1
|
Chen Y, Zhu F, Ou J, Chen J, Liu X, Li R, Wang Z, Cheong KL, Zhong S. Mitochondrion-targeted selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides increase reactive oxygen species-mediated antitumour activity. Int J Biol Macromol 2024; 281:136545. [PMID: 39401640 DOI: 10.1016/j.ijbiomac.2024.136545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Authors prepared a nanoselenium particle stabilized with Sargassum fusiforme polysaccharide (SFPS-Tw-SeNPs) and confirmed that it could effectively inhibit the proliferation of A549 lung cancer cells in vitro. The aim of this study was to investigate its anti-lung cancer effect in vitro and in vivo and its possible mechanism. In cell experiments, AO/EB staining revealed that SFPS-Tw-SeNPs could induce the apoptosis of A549 cells and produce red fluorescence by inserting into DNA through damaged cell membranes, increasing the production of reactive oxygen species (ROS). SFPS-Tw-SeNPs that is loaded with coumarin-6 entered the cells in a concentration-dependent and time-dependent manner, acting on the mitochondria, reducing the mitochondrial membrane potential, increasing the Bax/Bcl-2 ratio, and increasing the expression of Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP and Cytochrome C-induced apoptosis in cells. In addition, the SFPS-Tw-SeNPs blocked the PI3K/AKT signalling pathway, downregulated the expression of Cyclin-A and CDK2, upregulated the expression of P21, and arrested the cell in the G1 phase. In animal experiments, SFPS-Tw-SeNPs treatment significantly inhibited the growth of A549 tumour xenografts but did not significantly negatively affect the body of the animals. Overall, SFPS-Tw-SeNPs have the potential to be developed as a pharmaceutical drug to prevent and treat non-small cell lung cancer.
Collapse
Affiliation(s)
- Yanzhe Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Feifei Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China.
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| |
Collapse
|
2
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Shan X, Lv S, Cheng H, Zhou L, Gao Y, Xing C, Li D, Tao W, Zhang C. Evaluation of 3-O-β-D-galactosylated resveratrol-loaded polydopamine nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Biopharm 2024; 203:114454. [PMID: 39142541 DOI: 10.1016/j.ejpb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
In our previous studies, 3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized by structural modification and then 3-O-β-D-galactosylated resveratrol polydopamine nanoparticles (Gal-Res NPs) were successfully prepared to improve the bioavailability and liver distribution of Res. However, the pharmacodynamic efficacy and specific mechanism of Gal-Res NPs on hepatocellular carcinoma remain unclear. Herein, liver cancer model mice were successfully constructed by xenograft tumor modeling. Gal-Res NPs (34.2 mg/kg) significantly inhibited tumor growth of the liver cancer model mice with no significant effect on their body weight and no obvious toxic effect on major organs. Additionally, in vitro cellular uptake assay showed that Gal-Res NPs (37.5 μmol/L) increased the uptake of Gal-Res by Hepatocellular carcinoma (HepG2) cells, and significantly inhibited the cell migration and invasion. The experimental results of Hoechst 33342/propyl iodide (PI) double staining and flow cytometry both revealed that Gal-Res NPs could remarkably promote cell apoptosis. Moreover, the Western blot results revealed that Gal-Res NPs significantly regulated the Bcl-2/Bax and AKT/GSK3β/β-catenin signaling pathways. Taken together, the in vitro/in vivo results demonstrated that Gal-Res NPs significantly improved the antitumor efficiency of Gal-Res, which is a potential antitumor drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Shujie Lv
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Hongyan Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Lele Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Yu Gao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Chengjie Xing
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Dawei Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Wenwen Tao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Caiyun Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China.
| |
Collapse
|
4
|
Tang QQ, Wang ZD, An XH, Zhou XY, Zhang RZ, Zhan X, Zhang W, Zhou J. Apigenin Ameliorates H 2O 2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals (Basel) 2024; 17:1302. [PMID: 39458943 PMCID: PMC11510047 DOI: 10.3390/ph17101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Apigenin is one of the natural flavonoids found mainly in natural plants, as well as some fruits and vegetables, with celery in particular being the most abundant. Apigenin has antioxidant, anti-tumor, anti-inflammatory, and anticancer effects. In this research, we attempted to further investigate the effects of apigenin on the mechanism of repairing oxidative cell damage. The present study hopes to provide a potential candidate for abnormal skin pigmentation disorders. Methods: We used 0.4 mM H2O2 to treat B16F10 cells for 12 h to establish a model of oxidative stress in melanocytes, and then we gave apigenin (0.1~5 μM) to B16F10 cells for 48 h, and detected the expression levels of melanin synthesis-related proteins, dendritic regulation-related proteins, antioxidant signaling pathway- and Nrf2 signaling pathway-related proteins, autophagy, and autophagy-regulated pathways by immunoblotting using Western blotting. The expression levels of PI3K/Akt/mTOR proteins were measured by β-galactosidase staining and Western blotting for cellular decay, JC-1 staining for mitochondrial membrane potential, and Western blotting for mitochondrial fusion- and mitochondrial autophagy-related proteins. Results: Apigenin exerts antioxidant effects by activating the Nrf2 pathway, and apigenin up-regulates the expression of melanin synthesis-related proteins Tyr, TRP1, TRP2, and gp100, which are reduced in melanocytes under oxidative stress. By inhibiting the expression of senescence-related proteins p53 and p21, and delaying cellular senescence, we detected the mitochondrial membrane potential using JC-1, and found that apigenin improved the reduction in mitochondrial membrane potential in melanocytes under oxidative stress, and maintained the normal function of mitochondria. In addition, we further detected the key regulatory proteins of mitochondrial fusion and division, MFF, p-DRP1 (S637), and p-DRP1 (S616), and found that apigenin inhibited the down-regulation of fusion-associated protein, p-DRP1 (S637), and the up-regulation of division-associated proteins, MFF and p-DRP1 (S616), due to oxidative stress in melanocytes, and promoted the mitochondrial fusion and ameliorated the imbalance between mitochondrial division and fusion. We further detected the expression of fusion-related proteins OPA1 and Mitofusion-1, and found that apigenin restored the expression of the above fusion proteins under oxidative stress, which further indicated that apigenin promoted mitochondrial fusion, improved the imbalance between mitochondrial division and fusion, and delayed the loss of mitochondrial membrane potential. Apigenin promotes the expression of melanocyte autophagy-related proteins and the key mitochondrial autophagy proteins BNIP3L/Nix under oxidative stress, and activates the PINK1/Parkin signaling pathway by up-regulating the expression of autophagy-related proteins, as well as the expression of PINK1 and Parkin proteins, to promote melanocyte autophagy and mitochondrial autophagy. Conclusions: Apigenin exerts anti-melanocyte premature aging and detachment effects by promoting melanin synthesis, autophagy, and mitochondrial autophagy in melanocytes, and inhibiting oxidative cell damage and senescence.
Collapse
Affiliation(s)
- Qing-Qing Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Zu-Ding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xiao-Hong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 750021, China; (Z.-D.W.); (X.-H.A.)
| | - Xin-Yuan Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Rong-Zhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Q.-Q.T.); (X.-Y.Z.); (R.-Z.Z.); (X.Z.)
| |
Collapse
|
5
|
Alkafaas SS, Khedr SA, ElKafas SS, Hafez W, Loutfy SA, Sakran M, Janković N. Targeting JNK kinase inhibitors via molecular docking: A promising strategy to address tumorigenesis and drug resistance. Bioorg Chem 2024; 153:107776. [PMID: 39276490 DOI: 10.1016/j.bioorg.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Among members of the mitogen-activated protein kinase (MAPK) family, c-Jun N-terminal kinases (JNKs) are vital for cellular responses to stress, inflammation, and apoptosis. Recent advances have highlighted their important implications in cancer biology, where dysregulated JNK signalling plays a role in the growth, progression, and metastasis of tumors. The present understanding of JNK kinase and its function in the etiology of cancer is summarized in this review. By modifying a number of downstream targets, such as transcription factors, apoptotic regulators, and cell cycle proteins, JNKs exert diverse effects on cancer cells. Apoptosis avoidance, cell survival, and proliferation are all promoted by abnormal JNK activation in many types of cancer, which leads to tumor growth and resistance to treatment. JNKs also affect the tumour microenvironment by controlling the generation of inflammatory cytokines, angiogenesis, and immune cell activity. However, challenges remain in deciphering the context-specific roles of JNK isoforms and their intricate crosstalk with other signalling pathways within the complex tumor environment. Further research is warranted to delineate the precise mechanisms underlying JNK-mediated tumorigenesis and to develop tailored therapeutic strategies targeting JNK signalling to improve cancer management. The review emphasizes the role of JNK kinases in cancer biology, as well as their potential as pharmaceutical targets for precision oncology therapy and cancer resistance. Also, this review summarizes all the available promising JNK inhibitors that are suggested to promote the responsiveness of cancer cells to cancer treatment.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt.
