1
|
Kumar N, Sharma S, Kumar R, Meena VK, Barua S. Evolution of drug resistance against antiviral agents that target cellular factors. Virology 2024; 600:110239. [PMID: 39276671 DOI: 10.1016/j.virol.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have classically been developed by directly disrupting the functions of viral proteins. However, this strategy has been largely unsuccessful due to the rapid generation of viral escape mutants. It has been well established that as compared to the virus-centric approach, the strategy of developing antiviral drugs by targeting host-dependency factors (HDFs) minimizes drug resistance. However, recent reports have indicated that drug resistance against some of the host-targeting antiviral agents can in fact occur under some circumstances. Long-term selection pressure of a host-targeting antiviral agent may induce the virus to use an alternate cellular factor or alters its affinity towards the target that confers resistance. Alternatively, virus may synchronize its life cycle with the patterns of drug therapy. In addition, virus may subvert host's immune system to perpetuate under the limiting conditions of the targeted cellular factor. This review describes novel potential mechanisms that may account for the acquiring resistance against agents that target HDFs.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKAUST), Jammu, India.
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
2
|
Chen N, Zhang B. IAV Antagonizes Host Innate Immunity by Weakening the LncRNA-LRIR2-Mediated Antiviral Functions. BIOLOGY 2024; 13:998. [PMID: 39765665 PMCID: PMC11727275 DOI: 10.3390/biology13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025]
Abstract
A growing number of studies have shown that long non-coding RNAs (lncRNAs) are implicated in many biological processes, including the regulation of innate immunity and IAV replication. In addition, IAV has been found to be able to hijack lncRNAs and thus antagonize host innate immunity. Nonetheless, whether IAV can antagonize host innate immunity by weakening the antiviral functions mediated by lncRNAs is unknown. In this study, we found that LncRNA-ENST00000491430 regulates IAV replication and named it LRIR2. Interestingly, we found that the expression of LRIR2 was suppressed during IAV infection. Importantly, LRIR2 overexpression inhibited IAV replication, suggesting that LRIR2 plays an antiviral role during IAV infection. Mechanistically, we demonstrated that LRIR2 inhibits the transcription and replication of the IAV genome. In addition, the antiviral function of LRIR2 is mainly dependent on the stem-loop structures of 1-118 nt and 575-683 nt. Taken together, IAV could antagonize host innate immunity by weakening the LncRNA-LRIR2-mediated antiviral functions. Our study provides novel perspectives into viral strategies to antagonize host innate immunity. It lays a theoretical foundation for the design of novel anti-IAV drugs that target host lncRNAs or the antagonism effect.
Collapse
Affiliation(s)
- Na Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
3
|
Huang Y, Li Y, Chen Z, Chen L, Liang J, Zhang C, Zhang Z, Yang J. Nisoldipine Inhibits Influenza A Virus Infection by Interfering with Virus Internalization Process. Viruses 2022; 14:v14122738. [PMID: 36560742 PMCID: PMC9785492 DOI: 10.3390/v14122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Yang
- Correspondence: ; Tel.: +86-020-6164-8590
| |
Collapse
|
4
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
5
|
Human SUMOylation Pathway Is Critical for Influenza B Virus. Viruses 2022; 14:v14020314. [PMID: 35215907 PMCID: PMC8876058 DOI: 10.3390/v14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
The identification and elucidation of host pathways for viral infection are critical for understanding the viral infection processes and novel therapeutics development. Here, for the first time, we discover that the human SUMOylation pathway is essential for the IBV viral life cycle. First, IBV viruses were completely inhibited by a novel SUMOylation specific inhibitor, STE025, discovered from our FRET-based high-throughput screening, and the inhibition was very potent, with IC50~ 0.1 µM in an IBV-induced cell death rescue assay; Second, we determined that the IBV M1 protein was SUMOylated, which was mediated by the SUMOylation E2 conjugation enzyme and the E3 ligase enzyme at very high affinities, of 0.20 µM and 0.22 µM, respectively; Third, the mutation of the IBV M1 SUMOylation site, K21R, completely abolished the viral particle generation, strongly suggesting the requirement of SUMOylation for the IBV life cycle. These results suggest that the blockage of the host human SUMOylation pathway is very effective for IBV inhibition. We therefore propose that the host SUMOylation pathway is a critical host factor for the IBV virus life cycle. The identification and inhibition of critical host factor(s) provide a novel strategy for future anti-viral therapeutics development, such as IBV and other viruses.
