 31886304 PMCID: PMC6914929 DOI: 10.1155/2019/5148575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
CCAAT/enhancer-binding homologous protein (CHOP), a transcriptional regulator induced by endoplasmic reticulum stress (ER stress) is a pivotal factor in the ER stress-mediated apoptosis pathway. Previous studies have shown that CHOP is involved in the formation of fibrosis in a variety of tissues and is associated with alternative macrophage activation. The role of CHOP in the pathologic effects of liver fibrosis in schistosomiasis has not been reported, and underlying mechanisms remain unclear. This study is aimed at understanding the effect of CHOP on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in vivo and clarifying its mechanism. C57BL/6 mice were infected with cercariae of S. japonicum through the abdominal skin. The liver fibrosis was examined. The level of IL-13 was observed. The expressions of CHOP, Krüppel-like factor 4 (KLF4), signal transducer and activator of transcription 6 (STAT6), phosphorylation STAT6, interleukin-13 receptor alpha 1 (IL-13Rα1), and interleukin-4 receptor alpha (IL-4Rα) were analysed. The eosinophilic granuloma and collagen deposition were found around the eggs in mice infected for 6 and 10 weeks. IL-13 in plasma and IL-13Rα1 and IL-4Rα in liver tissue were significantly increased. The phosphorylated STAT6 was enhanced while Krüppel-like factor 4 (KLF4) was decreased in liver tissue. The expression of CHOP and colocalization of CHOP and CD206 were increased. Overall, these results suggest that CHOP plays a critical role in hepatic fibrosis induced by S. japonicum, likely through promoting alternative activation of macrophages.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiaoqin Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yurong Guo
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Min Lu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Hao Nie
- Department of Pathogenic Biology, Medical School of Yangtze University, Jingzhou 434023, China
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiangzhi Zhang
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| |
Collapse
|
24
|
Wang Y, Luan Z, Zhao C, Bai C, Yang K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci 2019; 142:105136. [PMID: 31704343 DOI: 10.1016/j.ejps.2019.105136] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) is a promising therapeutic target for cancer immunotherapy, while TAMs targeting therapy using nano-sized drug delivery system (NDDS) is a great challenge. To overcome these drawbacks, a novel erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle (dextran-grafted-poly (histidine) copolymer) was prepared to target deliver a selective CSF-1R inhibitor: BLZ-945 (shorten as DH@ECm) to TAMs for TAMs depletion. The prepared DH@ECm possessed favorable particle size (~190 nm) preferable immune camouflage and tumor homologies targeting characteristic when it was intravenously administrated into blood system. In tumor acidic microenvironment, DH@ECm possessed pH-responsive characteristic and unique "membrane escape effect" to facilitate recognition and internalization by TAMs via dextran-CD206 receptor specific interaction (about 3.9 fold than free drug), followed by TAMs depletion in vitro. For in vivo studies, DH@ECm could reverse tumor immune-microenvironment with the elevation of CD8+ T cells and possess sufficient tumor immunotherapy (inhibition rate: 64.5%). All the in vitro and in vivo studies demonstrated the therapeutical potential of DH@ECm for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchi Wang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China; Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Zhiyong Luan
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Chaoyue Zhao
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chunhua Bai
- Oncology, Changchun Central Hospital, 1810 Renmin Street, Changchun, Jilin 130121, China
| | - Kangjuan Yang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China.
| |
Collapse
|
25
|
Mechanism of KLF4 Protection against Acute Liver Injury via Inhibition of Apelin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6140360. [PMID: 31687083 PMCID: PMC6811788 DOI: 10.1155/2019/6140360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.