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Sara Samy ElKafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, Russia
| | - Wael Hafez
- NMC Royal Hospital, 16th St - Khalifa City - SE-4 - Abu Dhabi, United Arab Emirates; Department of Internal Medicine, Medical Research and Clinical Studies Institute, The National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
| |
Collapse
|
6
|
Li Z, Yu H, Hussain SA, Yang R. Anticancer activity of Araguspongine C via inducing apoptosis, and inhibition of oxidative stress, inflammation, and EGFR-TK in human lung cancer cells: An in vitro and in vivo study. J Biochem Mol Toxicol 2024; 38:e23763. [PMID: 38984790 DOI: 10.1002/jbt.23763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The advanced non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations has put a selective pressure on the discovery and development of newer EGFR inhibitors. Therefore, the present study intends to explore the pharmacological effect of Araguspongine C (Aragus-C) as anticancer agent against lung cancer. The effect of Aragus-C was evaluated on the viability of the A549 and H1975 cells. Further biochemical assays were performed to elaborate the effect of Aragus-C, on the apoptosis, cell-cycle analysis, and mitochondrial membrane potential in A549 cells. Western blot analysis was also conducted to determine the expression of EGFR in A549 cells. Tumor xenograft mice model from A549 cells was established to further elaborate the pharmacological activity of Aragus-C. Results suggest that Aragus C showed significant inhibitory activity against A549 cells as compared to H1975 cells. It has been found that Aragus-C causes the induction of apoptosis and promotes cell-cycle arrest at the G2/M phase of A549 cells. It also showed a reduction in the overexpression of EGFR in A549 cells. In tumor xenograft mice model, it showed a significant reduction of tumor volume in a dose-dependent manner, with maximum inhibitory activity was reported by the 8 mg/kg treated group. It also showed significant anti-inflammatory and antioxidant activity by reducing the level of TNF-α, IL-1β, IL-6, and MDA, with a simultaneous increase of superoxide dismutase and glutathione peroxidase. We have demonstrated the potent anti-lung cancer activity of Aragus-C, and it may be considered as a potential therapeutic choice for NSCLC treatment.
Collapse
Affiliation(s)
- Zhe Li
- Department of Oncology and Hematology, Yan'an People's Hospital, Yan'an, China
| | - Hongjiang Yu
- Department of Medical Oncology, Tongliao City Hospital, Tongliao, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rui Yang
- Department of Medical Oncology, Yan'an People's Hospital, Yan'an, China
| |
Collapse
|
7
|
Wu Z, Chen H, Yang B, Zhao J, Chen W. Structural identification and antioxidant activity of trans-9, trans-11, cis-15-conjugated linolenic acid converted by probiotics. Food Res Int 2024; 184:114258. [PMID: 38609236 DOI: 10.1016/j.foodres.2024.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The study aimed to determine the chemical structures of octadecatrienoic acid isomers produced by probiotics through the bioconversion of α-linolenic acid and to assess their antioxidant capacities. The chemical structures were identified using nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), while the antioxidant capacities were evaluated in vitro and in cellular. The NMR signals obtained allowed for definitive characterization, with the main ion fragments detected being m/z 58.0062, 59.0140, 71.0141, 113.0616, 127.0777, and 181.5833. Compounds at concentrations below 40 μM maintained the antioxidant capacity of HepG2 cells by protecting endogenous antioxidative enzymes and mitochondrial membrane potential. However, doses higher than 40 μM increase oxidative damage and mitochondrial dysfunction. These results confirmed the structure of the probiotic-derived compound as trans9, trans11, cis15-conjugated linolenic acid. Additionally, appropriate doses of CLNA can alleviate oxidative stress induced by AAPH, while high doses aggravate cellular damage. These findings provide foundational information for the further exploration of probiotic-derived edible lipids.
Collapse
Affiliation(s)
- Zihuan Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Cell type-dependent response to benzo(a)pyrene exposure of human placental cell lines under normoxic, hypoxic, and pro-inflammatory conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116287. [PMID: 38579532 DOI: 10.1016/j.ecoenv.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1β. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1β secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Research & Development, IQProducts, 9727 DL, Groningen, the Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
9
|
Niu C, Zhang J, Okolo PI. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 2024; 41:116. [PMID: 38625672 DOI: 10.1007/s12032-024-02353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
10
|
Hu X, Shen H, Liu R, Tang B, Deng F. Mechanism of acacetin regulating hepatic stellate cell apoptosis based on network pharmacology and experimental verification. Heliyon 2024; 10:e28693. [PMID: 38571642 PMCID: PMC10988056 DOI: 10.1016/j.heliyon.2024.e28693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Background Hepatic fibrosis is caused by various liver diseases and eventually develops into liver cancer. There is no specific drug approved for the treatment of hepatic fibrosis in the world. Acacetin (AC), a natural flavonoid, is widely present in nature in various plants, such as black locust, Damiana, Silver birch. It has been reported that acacetin can inhibit the proliferation of cancer cells and induce apoptosis. Purpose In this study, we investigated the effect of acacetin on hepatic stellate cell apoptosis, thereby improving hepatic fibrosis, and combined experimental validation and molecular docking to reveal the underlying mechanism. Result First, we discovered that acacetin inhibited hepatic stellate cell proliferation as well as the expression of fibrosis-related proteins α-smooth muscle actin (α-SMA) and collagen type I 1 gene (COL1A1) in LX2 cells. Acacetin was then found to promote apoptosis of hepatic stellate cells through the caspase cascade pathway. Network pharmacology screening showed that TP53, CASP3, CASP8, BCL2, PARP1, and BAX were the most important targets related to apoptosis in the PPI network. GO and KEGG analyses of these six important targets were performed, and the top 10 enriched biological processes and related signaling pathways were revealed. Further network pharmacology analysis proved that apoptosis was involved in the biological process of acacetin's action against hepatic stellate cells. Finally, molecular docking revealed that acacetin binds to the active sites of six apoptotic targets. In vitro experiments further confirmed that acacetin could promote the apoptosis of LX2 cells by inducing the activation of P53, thereby improving hepatic fibrosis. Conclusion acacetin induces P53 activation and promotes apoptosis of hepatic stellate cells thereby ameliorating hepatic fibrosis.