Collapse
|
6
|
Morimoto H, Hatanaka T, Narusaka M, Narusaka Y. Molecular investigation of proanthocyanidin from Alpinia zerumbet against the influenza A virus. Fitoterapia 2022; 158:105141. [DOI: 10.1016/j.fitote.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
7
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
8
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
9
|
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183762. [PMID: 34478733 DOI: 10.1016/j.bbamem.2021.183762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.
Collapse
|
10
|
Cakir M, Obernier K, Forget A, Krogan NJ. Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. mSystems 2021; 6:e0038821. [PMID: 34519533 PMCID: PMC8547474 DOI: 10.1128/msystems.00388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
Collapse
Affiliation(s)
- Merve Cakir
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
11
|
De Angelis M, Casciaro B, Genovese A, Brancaccio D, Marcocci ME, Novellino E, Carotenuto A, Palamara AT, Mangoni ML, Nencioni L. Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB J 2021; 35:e21358. [PMID: 33538061 DOI: 10.1096/fj.202001885rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
Treatment of respiratory viral infections remains a global health concern, mainly due to the inefficacy of available drugs. Therefore, the discovery of novel antiviral compounds is needed; in this context, antimicrobial peptides (AMPs) like temporins hold great promise. Here, we discovered that the harmless temporin G (TG) significantly inhibited the early life-cycle phases of influenza virus. The in vitro hemagglutinating test revealed the existence of TG interaction with the viral hemagglutinin (HA) protein. Furthermore, the hemolysis inhibition assay and the molecular docking studies confirmed a TG/HA complex formation at the level of the conserved hydrophobic stem groove of HA. Remarkably, these findings highlight the ability of TG to block the conformational rearrangements of HA2 subunit, which are essential for the viral envelope fusion with intracellular endocytic vesicles, thereby neutralizing the virus entry into the host cell. In comparison, in the case of parainfluenza virus, which penetrates host cells upon a membrane-fusion process, addition of TG to infected cells provoked ~1.2 log reduction of viral titer released in the supernatant. Nevertheless, at the same condition, an immunofluorescent assay showed that the expression of viral hemagglutinin/neuraminidase protein was not significantly reduced. This suggested a peptide-mediated block of some late steps of viral replication and therefore the impairment of the extracellular release of viral particles. Overall, our results are the first demonstration of the ability of an AMP to interfere with the replication of respiratory viruses with a different mechanism of cell entry and will open a new avenue for the development of novel therapeutic approaches against a large variety of respiratory viruses, including the recent SARS-CoV2.
Collapse
Affiliation(s)
- M De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - B Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - A Genovese
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - M E Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - E Novellino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - A T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - M L Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - L Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Yan L, Sun L, Guo C, Li L, Sun J, Huang X, Zhao P, Xie X, Hu J. Neutralizing antibody PR8-23 targets the footprint of the sialoglycan receptor binding site of H1N1 hemagglutinin. J Med Virol 2021; 93:3508-3515. [PMID: 33410516 DOI: 10.1002/jmv.26779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/05/2022]
Abstract
Influenza virus cause seasonal influenza epidemic and seriously sporadic influenza pandemic outbreaks. Hemagglutinin (HA) is an important target in the therapeutic treatment and diagnostic detection of the influenza virus. Variation in the sialic acid receptor binding site leads to strain-specific binding and results in different binding modes to the host receptors. Here, we evaluated the neutralizing activity and hemagglutination inhibition activity of a prepared murine anti-H1N1 monoclonal antibody PR8-23. Then we identified the epitope peptide of antibody PR8-23 by phage display technique from phage display peptide libraries. The identified epitope, 63-IAPLQLGKCNIA-74, containing two α-helix and two β-fold located at the footprint of the sialoglycan receptor on the RBS in the globular head domain of HA. It broads the growing arsenal of motifs for the amino acids on the globular head domain of HA in sialic acid receptor binding site and neutralizing antibody production.