Collapse
|
26
|
Dong D, Chen C, Hou J, Yang K, Fang H, Jiang H, Guo F, Wu X, Chen X. KLF4 upregulation is involved in alternative macrophage activation during secondary
Echinococcus granulosus
infection. Parasite Immunol 2019; 41:e12666. [DOI: 10.1111/pim.12666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Dong
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Congzhe Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
- People's Liberation Army General Hospital Beijing China
| | - Jun Hou
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Kun Yang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hairui Fang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Hongqun Jiang
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Feng Guo
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xiangwei Wu
- Department of General Surgery First Affiliated Hospital School of Medicine Shihezi University Shihezi, Xinjiang China
- Laboratory of Transitional Medicine School of Medicine Shihezi University Shihezi, Xinjiang China
| | - Xueling Chen
- Department of Immunology School of Medicine Shihezi University Shihezi, Xinjiang China
| |
Collapse
|
27
|
Zhangdi HJ, Su SB, Wang F, Liang ZY, Yan YD, Qin SY, Jiang HX. Crosstalk network among multiple inflammatory mediators in liver fibrosis. World J Gastroenterol 2019; 25:4835-4849. [PMID: 31543677 PMCID: PMC6737310 DOI: 10.3748/wjg.v25.i33.4835] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the common pathological basis of all chronic liver diseases, and is the necessary stage for the progression of chronic liver disease to cirrhosis. As one of pathogenic factors, inflammation plays a predominant role in liver fibrosis via communication and interaction between inflammatory cells, cytokines, and the related signaling pathways. Damaged hepatocytes induce an increase in pro-inflammatory factors, thereby inducing the development of inflammation. In addition, it has been reported that inflammatory response related signaling pathway is the main signal transduction pathway for the development of liver fibrosis. The crosstalk regulatory network leads to hepatic stellate cell activation and proinflammatory cytokine production, which in turn initiate the fibrotic response. Compared with the past, the research on the pathogenesis of liver fibrosis has been greatly developed. However, the liver fibrosis mechanism is complex and many pathways involved need to be further studied. This review mainly focuses on the crosstalk regulatory network among inflammatory cells, cytokines, and the related signaling pathways in the pathogenesis of chronic inflammatory liver diseases. Moreover, we also summarize the recent studies on the mechanisms underlying liver fibrosis and clinical efforts on the targeted therapies against the fibrotic response.
Collapse
Affiliation(s)
- Han-Jing Zhangdi
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Biao Su
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Yu Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Dong Yan
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yu Qin
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Xiong XL, Ding Y, Chen ZL, Wang Y, Liu P, Qin H, Zhou LS, Zhang LL, Huang J, Zhao L. Emodin Rescues Intrahepatic Cholestasis via Stimulating FXR/BSEP Pathway in Promoting the Canalicular Export of Accumulated Bile. Front Pharmacol 2019; 10:522. [PMID: 31191298 PMCID: PMC6540617 DOI: 10.3389/fphar.2019.00522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Aim Bile salt export pump (BSEP) have been confirmed to play an important role for bile acid canalicular export in the treatment of cholestasis. In this study, we investigated the stimulatory effect of emodin on BSEP signaling pathway in cholestasis. Methods Cell and animal experiments were given different concentrations of emodin. The BSEP upstream molecule farnesoid X receptor was down-regulated by small interfering RNA (siRNA) technology or guggulsterones and up-regulated by lentivirus or GW4064. Real-time PCR and Western blotting was employed to detect the mRNA and protein levels of BSEP in LO2 cell, rat primary hepatocytes and liver tissue. Immunohistochemistry (IHC) was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes of liver tissue were performed by biochemical test and hematoxylin and eosin (HE) staining. Results Emodin could increase the mRNA and protein expression of BSEP and FXR. When down-regulating farnesoid X receptor expression with the siRNA or inhibitor guggulsterones, and up-regulating farnesoid X receptor expression with the lentivirus or agonist GW4064, emodin could increase the mRNA level of BSEP and FXR and the protein level of BSEP, FXR1, and FXR2. Emodin also had a notable effect on rat primary hepatocytes experiment, rat pathological manifestation, BSEP, FXR1, and FXR2 positive staining in liver tissues and the test of liver function. Conclusion Emodin has a protective effect and a rescue activity on cholestasis via stimulating FXR/BSEP pathways in promoting the canalicular export of accumulated bile.