Collapse
Affiliation(s)
- Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Haotian Shen
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Rong Liu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
11
|
Luo L, Luo JZ, Song XX, Wang CY, Tang DM, Sun WT, Fan CW, Li MS, Wang HS. Alkaloids from Corydalis saxicola and their antiproliferative activity against cancer cells. Fitoterapia 2024; 173:105791. [PMID: 38159614 DOI: 10.1016/j.fitote.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Eight undescribed alkaloids named corydalisine D-K (1-7), including one isoquinoline benzopyranone alkaloid (1), one benzocyclopentanone alkaloid (2), four benzofuranone alkaloids (3, 4, and 5a/5b) and two protoberberine alkaloids (6 and 7), along with fourteen known ones, were isolated from the Corydalis saxicola. Their structures, including absolute configurations, were unambiguously identified using spectroscopic techniques, single-crystal X-ray diffraction and electron circular dichroism calculation. Compounds 2, 14 and 21 exhibit antiproliferative activity against five cancer cell lines. The aporphine alkaloid demethylsonodione (compound 14), which exhibited the best activity (IC50 = 3.68 ± 0.25 μM), was subjected to further investigation to determine its mechanism of action against the T24 cell line. The molecular mechanism was related to the arrest of cell cycle S-phase, inhibition of CDK2 expression, accumulation of reactive oxygen species (ROS), induction of cell apoptosis, inhibition of cell migration, and activation of p38 MAPK signaling pathway. The results indicated that 14 could be used as a potential candidate agent for further development of anti-bladder transitional cell carcinoma.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China; Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Yi Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - De-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wen-Tao Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
12
|
Zhang Y, Yang F, Wu J, Huang J, Li P, Huang G. Idebenone Exerts anti-Triple Negative Breast Cancer Effects via Dual Signaling Pathways of GADD45 and AMPK. Nutr Cancer 2024; 76:379-392. [PMID: 38332562 DOI: 10.1080/01635581.2024.2314320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Idebenone, a mitochondrial regulator, has exhibited anti-cancer activity in neurogenic and prostate tumor cells; however, its efficacy and specific targets in the treatment of triple-negative breast cancer (TNBC) remain unclear. This study aims to evaluate the potential of Idebenone as a therapeutic agent for TNBC. TNBC cell lines and Xenograft mouse models were used to assess the effect of Idebenone on TNBC both in vitro and in vivo. To investigate the underlying mechanism of Idebenone's effect on TNBC, cell viability assay, transwell invasion assay, cell cycle analysis, apoptosis assay, mitochondrial membrane potential assay, immunofluorescence staining, and transcriptome sequencing were utilized. The results showed that Idebenone impeded the proliferation, colony formation, migration, and invasion of TNBC cells, suppressed apoptosis, and halted the cell cycle in the G2/M phase. The inhibitory effect of Idebenone on TNBC was associated with the GADD45/CyclinB/CDK1 signaling pathway. By disrupting the mitochondrial membrane potential (MMP) and promoting mitophagy, Idebenone promoted cell autophagy through the AMPK/mTOR pathway, thus further suppressing the proliferation of TNBC cells. Furthermore, we found that Idebenone inhibited the development of TNBC in vivo. In conclusion, Idebenone may be a promising therapeutic option for TNBC as it is capable of inducing autophagy and apoptosis.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahao Wu
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianhong Huang
- Department of General Surgery, Zengcheng District Hospital of Traditional Chinese Medicine, China
| | - Peiqing Li
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Guanqun Huang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Liu W, Kang S, Chen H, Bahetjan Y, Zhang J, Lu R, Zheng N, Yang G, Yang X. A composition of ursolic acid derivatives from Ludwigia hyssopifolia induces apoptosis in throat cancer cells via the Akt/mTOR and mitochondrial signaling pathways and by modulating endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117351. [PMID: 37884218 DOI: 10.1016/j.jep.2023.117351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ludwigia hyssopifolia (LH), an ethnopharmacological herb used in Guangxi Zhuang medicine, is known for its extensive therapeutic use in treating throat disorders. The anti-laryngeal-cancer benefits of the ethyl acetate and petroleum ether fractions of the ethanolic extracts of LH have been shown in our prior cell-based research. Nevertheless, the specific impacts and underlying processes by which LH combats throat cancer effects have not been fully understood. AIM OF THE STUDY This study involved the extraction of a composition containing two derivatives of ursolic acid from LH (LH-CUAD). The present study aimed to assess the anti-throat-cancer effects of these derivatives and the underlying mechanisms through in vitro and in vivo experiments. MATERIALS AND METHODS Solvent extraction, fractionation, chromatography, and semipreparative high-performance liquid chromatography were used for the extraction, purification, and analysis of LH-CUAD. The in vitro and in vivo anti-throat-cancer effects of LH-CUAD were investigated using the throat cancer cell lines Hep-2 and FaDu as well as Hep-2 tumor-bearing nude mice. RESULTS LH-CUAD significantly inhibited the proliferation and migration of throat cancer cells without any prominent toxicity. The Hoechst 33258 staining, Annexin V-FITC/PI double-staining assays, and flow cytometry confirmed that LH-CUAD could induce throat cancer cell death from early to late apoptosis in vitro. LH-CUAD exhibited significant antitumor activity and low toxicity in a xenograft model, and induced throat cancer cells apoptosis in vivo. The apoptotic effects of LH-CUAD therapy were validated using Western blotting, which demonstrated the activation of a caspase cascade response triggered by an imbalance between the endoplasmic reticulum and mitochondria. In addition, it was observed that LH-CUAD exhibited inhibitory effects on Akt and mTOR phosphorylation, hence promoting apoptosis. CONCLUSIONS LH-CUAD induces apoptosis in both in vivo and in vitro models of throat cancer. This effect is achieved by activating the mitochondrial pathway, inhibiting the Akt/mTOR pathway and initiating endoplasmic reticulum stress. The findings of this study suggest that LH-CUAD has the potential to offer a novel approach to the clinical management of throat cancer.
Collapse
Affiliation(s)
- Wenqi Liu
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwen Kang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Huijian Chen
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinyan Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Rumei Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ni Zheng
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Guangzhong Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Xinzhou Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
14
|
Kalousi FD, Tsakos M, Nikolaou CN, Georgantopoulos A, Psarra AMG, Tsikou D. Chemical Analysis and Biological Activities of Extracts Isolated from Symbiotic L. japonicus Plants. Life (Basel) 2024; 14:189. [PMID: 38398697 PMCID: PMC10889931 DOI: 10.3390/life14020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Plants produce a wide variety of secondary metabolites, including compounds with biological activities that could be used for the treatment of human diseases. In the present study, we examined the putative production of bioactive molecules in the legume plant Lotus japonicus, which engages into symbiotic relationships with beneficial soil microorganisms. To monitor the production of secondary metabolites when the plant develops beneficial symbiotic relationships, we performed single and double inoculations with arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing Rhizobium bacteria. Plant extracts from non-inoculated and inoculated plants were chemically characterized and tested for anti-proliferative, apoptotic, and anti-inflammatory effects on human HEK-293 cells. Both shoot and root extracts from non-inoculated and inoculated plants significantly reduced the HEK-293 cell viability; however, a stronger effect was observed when the root extracts were tested. Shoot and root extracts from Rhizobium-inoculated plants and shoot extracts from AMF-inoculated plants showed apoptotic effects on human cells. Moreover, both shoot and root extracts from AMF-inoculated plants significantly reduced TNFα-induced NF-κB transcriptional activity, denoting anti-inflammatory activity. These results suggest that symbiotic L. japonicus plants are enriched with metabolites that have interesting biological activities and could be further explored for putative future use in the pharmaceutical sector.