Collapse
Affiliation(s)
- Liting Yan
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Lijun Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Chunyan Guo
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Lanlan Li
- Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Gansu Nephro-Urological Clinical Center, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jingying Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Xiaoyan Huang
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Penghua Zhao
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| | - Xin Xie
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
- Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an, China
| | - Jun Hu
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, China
| |
Collapse
|
13
|
Umeoguaju FU, Ephraim-Emmanuel BC, Patrick-Iwuanyanwu KC, Zelikoff JT, Orisakwe OE. Plant-Derived Food Grade Substances (PDFGS) Active Against Respiratory Viruses: A Systematic Review of Non-clinical Studies. Front Nutr 2021; 8:606782. [PMID: 33634160 PMCID: PMC7900554 DOI: 10.3389/fnut.2021.606782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Human diet comprises several classes of phytochemicals some of which are potentially active against human pathogenic viruses. This study examined available evidence that identifies existing food plants or constituents of edible foods that have been reported to inhibit viral pathogenesis of the human respiratory tract. SCOPUS and PUBMED databases were searched with keywords designed to retrieve articles that investigated the effect of plant-derived food grade substances (PDFGS) on the activities of human pathogenic viruses. Eligible studies for this review were those done on viruses that infect the human respiratory tract. Forty six (46) studies met the specified inclusion criteria from the initial 5,734 hits. The selected studies investigated the effects of different PDFGS on the infectivity, proliferation and cytotoxicity of different respiratory viruses including influenza A virus (IAV), influenza B virus (IBV), Respiratory syncytial virus (RSV), human parainfluenza virus (hPIV), Human coronavirus NL63 (HCoV-NL63), and rhinovirus (RV) in cell lines and mouse models. This review reveals that PDFGS inhibits different stages of the pathological pathways of respiratory viruses including cell entry, replication, viral release and viral-induced dysregulation of cellular homeostasis and functions. These alterations eventually lead to the reduction of virus titer, viral-induced cellular damages and improved survival of host cells. Major food constituents active against respiratory viruses include flavonoids, phenolic acids, tannins, lectins, vitamin D, curcumin, and plant glycosides such as glycyrrhizin, acteoside, geniposide, and iridoid glycosides. Herbal teas such as guava tea, green and black tea, adlay tea, cistanche tea, kuding tea, licorice extracts, and edible bird nest extracts were also effective against respiratory viruses in vitro. The authors of this review recommend an increased consumption of foods rich in these PDFGS including legumes, fruits (e.g berries, citrus), tea, fatty fish and curcumin amongst human populations with high prevalence of respiratory viral infections in order to prevent, manage and/or reduce the severity of respiratory virus infections.
Collapse
Affiliation(s)
- Francis U. Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Benson C. Ephraim-Emmanuel
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Dental Health Sciences, Ogbia, Bayelsa State College of Health Technology, Otakeme, Nigeria
| | - Kingsley C. Patrick-Iwuanyanwu
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Experimental Pharmacology and Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
14
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
15
|
Hwang HS, Chang M, Kim YA. Influenza-Host Interplay and Strategies for Universal Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030548. [PMID: 32962304 PMCID: PMC7564814 DOI: 10.3390/vaccines8030548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Influenza is an annual epidemic and an occasional pandemic caused by pathogens that are responsible for infectious respiratory disease. Humans are highly susceptible to the infection mediated by influenza A viruses (IAV). The entry of the virus is mediated by the influenza virus hemagglutinin (HA) glycoprotein that binds to the cellular sialic acid receptors and facilitates the fusion of the viral membrane with the endosomal membrane. During IAV infection, virus-derived pathogen-associated molecular patterns (PAMPs) are recognized by host intracellular specific sensors including toll-like receptors (TLRs), C-type lectin receptors, retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) either on the cell surface or intracellularly in endosomes. Herein, we comprehensively review the current knowledge available on the entry of the influenza virus into host cells and the molecular details of the influenza virus–host interface. We also highlight certain strategies for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (M.C.); (Y.A.K.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1871 (Y.A.K.)