Collapse
Affiliation(s)
- Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Liu
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Huan Qin
- Department of Clinical Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Ling Zhang
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Li LJ, Zhang SJ, Liu P, Wang YQ, Chen ZL, Wang YJ, Zhou JB, Guo YJ, Zhao L. Corilagin Interferes With Toll-Like Receptor 3-Mediated Immune Response in Herpes Simplex Encephalitis. Front Mol Neurosci 2019; 12:83. [PMID: 31080403 PMCID: PMC6497770 DOI: 10.3389/fnmol.2019.00083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex encephalitis (HSE) is the most common infectious disease of the central nervous system worldwide. However, the pathogenesis of HSE is not clear. Research has shown that the immune response mediated by the toll-like receptor 3 (TLR3) signaling pathway is essential to protect the central nervous system against herpes simplex virus (HSV) infection. However, an excessive immune response may cause tissue damage accompanied by pathological changes. The aim of this study was to explore the molecular mechanism via which corilagin controls HSE through the TLR3 signaling pathway in vitro and in vivo. Cells and mice were pre-treated with polyriboinosinic polyribocytidylic acid [poly(I:C)] or HSV type 1, and then treated with corilagin. After treatment, the mRNA and protein levels of TLR3, TLR-like receptor-associated interferon factor (TRIF), tumor necrosis factor (TNF) receptor type 1-associated DEATH domain protein (TRADD), TNF receptor-associated factor (TRAF) 3 and 6, nuclear factor-kappa-B (NF-κB) essential modulator (NEMO), P38, and interferon regulatory factor 3 (IRF3) were decreased. Interleukin-6 (IL-6), TNF-α, and type 1 interferon-β were also decreased. When TLR3 expression was silenced or increased, corilagin still inhibited the expression of TLR3 and its downstream mediators. Hematoxylin-eosin (HE) staining and immunohistochemical examinations of mouse brain tissues revealed that corilagin lessened the degree of brain inflammation. Altogether, these results suggest that corilagin may regulate the immune response in HSE and relieve inflammatory injury by interfering with the TLR3 signaling pathway.
Collapse
Affiliation(s)
- Lu-Jun Li
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Shao-Jun Zhang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - You-Qin Wang
- Renmin Hospital of Hubei University of Medicine, The Postgraduate Training Center of Jinzhou Medical University, Shiyan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Bin Zhou
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-Oncology, Jining, China
| | - Yuan-Jin Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Wan LF, Shen JJ, Wang YH, Zhao W, Fang NY, Yuan X, Xue BY. Extracts of Qizhu decoction inhibit hepatitis and hepatocellular carcinoma in vitro and in C57BL/6 mice by suppressing NF-κB signaling. Sci Rep 2019; 9:1415. [PMID: 30723284 PMCID: PMC6363746 DOI: 10.1038/s41598-018-38391-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis and hepatocellular carcinoma are serious human diseases. Here, we examined the in vivo and in vitro inhibitory effect of extracts of Qizhu decoction (a traditional Chinese medicine) on hepatitis caused by diethylnitrosamine or hepatitis B virus and on diethylnitrosamine-induced hepatocellular carcinoma. The results showed that both the aqueous and ethanol extracts (QC and QS, respectively) of Qizhu decoction significantly inhibited hepatic inflammation and liver cancer induced by diethylnitrosamine or hepatitis B virus by suppressing NF-κB signaling and decreasing the levels of TNF-α and IL-1β. Both QC and QS inhibited the proliferation and migration of primary cancer hepatocytes by reducing cyclin B1, cyclin D1 and N-cadherin expression and increasing E-cadherin expression. QC and QS also promoted the apoptosis of primary cancer hepatocytes by upregulating caspase-3 and downregulating BCL-2 expression. The knockdown of p65 in NF-κB signaling inhibited the ability of QC and QS to significantly reduce the colony formation ability of liver cancer cells. Additionally, QC and QS might significantly inhibit the DNA replication of hepatitis B virus in vivo and in vitro, and we found that corilagin and polydatin were the active compounds of QC and QS. Taken together, our in vitro findings and our results in C57BL/6 mice showed that extracts of Qizhu decoction might inhibit hepatitis and hepatocellular carcinoma by suppressing NF-κB signaling.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Diethylnitrosamine/pharmacology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Knockdown Techniques
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/virology
- Hepatitis, Animal/chemically induced
- Hepatitis, Animal/drug therapy
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Male
- Medicine, Chinese Traditional/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transfection
Collapse
Affiliation(s)
- Ling-Feng Wan
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Jian-Jiang Shen
- Department of Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Yao-Hui Wang
- Department of Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu medical college, 783 Xindu Road, Chengdu, 610500, Sichuan, China
| | - Nan-Yuan Fang
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Xin Yuan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Bo-Yu Xue
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
31
|
Xu J, Zhang G, Tong Y, Yuan J, Li Y, Song G. Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. Int J Mol Med 2018; 43:967-979. [PMID: 30569134 PMCID: PMC6317684 DOI: 10.3892/ijmm.2018.4031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
Corilagin, a unique component of the tannin family, has been identified in several medicinal plants. In previous literature, corilagin exhibited a marked anticancer property in a variety of human cancer cells. However, the biological effects of corilagin on gastric cancer and the mechanisms involved remain to be fully elucidated. In the present study, it was reported that corilagin induced inhibition of cell growth in SGC7901 and BGC823 cells in a concentration-dependent manner. It was found that corilagin exhibited less toxicity towards normal GES-1 cells. Furthermore, the study showed that corilagin induced the apoptosis of gastric cancer cells mainly via activating caspase-8, -9, -3 and poly ADP-ribose polymerase proteins. Simultaneously, it was verified that corilagin triggered autophagy in gastric cancer cells and the inhibition of autophagy improved the activity of corilagin on cell growth suppression. In addition, corilagin significantly increased intracellular reactive oxygen species production, which is important in inhibiting the growth of gastric cancer cells. Finally, it was shown that necroptosis cannot be induced by corilagin-incubation in SGC7901 and BGC823 cell lines. Consequently, these findings indicate that corilagin may be developed as a potential therapeutic drug for gastric cancer.