Collapse
Affiliation(s)
- Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Michail Tsakos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Christina N. Nikolaou
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
15
|
Soltani M, Fotovat R, Sharifi M, Ahmadian Chashmi N, Behmanesh M. In Vitro Comparative Study on Antineoplastic Effects of Pinoresinol and Lariciresinol on Healthy Cells and Breast Cancer-Derived Human Cells. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:30-39. [PMID: 38322161 PMCID: PMC10839140 DOI: 10.30476/ijms.2023.94805.2611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/26/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2024]
Abstract
Background Herbal medicines are the preferred anticancer agents due to their lower cytotoxic effects on healthy cells. Plant lignans play an important role in treating various diseases, especially cancer. The present study aimed to evaluate the effect of podophyllotoxin, pinoresinol, and lariciresinol on cellular toxicity and inducing apoptosis in fibroblasts, HEK-293, and SkBr3 cell lines. Methods An in vitro study was conducted from 2017 to 2019 at the Faculty of Biological Sciences, Tarbiat Modares University (Tehran, Iran). The cell lines were treated for 24 and 48 hours with different concentrations of lignans. Cell viability and apoptosis were examined using MTT and flow cytometry, respectively. Expression levels of cell cycle and apoptosis regulator genes were determined using quantitative real-time polymerase chain reaction. Data were analyzed using a two-way analysis of variance followed by Tukey's HSD test. P<0.05 was considered statistically significant. Results Podophyllotoxin significantly increased apoptosis in fibroblast cells compared to pinoresinol and lariciresinol (P<0.001). The percentage of cell viability of fibroblast cells treated for 48 hours with pinoresinol, lariciresinol, and podophyllotoxin was reduced by 49%, 47%, and 36%, respectively. Treatment with pinoresinol and lariciresinol significantly overexpressed pro-apoptotic genes and underexpressed anti-apoptotic genes in SkBr3 cells (P<0.001). SkBr3 cells treated with lariciresinol significantly reduced gene expression (P<0.001). Conclusion Pinoresinol and lariciresinol can potentially be used as new therapeutic agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mona Soltani
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Fotovat
- Department of Plant Production and Genetics, School of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Zhao K, Cai Y, Raza F, Zafar H, Pan L, Zheng X, Xu W, Li R, Shi F, Ma Y. Matrine-loaded Nano-liposome Induces Apoptosis in Human Esophageal-squamous Carcinoma KYSE-150 Cells. Curr Pharm Des 2024; 30:2303-2312. [PMID: 38994614 PMCID: PMC11475104 DOI: 10.2174/0113816128306477240625101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Esophageal-squamous Cell Carcinoma (ESCC) is often diagnosed at the middle or late stage, thus requiring more effective therapeutic strategies. Pharmacologically, the anti-tumor activity of the principal active constituent of Sophora flavescens, matrine (MA), has been explored widely. Notwithstanding, it is significant to nanotechnologically enhance the anti-tumor activity of MA in view of its potential to distribute non-tumor cells. METHODS Herein, MA-loaded Nano-Liposomes (MNLs) were prepared to enhance the effect of anti-ESCC. The MNL showed a smaller sized particle (25.95 ± 1.02 nm) with a low polydispersed index (PDI = 0.130 ± 0.054), uniform spherical morphology, good solution stability, and encapsulated efficiency (65.55% ± 2.47). Furthermore, we determined the characteristics of KYSE-150 cells by cell viability assay, IC50, Mitochondrial Membrane Potential (MMP), Western blot, and apoptotic analysis, which indicated that MNLs down-regulated the cell viability and IC50 in a concentration-dependent manner and induced a significant change in JC-1 fluorescence from red to green. RESULTS The above observations resulted in increased Bax and Caspase-3 levels, coupled with a substantial decrease in Bcl-2 and apoptotic promotion at the advanced stage compared with MA. CONCLUSION Based on these results, MNLs may serve as a more effective and promising therapeutic option for ESCC.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Gastroenterology, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| | - Yun Cai
- Department of Gastroenterology, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Pan
- Department of Gastroenterology, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| | - Xifeng Zheng
- Department of Gastroenterology, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| | - Wenjie Xu
- Department of Gastroenterology, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| | - Ran Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Feng Shi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yongbin Ma
- Department of Central Laboratory, Jintan Hospital Affiliated to Jiangsu University, Jintan 213200, P.R. China
| |
Collapse
|
17
|
Song J, Tang C, Wang Y, Ba J, Liu K, Gao J, Chang J, Kang J, Yin L. Multifunctional nanoparticles for enhanced sonodynamic-chemodynamic immunotherapy with glutathione depletion. Nanomedicine (Lond) 2024; 19:145-161. [PMID: 38270976 DOI: 10.2217/nnm-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Aim: This study aimed to develop a sonodynamic-chemodynamic nanoparticle functioning on glutathione depletion in tumor immunotherapy. Materials & methods: The liposome-encapsulated 2,2-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and copper-cysteine nanoparticles, AIPH/Cu-Cys@Lipo, were synthesized with a one-pot method. 4T1 cells were injected into female BALB/c mice for modeling. Results: AIPH/Cu-Cys@Lipo was well synthesized. It generated alkyl radicals upon ultrasound stimulation. AIPH/Cu-Cys@Lipo promoted the generation of -OH via a Fenton-like reaction. Both in vitro and in vivo experiments verified that AIPH/Cu-Cys@Lipo significantly inhibited tumor development by decreasing mitochondrial membrane potential, activating CD4+ and CD8+ T cells and promoting the expression of IL-2 and TNF-α. Conclusion: AIPH/Cu-Cys@Lipo provides high-quality strategies for safe and effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Cong Tang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yun Wang
- Xuzhou Central Hospital, Xuzhou, Jiangsu Province, 221009, China
| | - Junli Ba
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Kairui Liu
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinwei Gao
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Linling Yin
- Department of stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| |
Collapse
|
18
|
Ma S, Zheng Y, Ma J, Zhang X, Qu D, Song N, Sang C, Hui L. Lappaconitine sulfate inhibits proliferation and induces mitochondrial-mediated apoptosis via regulating PI3K/AKT/GSK3β signaling pathway in HeLa cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3695-3705. [PMID: 37306713 DOI: 10.1007/s00210-023-02564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Lappaconitine (LA), a diterpenoid alkaloid extracted from the root of Aconitum sinomontanum Nakai, exhibits broad pharmacological effects, including anti-tumor activity. The inhibitory effect of lappaconitine hydrochloride (LH) on HepG2 and HCT-116 cells and the toxicity of lappaconitine sulfate (LS) on HT-29, A549, and HepG2 cells have been described. But the mechanisms of LA against human cervical cancer HeLa cells still need to be clarified. This study was designed to investigate the effects and molecular mechanisms of lappaconitine sulfate (LS) on the growth inhibition and apoptosis in HeLa cells. The cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2´-deoxyuridine (EdU) assay, respectively. The cell cycle distribution and apoptosis were detected by flow cytometry analysis and 4', 6-diamidino-2-phenylindole (DAPI) staining. The mitochondrial membrane potential (MMP) was determined through the 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimi-dazolyl carbocyanine iodide (JC-1) staining. The cell cycle arrest-, apoptosis-, and the phosphatidylinositol-3-kinase/protein kinase B/glycogen synthase kinase 3β (PI3K/AKT/GSK3β) pathway-related proteins were estimated by western blot analysis. LS markedly reduced the viability and suppressed the proliferation of HeLa cells. LS induced G0/G1 cell cycle arrest through the inhibition of Cyclin D1, p-Rb, and induction of p21 and p53. Furthermore, LS triggered apoptosis through the activation of mitochondrial-mediated pathway based on decrease of Bcl-2/Bax ratio and MMP and activation of caspase-9/7/3. Additionally, LS led to constitutive downregulation of the PI3K/AKT/GSK3β signaling pathway. Collectively, LS inhibited cell proliferation and induced apoptosis through mitochondrial-mediated pathway by suppression of the PI3K/AKT/GSK3β signaling pathway in HeLa cells.
Collapse
Affiliation(s)
- Shaocheng Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yidan Zheng
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Junyi Ma
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| | - Xuemei Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Danni Qu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Na Song
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Chunyan Sang
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Ling Hui
- Key Laboratory of Stem Cells and Gene Drug of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China.
| |
Collapse
|
19
|
Bai J, Wang H, Li C, Liu L, Wang J, Sun C, Zhang Q. A novel mitochondria-targeting compound exerts therapeutic effects against melanoma by inducing mitochondria-mediated apoptosis and autophagy in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2023; 38:2608-2620. [PMID: 37466182 DOI: 10.1002/tox.23896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/17/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Melanoma is the most invasive skin cancer, with a high mortality rate. However, existing therapeutic drugs have side effects, low reactivity, and lead to drug resistance. As the power source in cells, mitochondria play an important role in the survival of cancer cells and are an important target for tumor therapy. This study aimed to develop a new anti-melanoma compound that targets mitochondria, evaluate its effect on the proliferation and metastasis of melanoma cells, and explore its mechanism of action. The novel mitochondria-targeting compound, SCZ0148, was synthesized by modifying the structure of cyanine. Then, A375 and B16 cells were incubated with different concentrations of SCZ0148, and different doses of SCZ0148 were administered to A375 and B16 xenograft zebrafish. The results showed that SCZ0148 targeted mitochondria, had dose- and time-dependent effects on the proliferation of melanoma cell lines, and had no obvious side effects on normal cells. In addition, SCZ0148 induced melanoma cell apoptosis through the reactive oxygen species-mediated mitochondrial pathway of apoptosis and promoted autophagy. SCZ0148 significantly inhibited the migration of melanoma cells via a matrix metalloprotein 9-mediated pathway. Similarly, SCZ0148 inhibited melanoma cell proliferation in a concentration-dependent manner in vivo. In summary, SCZ0148 may be a novel anti-melanoma compound that targets mitochondria.