| |
Collapse
|
16
|
Tilmanis D, Koszalka P, Barr IG, Rossignol JF, Mifsud E, Hurt AC. Host-targeted nitazoxanide has a high barrier to resistance but does not reduce the emergence or proliferation of oseltamivir-resistant influenza viruses in vitro or in vivo when used in combination with oseltamivir. Antiviral Res 2020; 180:104851. [DOI: 10.1016/j.antiviral.2020.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022]
|
17
|
Laise P, Bosker G, Sun X, Shen Y, Douglass EF, Karan C, Realubit RB, Pampou S, Califano A, Alvarez MJ. The Host Cell ViroCheckpoint: Identification and Pharmacologic Targeting of Novel Mechanistic Determinants of Coronavirus-Mediated Hijacked Cell States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.12.091256. [PMID: 32511361 PMCID: PMC7263489 DOI: 10.1101/2020.05.12.091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most antiviral agents are designed to target virus-specific proteins and mechanisms rather than the host cell proteins that are critically dysregulated following virus-mediated reprogramming of the host cell transcriptional state. To overcome these limitations, we propose that elucidation and pharmacologic targeting of host cell Master Regulator proteins-whose aberrant activities govern the reprogramed state of coronavirus-infected cells-presents unique opportunities to develop novel mechanism-based therapeutic approaches to antiviral therapy, either as monotherapy or as a complement to established treatments. Specifically, we propose that a small module of host cell Master Regulator proteins (ViroCheckpoint) is hijacked by the virus to support its efficient replication and release. Conventional methodologies are not well suited to elucidate these potentially targetable proteins. By using the VIPER network-based algorithm, we successfully interrogated 12h, 24h, and 48h signatures from Calu-3 lung adenocarcinoma cells infected with SARS-CoV, to elucidate the time-dependent reprogramming of host cells and associated Master Regulator proteins. We used the NYS CLIA-certified Darwin OncoTreat algorithm, with an existing database of RNASeq profiles following cell perturbation with 133 FDA-approved and 195 late-stage experimental compounds, to identify drugs capable of virtually abrogating the virus-induced Master Regulator signature. This approach to drug prioritization and repurposing can be trivially extended to other viral pathogens, including SARS-CoV-2, as soon as the relevant infection signature becomes available.
Collapse
Affiliation(s)
- Pasquale Laise
- DarwinHealth Inc, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Yao Shen
- DarwinHealth Inc, New York, NY, USA
| | - Eugene F Douglass
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronald B Realubit
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sergey Pampou
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariano J Alvarez
- DarwinHealth Inc, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
19
|
Lauster D, Klenk S, Ludwig K, Nojoumi S, Behren S, Adam L, Stadtmüller M, Saenger S, Zimmler S, Hönzke K, Yao L, Hoffmann U, Bardua M, Hamann A, Witzenrath M, Sander LE, Wolff T, Hocke AC, Hippenstiel S, De Carlo S, Neudecker J, Osterrieder K, Budisa N, Netz RR, Böttcher C, Liese S, Herrmann A, Hackenberger CPR. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. NATURE NANOTECHNOLOGY 2020; 15:373-379. [PMID: 32231271 DOI: 10.1038/s41565-020-0660-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion1-4. Here, we present a multivalent binder that is based on a spatially defined arrangement of ligands for the viral spike protein haemagglutinin of the influenza A virus. Complementary experimental and theoretical approaches demonstrate that bacteriophage capsids, which carry host cell haemagglutinin ligands in an arrangement matching the geometry of binding sites of the spike protein, can bind to viruses in a defined multivalent mode. These capsids cover the entire virus envelope, thus preventing its binding to the host cell as visualized by cryo-electron tomography. As a consequence, virus infection can be inhibited in vitro, ex vivo and in vivo. Such highly functionalized capsids present an alternative to strategies that target virus entry by spike-inhibiting antibodies5 and peptides6 or that address late steps of the viral replication cycle7.