Collapse
Affiliation(s)
- Jiajia Xu
- Fisheries College, Jimei University, Xiamen, Fujian 361021, P.R. China
| | - Gongye Zhang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yinping Tong
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jiahui Yuan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuanyue Li
- Fisheries College, Jimei University, Xiamen, Fujian 361021, P.R. China
| | - Gang Song
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
32
|
Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 109:2043-2053. [PMID: 30551460 DOI: 10.1016/j.biopha.2018.11.030] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a progression of chronic liver disease, which lacks effective therapies in the world. Attractively, more and more evidences show that natural products are safe and effective in the prevention and treatment of hepatic fibrosis. Artesunate, a water-soluble hemisuccinate derivative of artemisinin, exerts various pharmacological activities such as anti-inflammatory, anti-tumor and immunomodulating abilities. However, the effects of artesunate on hepatic fibrosis are little-known. Here our study was performed to investigate the effect of artesunate on carbon tetrachloride (CCl4)-induced mouse liver fibrosis and elucidate whether artesunate could alleviate liver fibrosis by regulating ferritinophagy- mediated ferroptosis in hepatic stellate cells (HSCs). Firstly, our results demonstrated that artesunate treatment could induce activated HSC ferroptosis in fibrotic livers. Moreover, primary HSCs isolated from different animal groups were cultured to detect biomarkers of ferroptosis including iron, lipid peroxidation, glutathione (GSH) and prostaglandin endoperoxide synthase 2 (ptgs2) levels. The results revealed that artesunate remarkably promoted ferroptosis of activated HSCs. Furthermore, consistent with the experimental results in vivo, the data in vitro still indicated that artesunate treatment markedly induced ferroptosis in activated HSCs, which mainly embodied as declined cell vitality, increased cell death rate, accumulated iron, elevated lipid peroxides and reduced antioxidant capacity. Conversely, inhibition of ferroptosis by deferoxamine (DFO) completely abolished artesunate-induced anti-fibrosis effect. Surprisingly, artesunate also evidently triggered ferritinophagy accompanied by up-regulation of LC3 (microtubule-associated protein light chain 3), Atg3, Atg5, Atg6/beclin1, Atg12 (autophagy related genes) and down-regulation of p62, FTH1 (ferritin heavy chain), NCOA4 (nuclear receptor co-activator 4) in activated HSCs. Nevertheless, depletion of ferritinophagy by specific inhibitor lysosomal lumen alkalizer-chloroquine (CQ) inhibited artesunate-induced ferroptosis and anti-fibrosis function. These results suggested that ferritinophagy-mediated HSC ferroptosis was responsible for artesunate-induced anti-fibrosis efficacy, which provided new clues for further pharmacological study of artesunate.