Collapse
Affiliation(s)
- Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Hailan Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Chenwen Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Sun Y, Guo D, Yue S, Zhou M, Wang D, Chen F, Wang L. Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway. Toxicol Appl Pharmacol 2023; 477:116687. [PMID: 37703929 DOI: 10.1016/j.taap.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Doxorubicin (DOX), a chemotherapeutic drug, could relieve the progressions of various diseases. However, its clinical application is limited due to its cardiotoxicity. This study aimed to investigate the effects of afzelin (a flavonol glycoside found in Houttuynia cordata) on the cardiotoxicity induced by DOX. METHODS In ex-vivo, H9C2 cells were incubated with 20, 40, or 80 μM afzelin for 12 h, followed by the treatment with 1 μM DOX for 12 h. In vivo, C57BL/6 J mice were intraperitoneally injected with 4 mg/kg/day DOX on days 1, 7, and 14. Meanwhile, starting from day 1, mice were intragastrically administrated with 5 mg/kg/day or 10 mg/kg/day afzelin for 20 days. The cardiac function of mice was evaluated by detecting hemodynamic parameters using the M-mode echocardiography. RESULTS DOX decreased the cell survival rate, and elevated apoptotic rate, as well as induced the oxidative stress and mitochondrial dysfunction in H9C2 cells. All these changes were alleviated by afzelin treatment in a concentration-dependent manner. The results were further proven by the mitigation of cardiac injury in vivo, as evidenced by the elevation of fractional shortening, heart weight/tibia length, and the rate of the increase/decrease of left ventricular pressure in mice subjected to DOX-induced cardiotoxicity. Furthermore, afzelin upregulated the expression of p-AMP-activated protein kinase alpha (AMPKα) and sirtuin1 (SIRT1). Dorsomorphin (an AMPKα inhibitor) abrogated the anti-cardiotoxicity effects of afzelin in H9C2 cells induced by DOX. CONCLUSION Afzelin protected against DOX-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Danyang Guo
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 57 Youyi Road, Daoli District, Harbin 150076, Heilongjiang, China
| | - Saiding Yue
- Department of Nephrology, Harbin Jing-En Nephrology Hospital, 11 Xiangbin Road, Xiangfang District, Harbin 150036, Heilongjiang, China
| | - Mingyan Zhou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Dongxu Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Fengjiao Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Lingling Wang
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 998 Aiying Avenue, Songbei District, Harbin 150027, Heilongjiang, China.
| |
Collapse
|
21
|
Jiang Y, Wang L, Yang B, Ma G, Chen Z, Ma J, Chang X, Fang L, Wang Z. Bifidobacterium-derived membrane vesicles inhibit triple-negative breast cancer growth by inducing tumor cell apoptosis. Mol Biol Rep 2023; 50:7547-7556. [PMID: 37498438 DOI: 10.1007/s11033-023-08702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Bacterial outer membrane vesicles have gained increasing attention for its antitumor effect and application in drug delivery. However, the bacterial membrane vesicles (MVs) that are secreted by Gram-positive bacteria are rarely mentioned. Bifidobacterium has a certain anti-tumor effect, but there is a certain risk when injected into human body. Here we investigated the potential of Bifidobacterium-derived membrane vesicles (B-MVs) as therapeutic agents to treat triple-negative breast cancer. METHODS AND RESULTS Firstly, we discovered that Bifidobacterium can produce B-MVs and isolated them. In vivo, we found that B-MVs can inhibit tumor growth in mice and the mice were in good state. H&E staining displayed extensive apoptotic cells in tumor tissues. Western blotting and immunohistochemistry showed that B-MVs increased the expression of Bax, while decreased the expression of Bcl-2. These results suggested that B-MVs may induce apoptosis of tumor cells in vivo. Furthermore, to further confirm this phenomenon, we conducted experiments in vitro. Hoechst 33,258 staining assay, flow cytometry and western blotting also demonstrated B-MVs promoted cell apoptosis in vitro. CONCLUSIONS We speculate B-MVs may inhibit tumor growth by inducing tumor cell apoptosis in triple-negative breast cancer, which provided a new direction in the treatment of TNBC.
Collapse
Affiliation(s)
- Yongzhu Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lanxi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bangya Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guanrong Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiqi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiulin Chang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Zhang H, Zhang H, Wang J, Fan L, Mu W, Jin Y, Wang Z. Small-molecular cyclic peptide exerts viability suppression effects on HepG2 cells via triggering p53 apoptotic pathways. Chem Biol Interact 2023; 382:110633. [PMID: 37451662 DOI: 10.1016/j.cbi.2023.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cyclic peptides have become an attractive modality for drug development due to their high specificity, metabolic stability and higher cell permeability. In an effort to explore novel antitumor compounds based on natural cyclopeptide from the phakellistatin family, we found an isoindolinone-containing analog (S-PK6) of phakellistatin 6 capable of suppressing the viability and proliferation of HepG2 cells. The aim of the present study is to shed light on the mechanism of action of this novel compound. We have detected differences in gene expression before and after treatment with S-PK6 in human hepatocellular carcinoma HepG2 cell line by transcriptome sequencing. To further investigate biological effects, we have also extensively investigated the tumor cell cycle, mitochondrial membrane potential, and intracellular Ca2+ concentration after S-PK6 treatment. Based on the finding that the apoptosis was associated with the p53 signaling pathway and MAPK signaling pathway, western blotting tests were used to assess the expression level of p53 protein and its degenerative regulator MDM2 protein, which showed that S-PK6 could increase p53 levels efficiently. In summary, our results demonstrate the mechanism of action of a small-molecule cyclopeptide, which could be very useful for examining of the possible mechanisms of natural cyclopeptides.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jingchun Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Li Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Weijie Mu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
23
|
Zhao C, Qu J, Peng F, Lu R, Bao GH, Huang B, Hu F. Cyclic Peptides from the Opportunistic Pathogen Basidiobolus meristosporus. JOURNAL OF NATURAL PRODUCTS 2023; 86:1885-1890. [PMID: 37550948 DOI: 10.1021/acs.jnatprod.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Three new cyclic peptides, meristosporins A, B, and C (1-3), one of which features an unusual amino acid, were isolated from the opportunistic pathogen Basidiobolus meristosporus and identified by 1D, 2D NMR, MS/MS, and Marfey's analysis. The biosynthetic pathway of the hexapeptide meristosporin A (1) was deduced based on nonribosomal peptide synthetase gene clusters analysis. Compounds 1 and 2 showed cytotoxicity to RAW264.7 and 293T cells, respectively. These compounds may be involved in the fungal injury caused to human cells.
