1
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, Mohamed H, Jutur PP, Ainane T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals (Basel) 2024; 17:960. [PMID: 39065808 PMCID: PMC11280058 DOI: 10.3390/ph17070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ibrahim Houmed Aboubaker
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ali Merito Ali
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
2
|
Yan J, Li Z, Liang Y, Yang C, Ou W, Mo H, Tang M, Chen D, Zhong C, Que D, Feng L, Xiao H, Song X, Yang P. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct 2023; 14:10052-10068. [PMID: 37861458 DOI: 10.1039/d3fo02633g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Background: Myocardial ischemia and reperfusion injury (MIRI) is a severe complication of revascularization therapy in patients with myocardial infarction. Therefore, there is an urgent requirement to find more therapeutic solutions for MIRI. Recently, ferroptosis, which is characterized by lipid peroxidation, was considered a critical contributor to MIRI. Fucoxanthin (FX), a natural antioxidant carotenoid, which is abundant in brown seaweed, exerts protective effects under various pathological conditions. However, whether FX alleviates MIRI is unclear. This study aims to clarify the effects of FX on MIRI. Methods: Mice with left anterior descending artery ligation and reperfusion were used as in vivo models. Neonatal rat cardiomyocytes (NRCs) induced with hypoxia and reperfusion were used as in vitro models. TTC-Evans blue staining was performed to validate the infarction size. Transmission electron microscopy was employed to detect mitochondrial injury in cardiomyocytes. In addition, 4 weeks after MIRI, echocardiography was performed to measure cardiac function; fluorescent probes and western blots were used to detect ferroptosis. Results: TTC-Evans blue staining showed that FX reduced the infarction size induced by MIRI. Transmission electron microscopy showed that FX ameliorated the MIRI-induced myofibril loss and mitochondrion shrinkage. Furthermore, FX improved LVEF and LVFS and inhibited myocardial hypertrophy and fibrosis after 4 weeks in mice with MIRI. In the in vitro study, calcein AM/PI staining and TUNEL staining showed that FX reduced cell death caused by hypoxia and reperfusion treatment. DCFH-DA and MitoSOX probes indicated that FX inhibited cellular and mitochondrial reactive oxygen species (ROS). Moreover, C11-BODIPY 581/591 staining, ferro-orange staining, MDA assay, Fe2+ assay, 4-hydroxynonenal enzyme-linked immunosorbent assay, and western blot were performed and the results revealed that FX ameliorated ferroptosis in vitro and in vivo, as indicated by inhibiting lipid ROS and Fe2+ release, as well as by modulating ferroptosis hallmark FTH, TFRC, and GPX4 expression. Additionally, the protective effects of FX were eliminated by the NRF2 inhibitor brusatol, as observed from western blotting, C11-BODIPY 581/591 staining, and calcein AM/PI staining, indicating that FX exerted cardio-protective effects on MIRI through the NRF2 pathway. Conclusion: Our study showed that FX alleviated MIRI through the inhibition of ferroptosis via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Zehua Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Yu Liang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Shenzhen People's Hospital, the Second Affiliated Hospital, Jinan University, Guangdong, China
| | - Min Tang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Deshu Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chongbin Zhong
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Dongdong Que
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Liyun Feng
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Pingzhen Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China.
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| |
Collapse
|
3
|
Han J, Zhang Y, Peng H. Fucoxanthin inhibits cardiac fibroblast transdifferentiation by alleviating oxidative stress through downregulation of BRD4. PLoS One 2023; 18:e0291469. [PMID: 37699016 PMCID: PMC10497131 DOI: 10.1371/journal.pone.0291469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Myocardial fibrosis can lead to ischemic damage of the myocardium, which can be life-threatening in severe cases. Cardiac fibroblast (CF) transdifferentiation is an important process in myocardial fibrosis. Fucoxanthin (FX) plays a key role in ameliorating myocardial fibrosis; however, its mechanism of action is not fully understood. This study investigated the role of FX in the angiotensin II (Ang II)-induced transdifferentiation of CFs and its potential mechanisms of action. We found that FX inhibited Ang II-induced transdifferentiation of CFs. Simultaneously, FX downregulated bromodomain-containing protein 4 (BRD4) expression in CFs and increased nuclear expression of nuclear factorerythroid 2-related factor 2 (Nrf2). FX reverses AngII-induced inhibition of the Keap1/Nrf2/HO-1 pathway and elevates the level of reactive oxygen species (ROS). FX failed to reverse Ang II-induced changes in fibrosis-associated proteins and ROS levels after Nrf2 silencing. BRD4 silencing reversed the inhibitory effect of Ang II on the Keap1/Nrf2/HO-1 antioxidant signalling pathway. In conclusion, we demonstrated that FX inhibited Ang II-induced transdifferentiation of CFs and that this effect may be related to the activation of the Keap1/Nrf2/HO-1 pathway by reducing BRD4 expression and, ultimately, oxidative stress.