Collapse
|
33
|
Src promotes anti-inflammatory (M2) macrophage generation via the IL-4/STAT6 pathway. Cytokine 2018; 111:209-215. [DOI: 10.1016/j.cyto.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/19/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023]
|
34
|
Chen C, Yang S, Zhang M, Zhang Z, Zhang SB, Wu B, Hong J, Zhang W, Lin J, Okunieff P, Zhang L. Triptolide mitigates radiation-induced pneumonitis via inhibition of alveolar macrophages and related inflammatory molecules. Oncotarget 2018; 8:45133-45142. [PMID: 28415830 PMCID: PMC5542172 DOI: 10.18632/oncotarget.16456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Ionizing radiation-induced pulmonary injury is a major limitation of radiotherapy for thoracic tumors. We have demonstrated that triptolide (TPL) could alleviate IR-induced pneumonia and pulmonary fibrosis. In this study, we explored the underlying mechanism by which TPL mitigates the effects of radiotoxicity. The results showed that: (1) Alveolar macrophages (AMs) were the primary inflammatory cells infiltrating irradiated lung tissues and were maintained at a high level for at least 17 days, which TPL could reduce by inhibiting of the production of macrophage inflammatory protein-2 (MIP-2) and its receptor CXCR2. (2) Stimulated by the co-cultured irradiated lung epithelium, AMs produced a panel of inflammative molecules (IMs), such as cytokines (TNF-α, IL-6, IL-1α, IL-1β) and chemokines (MIP-2, MCP-1, LIX). TPL-treated AMs could reduce the production of these IMs. Meanwhile, AMs isolated from irradiated lung tissue secreted significantly high levels of IMs, which could be dramatically reduced by TPL. (3) TPL suppressed the phagocytosis of AMs as well as ROS production. Our results indicate that TPL mitigates radiation-induced pulmonary inflammation through the inhibition of the infiltration, IM secretion, and phagocytosis of AMs.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China 350122
| | - Shanmin Yang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Zhenhuan Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Steven B Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Bing Wu
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Jinsheng Hong
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Weijian Zhang
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Jianhua Lin
- Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610, USA.,Fujian Platform for Medical Research at First Affiliated Hospital, Fujian Key Lab of Individualized Active Immunotherapy and Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou, China 350005
| |
Collapse
|
35
|
Yang F, Wang Y, Li G, Xue J, Chen ZL, Jin F, Luo L, Zhou X, Ma Q, Cai X, Li HR, Zhao L. Effects of corilagin on alleviating cholestasis via farnesoid X receptor-associated pathways in vitro and in vivo. Br J Pharmacol 2018; 175:810-829. [PMID: 29235094 DOI: 10.1111/bph.14126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the ameliorative effects of corilagin on intrahepatic cholestasis induced by regulating liver farnesoid X receptor (FXR)-associated pathways in vitro and in vivo. EXPERIMENTAL APPROACH Cellular and animal models were treated with different concentrations of corilagin. In the cellular experiments, FXR expression was up-regulated by either lentiviral transduction or GW4064 treatment and down-regulated by either siRNA technology or treatment with guggulsterones. Real-time PCR and Western blotting were employed to detect the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, CYP7A1, CYP7B1, NTCP, MRP2 and SULT2A1. Immunohistochemistry was used to examine the expression of BSEP in liver tissues. Rat liver function and pathological changes in hepatic tissue were assessed using biochemical tests and haematoxylin and eosin staining. RESULTS Corilagin increased the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1, and decreased those of CYP7A1, CYP7B1 and NTCP. After either up- or down-regulating FXR using different methods, corilagin could still increase the mRNA and protein levels of FXR, SHP1, SHP2, UGT2B4, BSEP, MRP2 and SULT2A1 and decrease the protein levels of CYP7A1, CYP7B1 and NTCP, especially when administered at a high concentration. Corilagin also exerted a notable effect on the pathological manifestations of intrahepatic cholestasis, BSEP staining in liver tissues and liver function. CONCLUSIONS AND IMPLICATIONS Corilagin exerts a protective effect in hepatocytes and can prevent the deleterious activities of intrahepatic cholestasis by stimulating FXR-associated pathways.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Chinese Medicine, Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Province Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Lei Luo
- School of First Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Xin Cai
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong, China
| | - Hua-Rong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Sun Y, Miao H, Ma S, Zhang L, You C, Tang F, Yang C, Tian X, Wang F, Luo Y, Lin X, Wang H, Li C, Li Z, Yu H, Liu X, Xiao Y, Gong Y, Zhang J, Quan H, Xie C. FePt-Cys nanoparticles induce ROS-dependent cell toxicity, and enhance chemo-radiation sensitivity of NSCLC cells in vivo and in vitro. Cancer Lett 2018; 418:27-40. [PMID: 29331422 DOI: 10.1016/j.canlet.2018.01.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