Collapse
Affiliation(s)
- Cheng Zhao
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Jiaojiao Qu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Fan Peng
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Ruili Lu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Bo Huang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education; Research Center on Entomogenous Fungi, Anhui Agricultural University, Hefei, Anhui Province 230036, People's Republic of China
| |
Collapse
|
24
|
Xie Y, Su Y, Liao Z, Liang X, Hua J, Zhang D, Hu D, Yu Q. ent-Kaurane-Type Diterpenes Induce ROS-Mediated Mitochondrial Dysfunction and Apoptosis by Suppress the Homologous Recombination DNA Repair in Triple-Negative Breast Cancer Cells. Chem Biodivers 2023; 20:e202300670. [PMID: 37448115 DOI: 10.1002/cbdv.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
Six ent-kaurane-type diterpenes were isolated from the roots of Isodon ternifolia. Previous studies have shown that compounds 1 and 2 exhibited cytotoxicity against three human cancer cell lines (MCF-7, A549, and HCT116), but its molecular mechanism has not been studied yet. In the present study, the inhibited proliferation of compounds 1 and 2 of two triple-negative breast cancer (TNBC) cell lines (4T1 and MDA-MB-231) have been demonstrated by MTT and colony formation assay. Flow cytometry, western blotting, and qPCR were used to further demonstrate the apoptosis process in TNBCs. Importantly, the following mitochondrial membrane potential (MMP) decrease during apoptosis was demonstrated to correlate to reactive oxygen species (ROS) production. In addition, DNA damage induced by compounds 1 and 2 was illustrated by detect of homologous recombination (HR) DNA repair genes and proteins expression, such as RAD51. These results indicated that compounds 1 and 2 could trigger the TNBCs apoptosis mediated by ROS-induced mitochondrial dysfunction and induce DNA double-strand breaks (DSBs) by down regulating HR DNA repair. Furthermore, this research reveals that the mechanism between mitochondria dysfunction and DNA damage is deserved to be investigated for elucidating the dynamic signal transduction between the nucleus and the cellular matrix during apoptosis.
Collapse
Affiliation(s)
- Yikun Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zirou Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinran Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dexuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
25
|
Liu Q, Weng J, Li C, Feng Y, Xie M, Wang X, Chang Q, Li M, Chung KF, Adcock IM, Huang Y, Zhang H, Li F. Attenuation of PM 2.5-induced alveolar epithelial cells and lung injury through regulation of mitochondrial fission and fusion. Part Fibre Toxicol 2023; 20:28. [PMID: 37464447 DOI: 10.1186/s12989-023-00534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is a risk factor for developing pulmonary diseases and the worsening of ongoing disease. Mitochondrial fission and fusion are essential processes underlying mitochondrial homeostasis in health and disease. We examined the role of mitochondrial fission and fusion in PM2.5-induced alveolar epithelial cell damage and lung injury. Key genes in these processes include dystrophin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) respectively. METHODS Alveolar epithelial (A549) cells were treated with PM2.5 (32 µg/ml) in the presence and absence of Mdivi-1 (10µM, a DRP1 inhibitor) or BGP-15 (10µM, an OPA1 activator). Results were validated using DRP1-knockdown (KD) and OPA1-overexpression (OE). Mice were injected intraperitoneally with Mdivi-1 (20 mg/kg), BGP-15 (20 mg/kg) or distilled water (control) one hour before intranasal instillation of PM2.5 (7.8 mg/kg) or distilled water for two consecutive days. RESULTS PM2.5 exposure of A549 cells caused oxidative stress, enhanced inflammation, necroptosis, mitophagy and mitochondrial dysfunction indicated by abnormal mitochondrial morphology, decreased mitochondrial membrane potential (ΔΨm), reduced mitochondrial respiration and disrupted mitochondrial fission and fusion. Regulating mitochondrial fission and fusion pharmacologically using Mdivi-1 and BGP-15 and genetically using DRP1-KD and OPA1-OE prevented PM2.5-induced celluar damage in A549 cells. Mdivi-1 and BGP-15 attenuated PM2.5-induced acute lung injury in mice. CONCLUSION Increased mitochondrial fission and decreased mitochondrial fusion may underlie PM2.5-induced alveolar epithelial cell damage in vitro and lung injury in vivo.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Jiali Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Chenfei Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Yi Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Meiqin Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Xiaohui Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Qing Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Mengnan Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, SW3 6LY, London, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, SW3 6LY, London, UK
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Hai Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China.
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of medicine, NO.241, West Huaihai Road, 200030, Shanghai, P.R. China.
| |
Collapse
|
26
|
Li X, Li C, Li C, Wu C, Bai Y, Zhao X, Bai Z, Zhang X, Xiao X, Niu M. A novel perspective on the preventive treatment of hydrazine compound-induced liver injury: Isoniazid liver injury as an example. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116616. [PMID: 37182677 DOI: 10.1016/j.jep.2023.116616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1β, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Chenyi Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China; College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Chengzhao Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yuxuan Bai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xigang Zhang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xiaohe Xiao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
27
|
Jeong SA, Song J, Ham J, An G, Song G, Lim W. Tetraconazole interrupts mitochondrial function and intracellular calcium levels leading to apoptosis of bovine mammary epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105366. [PMID: 36963936 DOI: 10.1016/j.pestbp.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tetraconazole is a type of fungicide that eliminates pathogens in plants and fruit. To date, studies have focused on the direct exposure of plants and fruits to residual tetraconazole, but no studies have been conducted on the indirect effects of tetraconzaole. Given the importance of cows as milk-producing animals and their potential exposure to pesticides via plant consumption, we analyzed the mechanism by which tetraconazole influences milk production. Here, we confirmed that tetraconazole-induced apoptosis and inhibited cell viability and proliferation by regulating the cell cycle in bovine mammary epithelial cells (MAC-T). In addition, Ca2+ homeostasis in mitochondria was disrupted by tetraconazole, leading to the depolarization of mitochondrial membrane potential. Consistent with the proliferation-related findings, tetraconazole downregulated AKT, ERK1/2, P38, and JNK signaling pathways and proliferation-related proteins such as CCND1 and PCNA in MAC-T cells. Meanwhile, it upregulated cleaved caspase 3, BAX, and Cytochrome c under the same conditions in MAC-T cells. Furthermore, MAC-T exposed to tetraconazole causes a failure of proper autophagy functioning. In summary, the results of this study indicated that tetraconazole exposure may lead to a failure of milk production from bovine mammary epithelial cells by disrupting calcium homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Seon Ae Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Hu Z, Liao J, Zhang K, Huang K, Li Q, Lei C, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Effects of Long-Term Exposure to Copper on Mitochondria-Mediated Apoptosis in Pig Liver. Biol Trace Elem Res 2023; 201:1726-1739. [PMID: 35666388 DOI: 10.1007/s12011-022-03303-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is listed as one of the main heavy metal pollutants, which poses potential health risks to humans. Excessive intake of Cu has shown toxic effects on the organs of many animals, and the liver is one of the most important organs to metabolize it. In this study, pigs, the mammal with similar metabolic characteristics to humans, were selected to assess the effects of long-term exposure to Cu on mitochondria-mediated apoptosis, which are of great significance for studying the toxicity of Cu to humans. Pigs were fed a diet with different contents of Cu (10, 125, and 250 mg/kg) for 80 days. Samples of blood and liver tissue were collected on days 40 and 80. Experimental results demonstrated that the accumulation of Cu in the liver was increased in a dose-dependent and time-dependent manner. Meanwhile, the curve of pig's body weight showed that a 125 mg/kg Cu diet promoted the growth of pigs during the first 40 days and then inhibited it from 40 to 80 days, while the 250 mg/kg Cu diet inhibited the growth of pigs during 80 days of feeding. Additionally, the genes and protein expression levels of Caspase-3, p53, Bax, Bak1, Bid, Bad, CytC, and Drp1 in the treatment group were higher than that in the control group, while Bcl-2, Bcl-xL, Opa1, Mfn1, and Mfn2 were decreased. In conclusion, these results indicated that long-term excessive intake of Cu could inhibit the growth of pigs and induced mitochondria-mediated apoptosis by breaking the mitochondrial dynamic balance. Synopsis: Long-term exposure to high doses of Cu could lead to mitochondrial dysfunction by breaking the mitochondrial dynamic balance, which ultimately induced mitochondria-mediated apoptosis in the liver of pigs. This might be closely related to the growth inhibition and liver damage in pigs.