Collapse
Affiliation(s)
- Daniel Lauster
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Berlin, Germany
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Klenk
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Saba Nojoumi
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Sandra Behren
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Adam
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marlena Stadtmüller
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Sandra Saenger
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Stephanie Zimmler
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Katja Hönzke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ling Yao
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Markus Bardua
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Alf Hamann
- Experimentelle Rheumatologie, Deutsches Rheuma-Forschungszentrum Berlin, ein Leibniz-Institut, Berlin, Germany
| | - Martin Witzenrath
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Thorsten Wolff
- Robert Koch Institut, FG 17 Influenzaviren und weitere Viren des Respirationstraktes, Berlin, Germany
| | - Andreas C Hocke
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, Berlin, Germany
| | | | - Jens Neudecker
- Chirurgische Klinik, Campus Mitte/Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Partner von Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Nediljko Budisa
- Institut für Chemie, Biokatalyse, Technische Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Roland R Netz
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Susanne Liese
- Fachbereich Physik, Theoretische Biophysik und Physik weicher Materie, Freie Universität Berlin, Berlin, Germany.
- Department of Mathematics, University of Oslo (UiO), Oslo, Norway.
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Liao J, Way G, Madahar V. Target Virus or Target Ourselves for COVID-19 Drugs Discovery?-Lessons learned from anti-influenza virus therapies. MEDICINE IN DRUG DISCOVERY 2020; 5:100037. [PMID: 32292909 PMCID: PMC7153514 DOI: 10.1016/j.medidd.2020.100037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 pandemic, after it was reported in December 2019, is a highly contagious and now spreading to over 190 countries, causing a severe public health burden. Currently, there is no vaccine or specific drug to treat COVID-19, which is caused by a novel coronavirus, SARS-2-CoV. For this emergency, the FDA has approved Remdesivir and Hydroxychloroquine for treatment of COVID-19 as Emergency Use Authorization. However, even after this pandemic, COVID-19 may still have a chance to come back. Therefore, we need to come out with new strategies for drug discovery for combating COVID-19 in the future.
Collapse
Affiliation(s)
- Jiayu Liao
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521
| | - George Way
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521
| | - Vipul Madahar
- Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521
| |
Collapse
|
21
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
22
|
Poux C, Dondalska A, Bergenstråhle J, Pålsson S, Contreras V, Arasa C, Järver P, Albert J, Busse DC, LeGrand R, Lundeberg J, Tregoning JS, Spetz AL. A Single-Stranded Oligonucleotide Inhibits Toll-Like Receptor 3 Activation and Reduces Influenza A (H1N1) Infection. Front Immunol 2019; 10:2161. [PMID: 31572376 PMCID: PMC6751283 DOI: 10.3389/fimmu.2019.02161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
The initiation of an immune response is dependent on the activation and maturation of dendritic cells after sensing pathogen associated molecular patterns by pattern recognition receptors. However, the response needs to be balanced as excessive pro-inflammatory cytokine production in response to viral or stress-induced pattern recognition receptor signaling has been associated with severe influenza A virus (IAV) infection. Here, we use an inhibitor of Toll-like receptor (TLR)3, a single-stranded oligonucleotide (ssON) with the capacity to inhibit certain endocytic routes, or a TLR3 agonist (synthetic double-stranded RNA PolyI:C), to evaluate modulation of innate responses during H1N1 IAV infection. Since IAV utilizes cellular endocytic machinery for viral entry, we also assessed ssON's capacity to affect IAV infection. We first show that IAV infected human monocyte-derived dendritic cells (MoDC) were unable to up-regulate the co-stimulatory molecules CD80 and CD86 required for T cell activation. Exogenous TLR3 stimulation did not overcome the IAV-mediated inhibition of co-stimulatory molecule expression in MoDC. However, TLR3 stimulation using PolyI:C led to an augmented pro-inflammatory cytokine response. We reveal that ssON effectively inhibited PolyI:C-mediated pro-inflammatory cytokine production in MoDC, notably, ssON treatment maintained an interferon response induced by IAV infection. Accordingly, RNAseq analyses revealed robust up-regulation of interferon-stimulated genes in IAV cultures treated with ssON. We next measured reduced IAV production in MoDC treated with ssON and found a length requirement for its anti-viral activity, which overlapped with its capacity to inhibit uptake of PolyI:C. Hence, in cases wherein an overreacting TLR3 activation contributes to IAV pathogenesis, ssON can reduce this signaling pathway. Furthermore, concomitant treatment with ssON and IAV infection in mice resulted in maintained weight and reduced viral load in the lungs. Therefore, extracellular ssON provides a mechanism for immune regulation of TLR3-mediated responses and suppression of IAV infection in vitro and in vivo in mice.
Collapse
Affiliation(s)
- Candice Poux
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Aleksandra Dondalska
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Bergenstråhle
- Science for Life Laboratory, Department of Gene Technology, Royal Institute of Technology, Stockholm, Sweden
| | - Sandra Pålsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vanessa Contreras
- CEA, UMR1184, IDMIT Department, Institut de Biologie François Jacob, DRF, Fontenay-aux-Roses, France
| | - Claudia Arasa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter Järver
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - David C Busse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Roger LeGrand
- CEA, UMR1184, IDMIT Department, Institut de Biologie François Jacob, DRF, Fontenay-aux-Roses, France
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, Royal Institute of Technology, Stockholm, Sweden
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Szollosi D, Bill A. Potential Role of Endonuclease Inhibition and Other Targets in the Treatment of Influenza. Curr Drug Targets 2019; 21:202-211. [PMID: 31368872 DOI: 10.2174/1389450120666190801115130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Influenza is a single-stranded RNA virus that is highly contagious and infects millions of people in the U.S. annually. Due to complications, approximately 959,000 people were hospitalized and another 79,400 people died during the 2017-2018 flu season. While the best methods of prevention continue to be vaccination and hygiene, antiviral treatments may help reduce symptoms for those who are infected. Until recently, the only antiviral drugs in use have been the neuraminidase inhibitors: oseltamivir, zanamivir, and peramivir. OBJECTIVE We reviewed novel drug targets that can be used in the treatment of influenza, particularly in the case of neuraminidase inhibitor-resistant strains that may emerge. RESULTS More recently, a drug with a new mechanism of action has been approved. Baloxavir marboxil inhibits the influenza cap-dependent endonuclease that is needed for the virus to initiate replication within the host cell. This endonuclease target is within the polymerase acid (PA) subunit of RNA polymerase. Since the RNA-dependent RNA polymerase consists of two other subunits, polymerase basic 1 and 2, RNA polymerase has several targets that prevent viral replication. Other targets still under investigation include viral kinases, endocytosis, and viral fusion. CONCLUSION Due to the possibility of viral mutations and resistance, it is important to have antivirals with different mechanisms available, especially in the case of a new pandemic strain. Several novel antivirals are within various stages of development and may represent new classes of treatments that can reduce symptoms and complications in those patients who may be at higher risk.
Collapse
Affiliation(s)
- Doreen Szollosi
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| | - Ashley Bill
- University of Saint Joseph, School of Pharmacy & Physician Assistant Studies 229 Trumbull Street, Hartford, CT 06103, United States
| |
Collapse
|
24
|
Destabilization of the human RED-SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proc Natl Acad Sci U S A 2019; 116:10968-10977. [PMID: 31076555 DOI: 10.1073/pnas.1901214116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.