FePt-Cys nanoparticles (FePt-Cys NPs) have been well used in many fields, despite their poor solubility and stability. We synthetized a cysteine surface modified FePt NPs, which exhibited good solubility, stability and biocompatibility. We explored the insight mechanisms of the antitumor effects of this new nanoparticle system in lung cancer cells. In the in vitro study, FePt-Cys NPs induced a reactive oxygen species (ROS) burst, which suppressed the antioxidant protein expression and induced cell apoptosis. Furthermore, FePt-Cys NPs prevented the migration and invasion of H1975 and A549 cells. These changes were correlated with a dramatic decrease in MMP-2/9 expression and enhanced the cellular attachment. We demonstrated that FePt-Cys NPs promoted the effects of chemo-radiation through activation of the caspase system and impairment of DNA damage repair. In the in vivo study, no severe allergies or drug-related deaths were observed and FePt-Cys NPs showed a synergistic effect with cisplatin and radiation. In conclusion, with good safety and efficacy, FePt-Cys NPs could therefore be potential sensitizers for chemoradiotherapy.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongtao Miao
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Chengcheng You
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cui Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangjie Lin
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunyang Li
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhijun Li
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongnv Yu
- Central Laboratory of Xinhua Hospital of Dalian University, Department of Medical Oncology, Xinhua Hospital of Dalian University, Dalian, China
| | - Xuefeng Liu
- The Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington DC, USA
| | - Yu Xiao
- Department of Urology, Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education and Center for Electronic Microscopy and Department of Physics, Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
37
|
Yang F, Luo L, Zhu ZD, Zhou X, Wang Y, Xue J, Zhang J, Cai X, Chen ZL, Ma Q, Chen YF, Wang YJ, Luo YY, Liu P, Zhao L. Chlorogenic Acid Inhibits Liver Fibrosis by Blocking the miR-21-Regulated TGF-β1/Smad7 Signaling Pathway in Vitro and in Vivo. Front Pharmacol 2017; 8:929. [PMID: 29311932 PMCID: PMC5742161 DOI: 10.3389/fphar.2017.00929] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo. Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-De Zhu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Juan Zhang
- Department of Pulmonary Diseases, Jingmen City Hospital of Traditional Chinese Medicine, Jingmen, China
| | - Xin Cai
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Ma
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yun-Fei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Ying Luo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Phenylpropionamides, Piperidine, and Phenolic Derivatives from the Fruit of Ailanthus altissima. Molecules 2017; 22:molecules22122107. [PMID: 29207525 PMCID: PMC6149757 DOI: 10.3390/molecules22122107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Four novel compounds—two phenylpropionamides, one piperidine, and one phenolic derivatives—were isolated and identified from the fruit of a medicinal plant, Ailanthus altissima (Mill.) Swingle (Simaroubaceae), together with one known phenylpropionamide, 13 known phenols, and 10 flavonoids. The structures of the new compounds were elucidated as 2-hydroxy-N-[(2-O-β-d-glucopyranosyl)phenyl]propionamide (1), 2-hydroxy-N-[(2-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)phenyl]propionamide (2), 2β-carboxyl-piperidine-4β-acetic acid methyl ester (4), and 4-hydroxyphenyl-1-O-[6-(hydrogen-3-hydroxy-3-methylpentanedioate)]-β-d-glucopyranoside (5) based on spectroscopic analysis. All the isolated compounds were evaluated for their inhibitory activity against Tobacco mosaic virus (TMV) using the leaf-disc method. Among the compounds isolated, arbutin (6), β-d-glucopyranosyl-(1→6)-arbutin (7), 4-methoxyphenylacetic acid (10), and corilagin (18) showed moderate inhibition against TMV with IC50 values of 0.49, 0.51, 0.27, and 0.45 mM, respectively.
Collapse
|
39
|
Yang Y, Liu L, Naik I, Braunstein Z, Zhong J, Ren B. Transcription Factor C/EBP Homologous Protein in Health and Diseases. Front Immunol 2017; 8:1612. [PMID: 29230213 PMCID: PMC5712004 DOI: 10.3389/fimmu.2017.01612] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
C/EBP homologous protein (CHOP), known also as DNA damage-inducible transcript 3 and as growth arrest and DNA damage-inducible protein 153 (GADD153), is induced in response to certain stressors. CHOP is universally acknowledged as a main conduit to endoplasmic reticulum stress-induced apoptosis. Ongoing research established the existence of CHOP-mediated apoptosis signaling networks, for which novel downstream targets are still being determined. However, there are studies that contradict this notion and assert that apoptosis is not the only mechanism by which CHOP plays in the development of pathologies. In this review, insights into the roles of CHOP in pathophysiology are summarized at the molecular and cellular levels. We further focus on the newest advances that implicate CHOP in human diseases including cancer, diabetes, neurodegenerative disorders, and notably, fibrosis.