Collapse
Affiliation(s)
- Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Kunxuan Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
Bai H, Jiang S, Liu J, Tian Y, Zheng X, Wang S, Xie Y, Li Y, Jia P. Planting conditions can enhance the bioactivity of mulberry by affecting its composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1133062. [PMID: 36959930 PMCID: PMC10028076 DOI: 10.3389/fpls.2023.1133062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Mulberry (Morus alba L.) has a special significance in the history of agriculture and economic plant cultivation. Mulberry has strong environmental adaptability, a wide planting range, and abundant output. It is not only an important resource for silkworm breeding but also a raw ingredient for various foods and has great potential for the development of biological resources. The bioactivities of mulberry in different planting areas are not the same, which is an obstacle to the development of mulberry. This study collected information on the planting conditions of mulberry branches in 12 planting areas, such as altitude, temperature difference, and precipitation. A comparison of the levels of 12 constituents of mulberry branches from mulberry grown in different planting areas was then made. An in vitro model was used to study the bioactivities of mulberry branches in the 12 planting areas, and mathematical analysis was used to explain the possible reasons for the differences in the composition and bioactivities of mulberry branches in different planting areas. After studying mulberry samples from 12 planting areas in China, it was found that a small temperature difference could affect the antiapoptotic effect of mulberry branch on microvascular endothelial cells by changing the levels and proportions of rutin, hyperoside, and morusin. Adequate irrigation can promote the antioxidation of the mulberry branch on microvascular endothelial cells by changing the levels and proportions of scopoletin and quercitrin. The results of the analysis of planting conditions and the levels of active constituents and their correlation with bioactivities support the improvement of mulberry planting conditions and have great significance in the rational development of mulberry resources. This is the first time that a mathematical analysis method was used to analyze the effects of planting conditions on mulberry biological activity.
Collapse
Affiliation(s)
- Huixin Bai
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| | - Shanfeng Jiang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jincai Liu
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| | - Ye Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xiaohui Zheng
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| | - Siwang Wang
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yanhua Xie
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pu Jia
- Department of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
30
|
Hu Z, Linn N, Li Q, Zhang K, Liao J, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. MitomiR-504 alleviates the copper-induced mitochondria-mediated apoptosis by suppressing Bak1 expression in porcine jejunal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160157. [PMID: 36379340 DOI: 10.1016/j.scitotenv.2022.160157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu), an environmental heavy metal pollutant, has been widely researched in its toxicology. Recently, an increasing number of mitochondrial microRNAs (mitomiRs) have been shown to involve in the metabolic regulation. However, the underlying mechanisms of mitomiRs on regulating apoptosis under Cu exposure are still unclear. Here, we proved that Cu induced mitochondria-mediated apoptosis in porcine jejunal epithelial cells, concomitant with distinct reduction of mitomiR-504 in vivo and in vitro. The miR-504 mimic notably enhanced the mRNA and protein expressions of Bak1, Bax, Cleaved-caspase3 and Caspase-9, and significantly decreased the apoptosis rate and Bcl-2 mRNA and protein levels, indicating that overexpression of mitomiR-504 attenuated the Cu-induced mitochondria-mediated apoptosis. Besides, Bak1 was confirmed as a direct target of mitomiR-504 by the bioinformatics analysis and dual-luciferase reporter assay. Subsequently, transfection of siRNA targeting Bak1 significantly enhanced the alleviating effect of miR-504 mimic on the Cu-induced mitochondria-mediated apoptosis. Overall, these suggested that overexpression of mitomiR-504 alleviated the Cu-induced mitochondria-mediated apoptosis in jejunal epithelial cells by suppressing Bak1 expression. These findings are conducive to elucidating the mechanism of Cu-induced jejunal epithelial pathologies, providing a new research idea for the Cu toxicology.
Collapse
Affiliation(s)
- Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Nandar Linn
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
31
|
Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2023; 59:19-30. [PMID: 36790693 DOI: 10.1007/s11626-023-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths in the world. Radiation is widely used for the treatment of lung cancer. However, radioresistance and toxicity limit its effectiveness. Ginsenoside Rg3 (Rg3) is a positive monomer extracted from ginseng and has been shown to the anti-cancer ability on many tumors. The aim of the present study was to ascertain whether Rg3 is able to enhance the radiosensitivity of lung cancer cells and investigate the underlying mechanisms. The effect of Rg3 on cell proliferation was examined by Cell Counting Kit-8 (CCK-8) and radiosensitivity was measured by colony formation assay. Flow cytometry, transwell, and wound healing assay were used to determine apoptosis, cell cycle, and metastasis. Western blot was used to detect the main protein levels of the PI3K/AKT signaling pathway. We found that Rg3 inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in radio-induced lung cancer cells. In addition, Rg3 increased the proportion of G2/M phase cells and inhibited the formation of cell colonies. Moreover, Rg3 decreased the expression levels of PI3K, p-AKT, and PDK1 in radio-induced cells. These findings indicate that Rg3 may be able to enhance the radiosensitivity in lung cancer cells by the PI3K/AKT signaling pathway. These results demonstrate the therapeutic potential of Rg3 as a radiosensitizer for lung cancer.
Collapse
|
32
|
Amić A, Cagardová DM. Mactanamide and lariciresinol as radical scavengers and Fe 2+ ion chelators - A DFT study. PHYTOCHEMISTRY 2022; 204:113442. [PMID: 36150528 DOI: 10.1016/j.phytochem.2022.113442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A DFT based kinetic study of OOH radical scavenging potency of mactanamide (MA) and lariciresinol (LA), two natural polyphenols, indicates their nearly equal potential via the proton coupled electron transfer (PCET) mechanism in lipid media. Contribution of C-H bond breaking to this potency is negligible compared to O-H bond breaking, contrary to recent claims. The predicted potency of both compounds is not sufficient to protect biological molecules from oxidative damage in lipid media. In aqueous media, the scavenging potency of MA and LA phenoxide anions via the single electron transfer (SET) mechanism is much higher and may contribute to the protection of lipids, proteins, and DNA from OOH radical damage. Also, MA and LA have the potential to chelate catalytic Fe2+ ions, thus suppressing the formation of dangerous OH radicals via Fenton-type reactions. The monoanionic species of MA and LA show stronger monodentate chelating ability with Fe2+ ion compared to its neutral form. The dianionic specie LA2- exhibited the highest chelation ability with Fe2+ ion via bidentate 1:2 coordination. However, direct radical scavenging and metal chelation could be rarely operative in vivo because MA and LA presumably achieve very low concentrations in systemic circulation.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, Osijek, 31000, Croatia.
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, SK-812 37, Slovak Republic
| |
Collapse
|
33
|
Du K, Ma W, Yang C, Zhou Z, Hu S, Tian Y, Zhang H, Ma Y, Jiang X, Zhu H, Liu H, Chen P, Liu Y. Design, synthesis, and cytotoxic activities of isaindigotone derivatives as potential anti-gastric cancer agents. J Enzyme Inhib Med Chem 2022; 37:1212-1226. [PMID: 35450499 PMCID: PMC9037217 DOI: 10.1080/14756366.2022.2065672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1-26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 μM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer.
Collapse
Affiliation(s)
- Kangjia Du
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chengjie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Tian
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hao Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xinrong Jiang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China,CONTACT Peng Chen
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China,Yingqian Liu School of Pharmacy, Lanzhou University, 199 Donggang West Road, Lanzhou730000, China
| |
Collapse
|
34
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
35
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
36
|
Wang S, Cui Q, Chen X, Zhu X, Lin K, Zheng Q, Wang Y, Li D. Ailanthone Inhibits Cell Proliferation in Tongue Squamous Cell Carcinoma via PI3K/AKT Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3859489. [PMID: 36387351 PMCID: PMC9643058 DOI: 10.1155/2022/3859489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 07/22/2023]
Abstract
Tongue squamous cell carcinoma (TSCC) is the most widespread and invasive subtype of oral cancer with high recurrence rates. Ailanthone (AIL) is an active ingredient in the plant extracts of Ailanthus altissima (Mill.) Swingle. Here, we showed that AIL inhibited the proliferation of human TSCC, the cell viability of Cal-27 and Tca8113 was significantly decreased after AIL treatment for 24 h. Hoechst 33258 staining demonstrated apoptotic characteristics (such as chromatin aggregation) after AIL treatment. The ratio of early- and late-apoptotic cells in AIL-treated Cal-27 and TCA8113 cells increased remarkably when compared with the control group. Bcl-2/Bax ratio and the levels of PARP1, caspase-9, and caspase-3 decreased after AIL treatment, accompanied by significant increase of cleaved PARP1, cleaved caspase-9, and caspase-3 in Cal-27 and TCA8113 cells. Meanwhile, AIL led to Cal-27 cell cycle arrest at G2/M phase. Western blot implied decreased levels of CDK1 and cyclin B1 after AIL treatment. The level of phospho-PI3K p55 subunit and p-Akt were significantly downregulated by AIL in both Cal-27 and TCA8113 cells. These findings implied the potential applications of AIL in the treatment of human TSCC.