Collapse
|
25
|
RETRACTED: Evaluation of imidazole and its derivative against Newcastle disease virus infection in chicken: A drug repurposing approach. Virus Res 2019; 260:114-122. [DOI: 10.1016/j.virusres.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
|
26
|
Abstract
Fluorinated nucleosides constitute a large class of chemotherapeutics approved for clinical use. The pharmacokinetic and pharmacodynamic properties of a drug can be affected, as a consequence of modulation of electronic, lipophilic and steric parameters, by the introduction of fluorine into the structure of drug-like molecule. Herein, we focus on fluorinated-nucleoside analogs, their therapeutic use and applications based on the patent literature from 2014 to 2018. We briefly discuss the clinical properties of anticancer and antiviral fluorine-containing nucleos(t)ides US FDA-approved or in development, and highlight their resistance mechanisms and limitations in the clinic. We emphasize patent inventions related to improved synthetic methods toward selected nucleos(t)ide analogs including the phosphoramidate sofosbuvir and 18F-labeled nucleosides FLT and FMAU, used as a 18F-PET tracers.
Collapse
|
27
|
Luganini A, Terlizzi ME, Catucci G, Gilardi G, Maffei ME, Gribaudo G. The Cranberry Extract Oximacro ® Exerts in vitro Virucidal Activity Against Influenza Virus by Interfering With Hemagglutinin. Front Microbiol 2018; 9:1826. [PMID: 30131793 PMCID: PMC6090095 DOI: 10.3389/fmicb.2018.01826] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
The defense against influenza virus (IV) infections still poses a series of challenges. The current antiviral arsenal against influenza viruses is in fact limited; therefore, the development of new anti-influenza strategies effective against antigenically different viruses is an urgent priority. Bioactive compounds derived from medicinal plants and fruits may provide a natural source of candidates for such broad-spectrum antivirals. In this regard, cranberry (Vaccinium macrocarpon Aiton) extracts on the basis of their recognized anti-adhesive activities against bacteria, may provide potential compounds able to prevent viral attachment to target cells. Nevertheless, only few studies have so far investigated the possible use of cranberry extracts as an antiviral tool. This study focuses on the suitability of a cranberry extract as a direct-acting anti-influenza compound. We show that the novel cranberry extract Oximacro® inhibits influenza A and B viruses (IAV, IBV) replication in vitro because of its high content of A-type proanthocyanidins (PAC-A) dimers and trimers. Mechanistic studies revealed that Oximacro® prevents attachment and entry of IAV and IBV into target cells and exerts a virucidal activity. Oximacro® was observed to interact with the ectodomain of viral hemagglutinin (HA) glycoprotein, thus suggesting the interference with HA functions and a consequent loss of infectivity of IV particles. Fluorescence spectroscopy revealed a reduction in the intrinsic fluorescence of HA protein after incubation with purified dimeric PAC-A (PAC-A2), thus confirming a direct interaction between HA and Oximacro® PAC-A2. In silico docking simulations further supported the in vitro results and indicated that among the different components of the Oximacro® chemical profile, PAC-A2 exhibited the best binding propensity with an affinity below 10 nM. The role of PAC-A2 in the anti-IV activity of Oximacro® was eventually confirmed by the observation that it prevented IAV and IVB replication and caused the loss of infectivity of IV particles, thus indicating PAC-A2 as the major active component of Oximacro®. As a whole, these results suggest Oximacro® as a potential candidate to create novel antiviral agents of natural origin for the prevention of IV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maria E. Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianluca Catucci
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianfranco Gilardi
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Brodskaia AV, Timin AS, Gorshkov AN, Muslimov AR, Bondarenko AB, Tarakanchikova YV, Zabrodskaya YA, Baranovskaya IL, Il'inskaja EV, Sakhenberg EI, Sukhorukov GB, Vasin AV. Inhibition of influenza A virus by mixed siRNAs, targeting the PA, NP, and NS genes, delivered by hybrid microcarriers. Antiviral Res 2018; 158:147-160. [PMID: 30092251 DOI: 10.1016/j.antiviral.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
In the present study, a highly effective carrier system has been developed for the delivery of antiviral siRNA mixtures. The developed hybrid microcarriers, made of biodegradable polymers and SiO2 nanostructures, more efficiently mediate cellular uptake of siRNA than commercially available liposome-based reagents and polyethyleneimine (PEI); they also demonstrate low in vitro toxicity and protection of siRNA from RNase degradation. A series of siRNA designs (targeting the most conserved regions of three influenza A virus (IAV) genes: NP, NS, and PA) were screened in vitro using RT-qPCR, ELISA analysis, and hemagglutination assay. Based on the results of screening, the three most effective siRNAs (PA-1630, NP-717, and NS-777) were selected for in situ encapsulation into hybrid microcarriers. It was revealed that pre-treatment of cells with a mixture of PA-1630, NP-717, and NS-777 siRNAs, delivered by hybrid microcarriers, provided stronger inhibition of viral M1 mRNA expression and control of NP protein level, after viral infection, than single pre-treatment by any of three encapsulated siRNAs used in the study. Moreover, the effective inhibition of replication in several IAV subtypes (H1N1, H1N1pdm, H5N2, and H7N9) using a cocktail of the three selected siRNAs, delivered by our hybrid capsules to the cells, was achieved. In conclusion, we have developed a proof-of-principle which shows that our hybrid microcarrier technology (utilizing a therapeutic siRNA cocktail) may represent a promising approach in anti-influenza therapy.