Collapse
Affiliation(s)
- Jinxia Han
- Shaoxing Seventh People’s Hospital, Shaoxing, China
| | | | - Haisheng Peng
- Department of pharmacology, Medical college, Shaoxing University, Shaoxing, China
| |
Collapse
|
4
|
Slautin VN, Grebnev DY, Maklakova IY, Sazonov SV. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl 4-induced liver fibrosis. J Nat Med 2023; 77:953-963. [PMID: 37391684 DOI: 10.1007/s11418-023-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
The lack of an effective non-surgical liver fibrosis treatment is a major problem in hepatology. Fucoxanthin is a marine xanthophyll that exhibits anti-inflammatory, antioxidant, and hepatoprotective properties, thereby indicating its potential effectiveness in the treatment of liver fibrosis. The study aims to investigate the antifibrotic and anti-inflammatory effects of fucoxanthin and its main mechanisms on carbon tetrachloride (CCl4)-induced liver fibrosis in 50 outbred ICR/CD1 mice. 2 μl/g of CCl4 were injected intraperitoneally 2 times a week for 6 weeks. Fucoxanthin (5, 10, 30 mg/kg) was administered via gavage. Liver histopathology was evaluated by Hematoxylin-Eosin (H&E) and Sirius Red staining using the METAVIR scale. The immunohistochemical method was used to determine the number of CD45 and α-smooth muscle actin (α-SMA) positive cells, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and α-SMA positive areas. Using enzyme immunoassays, procollagen 1 (COL1A1), transforming growth factor-β (TGF-β), and hepatocyte growth factor (HGF) were determined in homogenate, and interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were determined in blood serum. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, albumin (ALB), and total bilirubin (Tbil) levels are determined by biochemical assays. Fucoxanthin significantly reduced the severity of liver fibrosis, profibrogenic markers, inflammatory infiltration, and pro-inflammatory cytokines. In summary, we confirmed that fucoxanthin has a dose-dependent antifibrotic effect on CCl4-induced liver fibrosis. We found that the anti-inflammatory effect of fucoxanthin is related to the inhibition of IL-1β and TNF-α synthesis, as well as the decrease in the number of leukocytes in the injured liver.
Collapse
Affiliation(s)
- Vasilii N Slautin
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation.
- Federal Budgetary Institution of Science "Federal Scientific Research Institute of Viral Infection "Virome", 23, Letnyaya Street, 620030, Yekaterinburg, Russian Federation.
| | - Dmitry Yu Grebnev
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Irina Yu Maklakova
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Sergey V Sazonov
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| |
Collapse
|
5
|
Wu X, Jiang Y, Li R, Xia Y, Li F, Zhao M, Li G, Tan X. Ficolin B secreted by alveolar macrophage exosomes exacerbates bleomycin-induced lung injury via ferroptosis through the cGAS-STING signaling pathway. Cell Death Dis 2023; 14:577. [PMID: 37648705 PMCID: PMC10468535 DOI: 10.1038/s41419-023-06104-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Pathogenesis exploration and timely intervention of lung injury is quite necessary as it has harmed human health worldwide for years. Ficolin B (Fcn B) is a recognition molecule that can recognize a variety of ligands and play an important role in mediating the cell cycle, immune response, and tissue homeostasis in the lung. However, the role of Fcn B in bleomycin (BLM)-induced lung injury is obscure. This study aims to investigate the sources of Fcn B and its mechanism in BLM-induced lung injury. WT, Fcna-/-, and Fcnb-/- mice were selected to construct the BLM-induced lung injury model. Lung epithelial cells were utilized to construct the BLM-induced cell model. Exosomes that were secreted from alveolar macrophages (AMs) were applied for intervention by transporting Fcn B. Clinical data suggested M-ficolin (homologous of Fcn B) was raised in plasma of interstitial lung disease (ILD) patients. In the mouse model, macrophage-derived Fcn B aggravated BLM-induced lung injury and fibrosis. Fcn B further promoted the development of autophagy and ferroptosis. Remarkably, cell experiment results revealed that Fcn B transported by BLM-induced AMs exosomes accelerated autophagy and ferroptosis in lung epithelial cells through the activation of the cGAS-STING pathway. In contrast, the application of 3-Methyladenine (3-MA) reversed the promotion effect of Fcn B from BLM-induced AMs exosomes on lung epithelial cell damage by inhibiting autophagy-dependent ferroptosis. Meanwhile, in the BLM-induced mice model, the intervention of Fcn B secreted from BLM-induced AMs exosomes facilitated lung injury and fibrosis via ferroptosis. In summary, this study demonstrated that Fcn B transported by exosomes from AMs exacerbated BLM-induced lung injury by promoting lung epithelial cells ferroptosis through the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Xu Wu
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yixia Jiang
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yezhou Xia
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guoqing Li
- Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- The Key Laboratory of Molecular Diagnosis and Precision Medicine in Hengyang, Hengyang, Hunan, China.