Collapse
Affiliation(s)
- Yuan Yang
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China.,Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, China
| | - Ishan Naik
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Zachary Braunstein
- Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Boxu Ren
- Center for Molecular Medicine, Medical School of Yangtze University, Jingzhou, China.,Department of Radiology, Medical School of Yangtze University, Jingzhou, China
| |
Collapse
|
40
|
Li YQ, Chen YF, Dang YP, Wang Y, Shang ZZ, Ma Q, Wang YJ, Zhang J, Luo L, Li QQ, Zhao L. Corilagin Counteracts IL-13Rα1 Signaling Pathway in Macrophages to Mitigate Schistosome Egg-Induced Hepatic Fibrosis. Front Cell Infect Microbiol 2017; 7:443. [PMID: 29094025 PMCID: PMC5651236 DOI: 10.3389/fcimb.2017.00443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
The IL-13Rα1 signaling pathway and M2 macrophages play crucial roles in schistosome egg-induced hepatic fibrosis via the expression of pro-fibrotic molecules. This study aims to investigate the inhibitory effect and mechanism of action of corilagin on schistosome egg-induced hepatic fibrosis via the IL-13Rα1 signaling pathway in M2 macrophages in vitro and in vivo. The mRNA and protein expression of IL-13Rα1, PPARγ, KLF4, SOCS1, STAT6, p-STAT6, and TGF-β was measured in vitro with corilagin treatment after IL-13 stimulation and in vivo corilagin treatment after effectively killing the adult schistosomes in schistosome-infected mice. Histological analysis of liver tissue was assessed for the degree of hepatic fibrosis. The results revealed that corilagin significantly reduced the expression of PPARγ, KLF4, SOCS1, p-STAT6, and TGF-β compared with model group and praziquantel administration (p < 0.01 or p < 0.05) in vivo and in vitro, which indicated a strong inhibitory effect of corilagin on IL-13Rα1 signaling pathway. As well, the inhibitory effect of corilagin showed a significant dose-dependence (p < 0.05). The area of fibrosis and distribution of M2 macrophages in mouse liver tissue were reduced significantly and dose-dependently with corilagin treatment compared to model group or praziquantel administration (p < 0.01 or p < 0.05), indicating that corilagin suppressed IL-13Rα1 signaling pathway and M2 macrophage polarization effectively in vivo. Furthermore, the anti-fibrogenic effect persisted even when IL-13Rα1 was up- or down-regulated in vitro. In conclusion, corilagin can suppress schistosome egg-induced hepatic fibrosis via inhibition of M2 macrophage polarization in the IL-13Rα1 signaling pathway.
Collapse
Affiliation(s)
- Yi-Qing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Fei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Wang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhen-Zhong Shang
- School of Basic Medical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Qian Ma
- School of Life Science, Hubei University, Wuhan, China
| | - Yu-Jie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhang
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Quan-Qiang Li
- School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Li HR, Liu J, Zhang SL, Luo T, Wu F, Dong JH, Guo YJ, Zhao L. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:18. [PMID: 28056977 PMCID: PMC5217594 DOI: 10.1186/s12906-016-1533-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Background Sepsis is one of the serious disorders in clinical practice. Recent studies found toll-like receptors 4 (TLR4) played an important role in sepsis. In this study, we tried to find the influence of Corilagin on TLR4 signal pathways in vitro and in vivo. Methods The cellular and animal models of sepsis were established by LPS and then interfered with Corilagin. Real-time PCR and western blot were employed to detect the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6. ELISA was used to determine the IL-6 and IL-1β levels in supernatant and serum. Results The survival rate was improved in the LPS + Corilagin group, and the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6 were significantly decreased than that in the LPS group both in cellular and animal models (P < 0.01). The pro-inflammatory cytokines IL-6 and IL-1β were greatly decreased in the LPS + Corilagin group both in supernatant and serum (P < 0.01). Conclusions Corilagin exerts the anti-inflammatory effects by down-regulating the TLR4 signaling molecules to ameliorate the extreme inflammatory status in sepsis.
Collapse
|