Collapse
Affiliation(s)
- Aleksandra V Brodskaia
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation.
| | - Alexander S Timin
- RASA Center, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation; First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, St. Petersburg, Russian Federation.
| | - Andrey N Gorshkov
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave. 4, 194064, St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; First I. P. Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022, St. Petersburg, Russian Federation
| | - Andrei B Bondarenko
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; St. Petersburg State University, Vasilyevsky Island, Liniya 16-ya, 29, 199178, St. Petersburg, Russian Federation
| | - Yana V Tarakanchikova
- Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russian Federation
| | - Yana A Zabrodskaya
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Petersburg Nuclear Physics Institute in Honor of B. P. Konstantinov, National Research Center "Kurchatov Institute", 188300, Gatchina, Russian Federation
| | - Irina L Baranovskaya
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation
| | - Eugenia V Il'inskaja
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation
| | - Elena I Sakhenberg
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave. 4, 194064, St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Andrey V Vasin
- Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, Prof. Popova str., 15/17, 197376, St. Petersburg, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251, St. Petersburg, Russian Federation; St. Petersburg State Chemical Pharmaceutical Academy, Prof. Popova str., 14 A, 197376, St. Petersburg, Russian Federation.
| |
Collapse
|
29
|
Zhang HH, Yu WY, Li L, Wu F, Chen Q, Yang Y, Yu CH. Protective effects of diketopiperazines from Moslae Herba against influenza A virus-induced pulmonary inflammation via inhibition of viral replication and platelets aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:156-166. [PMID: 29309861 DOI: 10.1016/j.jep.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. AIM OF THIS STUDY The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. MATERIALS AND METHODS EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B2 (TXB2) and 6-keto-PGF1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. RESULTS Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells. Furthermore, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe significantly alleviated IAV-induced platelet activation and lung inflammation in mice. They could reduce the expression of CD41 and the phosphorylation of PI3K and AKT in PLTs of IAV-infected mice. CONCLUSION These results suggested that cyclo(Ala-Ile) and Bz-Phe-Phe-OMe isolated from MH have antiviral and anticoagulant effects against IAV-induced PLT aggregation and lung inflammation via regulating CD41/PI3K/AKT pathway, and could be used as the potential agents for IAV treatment.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Lan Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China; First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qin Chen
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310009, China
| | - Yang Yang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
30
|
Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol 2018; 55:38-48. [DOI: 10.1016/j.intimp.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
|
31
|
Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci 2017; 18:ijms18081650. [PMID: 28783091 PMCID: PMC5578040 DOI: 10.3390/ijms18081650] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission. The rapid mutations of influenza A virus result in the loss of vaccine optimal efficacy, and challenge the complete eradication of the virus. In this review, we highlight the current understanding of influenza A virus evolution caused by the mutation and re-assortment of viral genomes. In addition, we discuss the specific mechanisms by which the virus evolves.
Collapse
|