- The Clinical Research Center for Gastric Cancer in Hunan Province, Hengyang, Hunan, China.
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
7
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
8
|
Chen S, Zhu L, Li J. Fucoxanthin ameliorates oxidative injury and inflammation of human bronchial epithelial cells induced by cigarette smoke extract via the PPARγ/NF‑κB signaling pathway. Exp Ther Med 2022; 25:69. [PMID: 36605523 PMCID: PMC9798150 DOI: 10.3892/etm.2022.11768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and long-term airway disease. It has been reported that fucoxanthin (FX) exhibits anti-inflammatory and antioxidant effects. However, the underlying mechanism of FX in COPD remains unknown. Therefore, to investigate the effect of FX on COPD, BEAS-2B cells were treated with cigarette smoke extract (CSE). The viability of BEAS-2B cells treated with increasing doses of FX was assessed by Cell Counting Kit-8. Lactate dehydrogenase (LDH) levels were measured using a corresponding kit. In addition, ELISA was carried out to detect the content of TNF-α, IL-1β and IL-6. Additionally, a TUNEL assay and western blot analysis were performed to assess the cell apoptosis rate. Furthermore, 2',7'-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species levels, while the contents of oxidative stress-associated indexes were determined using the corresponding kits. Bioinformatics analysis using the search tool for interactions of chemicals database predicted that peroxisome proliferator-activated receptor γ (PPARγ) may be a target of FX. The binding capacity of FTX with PPARγ was confirmed by molecular docking. The protein expression levels of the PPARγ/NF-κB signaling-associated factors were detected by western blot analysis. Finally, the regulatory mechanism of FX in COPD was revealed following cell treatment with the PPARγ inhibitor, T0070907. The results demonstrated that FX enhanced CSE-induced BEAS-2B cell viability and attenuated CSE-induced BEAS-2B cell inflammation and oxidative damage, possibly via triggering PPARγ/NF-κB signaling. Pre-treatment of BEAS-2B cells with the PPARγ inhibitor, T0070907, could reverse the protective effects of FX on CSE-induced BEAS-2B cells. Overall, the present study suggested that FX could ameliorate oxidative damage as well as inflammation in CSE-treated human bronchial epithelial in patients with COPD via modulating the PPARγ/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaolei Chen
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Lin Zhu
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, Shandong 264199, P.R. China
| | - Jun Li
- Department of General Medicine, The Third Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China,Correspondence to: Dr Jun Li, Department of General Medicine The Third Affiliated Hospital of Nantong University, 60 Qingnian Middle Road, Nangtong, Jiangsu 226000, P.R. China
| |
Collapse
|
9
|
Lu LW, Gao Y, Quek SY, Foster M, Eason CT, Liu M, Wang M, Chen JH, Chen F. The landscape of potential health benefits of carotenoids as natural supportive therapeutics in protecting against Coronavirus infection. Biomed Pharmacother 2022; 154:113625. [PMID: 36058151 PMCID: PMC9428603 DOI: 10.1016/j.biopha.2022.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus Disease-2019 (COVID-19) pandemic urges researching possibilities for prevention and management of the effects of the virus. Carotenoids are natural phytochemicals of anti-oxidant, anti-inflammatory and immunomodulatory properties and may exert potential in aiding in combatting the pandemic. This review presents the direct and indirect evidence of the health benefits of carotenoids and derivatives based on in vitro and in vivo studies, human clinical trials and epidemiological studies and proposes possible mechanisms of action via which carotenoids may have the capacity to protect against COVID-19 effects. The current evidence provides a rationale for considering carotenoids as natural supportive nutrients via antioxidant activities, including scavenging lipid-soluble radicals, reducing hypoxia-associated superoxide by activating antioxidant enzymes, or suppressing enzymes that produce reactive oxygen species (ROS). Carotenoids may regulate COVID-19 induced over-production of pro-inflammatory cytokines, chemokines, pro-inflammatory enzymes and adhesion molecules by nuclear factor kappa B (NF-κB), renin-angiotensin-aldosterone system (RAS) and interleukins-6- Janus kinase-signal transducer and activator of transcription (IL-6-JAK/STAT) pathways and suppress the polarization of pro-inflammatory M1 macrophage. Moreover, carotenoids may modulate the peroxisome proliferator-activated receptors γ by acting as agonists to alleviate COVID-19 symptoms. They also may potentially block the cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human angiotensin-converting enzyme 2 (ACE2). These activities may reduce the severity of COVID-19 and flu-like diseases. Thus, carotenoid supplementation may aid in combatting the pandemic, as well as seasonal flu. However, further in vitro, in vivo and in particular long-term clinical trials in COVID-19 patients are needed to evaluate this hypothesis.
Collapse
|
10
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
11
|
Abdel-Rafei MK, Thabet NM, El Tawel G, El Bakary NM, El Fatih NM, Sh Azab K. Role of leptin/STAT3 signaling and RIP-kinases in fucoxanthin influences on mice exposed to LPS and gamma radiation. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noura M. Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada El Tawel
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M. El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. El Fatih
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Khaled Sh Azab
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev Nutr Food Sci 2021; 26:241-261. [PMID: 34737985 PMCID: PMC8531419 DOI: 10.3746/pnf.2021.26.3.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids, a group of phytochemicals, are naturally found in the Plant kingdom, particularly in fruits, vegetables, and algae. There are more than 600 types of carotenoids, some of which are thought to prevent disease, mainly through their antioxidant properties. Carotenoids exhibit several biological and pharmaceutical benefits, such as anti-inflammatory, anti-cancer, and immunity booster properties, particularly as some carotenoids can be converted into vitamin A in the body. However, humans cannot synthesize carotenoids and need to obtain them from their diets or via supplementation. The emerging zoonotic virus severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), originated in bats, and was transmitted to humans. COVID-19 continues to cause devastating international health problems worldwide. Therefore, natural preventive therapeutic strategies from bioactive compounds, such as carotenoids, should be appraised for strengthening physiological functions against emerging viruses. This review summarizes the most important carotenoids for human health and enhancing immunity, and their potential role in COVID-19 and its related symptoms. In conclusion, promising roles of carotenoids as treatments against emerging disease and related symptoms are highlighted, most of which have been heavily premeditated in studies conducted on several viral infections, including COVID-19. Further in vitro and in vivo research is required before carotenoids can be considered as potent drugs against such emerging diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Diana Tazeddinova
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Khaled Aljoumaa
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Ayan Orazov
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan University, Uralsk 090009, The Republic of Kazakhstan
| | | |
Collapse
|
13
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|
14
|
El Bakary NM, Thabet NM, El Fatih NM, Abdel-Rafei MK, El Tawill G, Azab KS. Fucoxanthin alters the apelin-13/APJ pathway in certain organs of γ-irradiated mice. JOURNAL OF RADIATION RESEARCH 2021; 62:600-617. [PMID: 33929015 PMCID: PMC8273792 DOI: 10.1093/jrr/rraa141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Apelin-13 and APJ are implicated in different key physiological processes. This work aims at exploring the radioprotective effect of fucoxanthin (FX) on γ-radiation (RAD)-induced changes in the apelin-13/APJ pathway, which causes damage in the liver, kidney, lung and spleen of mice. Mice were administered FX (10 mg kg-1 day-1, i.p) and exposed to γ-radiation (2.5 Gy week-1) for four consecutive weeks. The treatment of irradiated mice by FX resulted in a significant amendment in protein expression of the apelin-13/APJ/NF-κB signalling pathway concurrently with reduced hypoxia (hypoxia-inducible factor-1α), suppressed oxidative stress marker (malondialdehyde), enhanced antioxidant defence mechanisms (reduced glutathione and glutathione peroxidase), a modulated inflammatory response [interleukin-6 (IL-6), monocyte chemoattractant protein-1, IL-10 and α-7-nicotinic acetylcholine receptor) and ameliorated angiogenic regulators [matrix metalloproteinase (MMP-2), MMP-9 and tissue inhibitor of metalloproteinase-1), as well as the tissue damage indicator (lactate dehydrogenase) in organ tissues. In addition, there were significant improvement in serum inflammatory markers tumour necrosis factor-α, IL-10, IL-1β and C-reactive protein compared with irradiated mice. The histopathological investigation of the FX + RAD organ tissues support the biochemical findings where the improvements in the tissues' architecture were obvious when compared with those of RAD. FX was thus shown to have a noticeable radioprotective action mediated through its regulatory effect on the apelin-13/APJ/NF-κB signalling pathway attributed to its antioxidant and anti-inflammatory activity that was reflected in different physiological processes. It could be recommended to use FX in cases of radiation exposure to protect normal tissues.
Collapse
Affiliation(s)
- Nermeen M El Bakary
- Corresponding authors. Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt; , or
| | - Noura Magdy Thabet
- Corresponding authors. Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt; , or
| | - Neama M El Fatih
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada El Tawill
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Khaled Shaaban Azab
- Corresponding authors. Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt; , or
| |
Collapse
|
15
|
Fucoxanthin Ameliorates Oxidative Stress and Airway Inflammation in Tracheal Epithelial Cells and Asthmatic Mice. Cells 2021; 10:cells10061311. [PMID: 34070405 PMCID: PMC8227140 DOI: 10.3390/cells10061311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin is isolated from brown algae and was previously reported to have multiple pharmacological effects, including anti-tumor and anti-obesity effects in mice. Fucoxanthin also decreases the levels of inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. The purpose of the present study was to investigate the effects of fucoxanthin on the oxidative and inflammatory responses in inflammatory human tracheal epithelial BEAS-2B cells and attenuated airway hyperresponsiveness (AHR), airway inflammation, and oxidative stress in asthmatic mice. Fucoxanthin significantly decreased monocyte cell adherence to BEAS-2B cells. In addition, fucoxanthin inhibited the production of pro-inflammatory cytokines, eotaxin, and reactive oxygen species in BEAS-2B cells. Ovalbumin (OVA)-sensitized mice were treated by intraperitoneal injections of fucoxanthin (10 mg/kg or 30 mg/kg), which significantly alleviated AHR, goblet cell hyperplasia and eosinophil infiltration in the lungs, and decreased Th2 cytokine production in the BALF. Furthermore, fucoxanthin significantly increased glutathione and superoxide dismutase levels and reduced malondialdehyde (MDA) levels in the lungs of asthmatic mice. These data demonstrate that fucoxanthin attenuates inflammation and oxidative stress in inflammatory tracheal epithelial cells and improves the pathological changes related to asthma in mice. Thus, fucoxanthin has therapeutic potential for improving asthma.
Collapse
|
16
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
17
|
Bai L, Li A, Gong C, Ning X, Wang Z. Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF-β1/α-SMA/Col I and III pathway. Biofactors 2020; 46:637-644. [PMID: 32233122 DOI: 10.1002/biof.1629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Lung fibrosis is a progressive fatal lung disorder with significantly high mortality rates. Bleomycin (BLM) is one of the most commonly used chemotherapeutic agents for the treatment of several carcinomas. The most severe adverse effect of BLM is lung toxicity; therefore, BLM has been repeatedly reported to be considered amongst the most widely used agents for the induction of experimental lung fibrosis. In the current study, rutin has been investigated for its ability to ameliorate BLM-induced pulmonary fibrosis. BLM was instilled intratracheally and rutin was administered orally (50 and 100 mg/kg) for 3 weeks. Rutin significantly decreased lung/body weight index, bronchoalveolar lavage fluid lactate dehydrogenase activity, total cell count, macrophages, and lymphocyte counts. Rutin significantly decreased lung malondialdehyde content, increased lung glutathione content, superoxide dismutase activity, serum total antioxidant capacity, and decreased lung nitric oxide content. Moreover, rutin reduced expressions of transforming growth factor beta 1 and other fibrosis-related biomarkers (Col I, Col III, and α-SMA). In addition, rutin significantly ameliorated histological changes and prevented collagen deposition with the paralleled decrease in lung hydroxyproline content. In conclusion, rutin can be proposed to be a potential therapeutic agent for the management of lung fibrosis.
Collapse
Affiliation(s)
- Linlin Bai
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Aimin Li
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Cuike Gong
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Xuecong Ning
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| | - Zhihua Wang
- Respiratory Medicine, Xingtai People's Hospital, Xingtai City, China
| |
Collapse
|
18
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Paudel P, Seong SH, Jung HA, Choi JS. Characterizing fucoxanthin as a selective dopamine D 3/D 4 receptor agonist: Relevance to Parkinson's disease. Chem Biol Interact 2019; 310:108757. [PMID: 31323226 DOI: 10.1016/j.cbi.2019.108757] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Fucoxanthin and fucosterol are archetypal lipid components of edible brown algae that provide several health benefits. Lately, their protective role in Aβ1-42-induced cognitive dysfunction in animal models has been reported (Alghazwi et al., 2019; Oh et al., 2018). However, their role in the aminergic system and as a prime treatment approach for multifactorial neurodegenerative diseases still requires exploration. The main aims of the present study are to characterize the role of fucoxanthin and fucosterol in the aminergic pathway via in vitro human monoamine oxidase (hMAO) inhibition and cell-based functional G-protein coupled receptor (GPCR) assays and to underline their possible mechanisms of action via in silico molecular docking studies. Fucoxanthin displayed weak inhibition with IC50 values of 197.41 ± 2.20 and 211.12 ± 1.17 μM over two isoenzymes hMAO-A and hMAO-B, respectively. Fucosterol remained inactive up to 500 μM. In functional assay results, fucoxanthin showed a concentration-dependent agonist effect on dopamine D3 and D4 receptors. The half maximal effective concentration (EC50) of fucoxanthin for dopamine D3 and D4 receptors was 16.87 ± 3.41 and 81.87 ± 6.11 μM, respectively. For dopamine as a reference agonist, the EC50 values for these two receptors were 3.7 and 24 nM, respectively. Fucosterol showed no agonist activity on any of the tested receptors. Similarly, fucoxanthin showed a mild antagonist effect on dopamine D1 and tachykinin (NK1) receptor with inhibition of control agonist response by approximately 40% at 100 μM. Fucosterol displayed mild antagonist effects only on dopamine D1 and D4 receptors. In silico studies revealed potential mechanisms by which fucoxanthin binds to dopamine receptors to exert its agonist effects, including low binding energy and H-bond interactions with Ser196 and Thr115 at the D3 receptor and with Ser196 and Asp115 at the D4 receptor. Our results collectively suggest that fucoxanthin is a potential D3/D4 agonist for the management of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
20
|
Evaluation of fucoxanthin contents in seaweed biomass by vortex-assisted solid-liquid microextraction using high-performance liquid chromatography with photodiode array detection. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Prinzi G, Santoro A, Lamonaca P, Cardaci V, Fini M, Russo P. Cognitive Impairment in Chronic Obstructive Pulmonary Disease (COPD): Possible Utility of Marine Bioactive Compounds. Mar Drugs 2018; 16:md16090313. [PMID: 30181485 PMCID: PMC6163567 DOI: 10.3390/md16090313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by long-term airflow limitation. Early-onset COPD in non-smoker subjects is ≥60 years and in the elderly is often associated with different comorbidities. Cognitive impairment is one of the most common feature in patients with COPD, and is associated with COPD severity and comorbidities. Cognitive impairment in COPD enhances the assistance requirement in different aspects of daily living, treatment adherence, and effectual self-management.This review describes various bioactive compounds of natural marine sources that modulate different targets shared by both COPD and cognitive impairment and hypothesizes a possible link between these two syndromes.
Collapse
Affiliation(s)
- Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Vittorio Cardaci
- Unit of Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana 235, I-00163 Rome, Italy.
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy.
| |
Collapse
|