Collapse
Affiliation(s)
- Shuhan Wang
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
- College of Stomatology, Qilu Medical University, Zibo 255300, Shandong, China
| | - Qixiao Cui
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xiaoyu Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuejie Zhu
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Kehao Lin
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Yuliang Wang
- College of Stomatology, Binzhou Medical University, Yantai 264003, Shandong, China
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| |
Collapse
|
37
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
38
|
Zhang L, Miao X, Li Y, Hu F, Ma D, Zhang Z, Sun Q, Zhu Y, Zhu Q. Traditional processing, uses, phytochemistry, pharmacology and toxicology of Aconitum sinomontanum Nakai: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115317. [PMID: 35469829 DOI: 10.1016/j.jep.2022.115317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a folk medicine, Aconitum sinomontanum Nakai (Ranunculaceae) a perennial herbaceous flowering plant, is a widely used traditional Chinese medicine. Its rhizomes and roots are known as 'Gaowutou' in China, and it has been traditionally used for the treatment of rheumatoid arthritis, painful swelling of joints, bruises and injuries and has been known to grow well in regions of high altitude such as Gansu, Tibet etc. THE AIM OF THE REVIEW: This systematic review the comprehensive knowledge of the A. sinomontanum, including its traditional processing and uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and its use in clinical settings to emphasize the benefits of this species. We also discuss expectations for prospective research and implementation of this herb. This work lays a solid foundation for further development of A. sinomontanum. MATERIALS AND METHOD Information on the studies of A. sinomontanum was collected from scientific journals, books, and reports via library and electronic data search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Science Direct, Wiley, ACS, EMBASE, Web of Science and CNKI). Meanwhile, it was also obtained from published works of material medica, folk records, ethnopharmacological literatures, Ph.D. and Masters dissertation. RESULTS As a member of the Ranunculaceae family, A. sinomontanum possesses its up-and-coming biological characteristics. It is widely reported for treating rheumatoid arthritis, painful swelling of joints, bruises and injuries. Currently, over 71 phytochemical ingredients have been obtained and identified from different parts of A. sinomontanum. Among them, alkaloids, flavonoids, steroids, glycosides are the major bioactive constituents. Activities such as antinociceptive, anti-inflammatory, antitumor, antiarrhythmic, local anesthetic, antipyretic, antimicrobial, insecticidal and others have been corroborated in vivo and in vitro. These properties are attributed to different alkaloids. In addition, many of the active ingredients, such as lappaconitine, ranaconitine and total alkaloids have been used as quality markers. CONCLUSION This work contributes to update the ethnopharmacological uses, chemical constituents, pharmacological activities, toxicity assessment, pharmacokinetics and metabolism, and clinical settings information for A. sinomontanum, which provide basic information to help better understand the pharmacological and toxicological activities of A. sinomontanum in human. However, further in-depth studies are needed to determine the medical uses of this herb and its chemical constituents, pharmacological activities, clinical applications and toxicology.
Collapse
Affiliation(s)
- Lijun Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, PR China.
| | - Yun Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China.
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China
| | - Dongni Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China; Pharmacy Department, Dunhuang Hospital of Gansu Province, Dunhuang, 736200, PR China
| | - Zhuanping Zhang
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Quanming Sun
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Yuanfeng Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| | - Qingli Zhu
- Ankang Inspection and Detection Center of Food and Drug Control, Ankang, 725000, PR China
| |
Collapse
|
39
|
Peng X, Ang S, Zhang Y, Fan F, Wu M, Liang P, Wen Y, Gan L, Zhang K, Li D, Yue J. Chemical Constituents With Antiproliferative Activity From Pogostemon cablin (Blanco) Benth. Front Chem 2022; 10:938851. [PMID: 35910745 PMCID: PMC9334562 DOI: 10.3389/fchem.2022.938851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Two new patchoulene sesquiterpenoid glycosides (1–2), a natural patchoulane-type sesquiterpenoid (3) and a natural cadinene-type sesquiterpenoid (4), were isolated from the aerial parts of Pogostemon cablin (Blanco) Benth., together with eleven known sesquiterpenoids (5–15) and eleven known flavonoids (16–26). Their chemical structures were elucidated on the basis of spectroscopic methods, including NMR, HRESIMS, IR, and CD spectroscopic data analysis, as well as chemical hydrolysis. The isolated compounds 1–13 and 15–26 were tested for inhibitory effects on the proliferation of HepG2 cancer cells. Among them, compounds 17 and 19 displayed anti-proliferative effects against HepG2 cells with IC50 values of 25.59 and 2.30 μM, respectively. Furthermore, the flow cytometry analysis and Western blotting assays revealed that compound 19 significantly induced apoptosis of HepG2 cells by downregulating the ratio of Bcl-2/Bax and upregulating the expression of cleaved caspase-3 and cleaved caspase-9. Therefore, the potential pharmaceutical applications of P. cablin would be applied according to our study findings.
Collapse
Affiliation(s)
- Xingjia Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Song Ang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yizi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Fenling Fan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Mengshuo Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Peiting Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yan Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
- *Correspondence: Kun Zhang, ; Dongli Li,
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- *Correspondence: Kun Zhang, ; Dongli Li,
| | - Jianmin Yue
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Wang J, Liu H, Wu X, Shi C, Li W, Yuan Y, Liu Y, Xing D. Induction of apoptosis in SGC-7901 cells by iridium(III) complexes via endoplasmic reticulum stress-mitochondrial dysfunction pathway. J Biol Inorg Chem 2022; 27:455-469. [PMID: 35817878 DOI: 10.1007/s00775-022-01943-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
This study was intended to evaluate the anticancer activity of three newly synthesized iridium(III) complexes [Ir(ppy)2(PEIP)](PF6) (1) (ppy = 2-phenylpyridine, PEIP = 2-phenethyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)2(SIP)](PF6) (2) (SIP = (E)-2-styryl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(PEYIP)](PF6) (3) (PEYIP = 2-phenethynyl-1H-imidazo[4,5-f][1,10]phenanthroline). The cytotoxic activity in vitro against A549, SGC-7901, HepG2, HeLa and normal NIH3T3 cells was investigated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. We found that the complexes 1, 2 and 3 significantly inhibited cell proliferation, in particular, complexes 2 and 3 show high cytotoxic effect on SGC-7901 cells with an IC50 value of 5.8 ± 0.7 and 4.4 ± 0.1 μM. Moreover, cell cycle assay revealed that the complexes could block G2/M phase of the cell cycle. Apoptotic evaluation by Annexin V/PI staining indicated that complexes 1-3 can induce apoptosis in SGC-7901 cells. In addition, microscopy detection suggested that disruption of mitochondrial functions, characterized by increased generation of intracellular ROS and Ca2+ as well as decrease of mitochondrial membrane potential. Western blot analysis shows that the complexes upregulate the expression of pro-apoptotic Bax and downregulate the expression of anti-apoptotic Bcl-2, which further activates caspase-3 and prompts the cleavage of PARP. Taken together, these results demonstrated that complexes 1-3 exert a potent anticancer effect on SGC-7901 cells via ROS-mediated endoplasmic reticulum stress-mitochondrial apoptotic pathway and have a potential to be developed as novel chemotherapeutic agents for human gastric cancer. Three new iridium(III) complexes [Ir(ppy)2(PEIP)](PF6) (1) (ppy = 2-phenylpyridine, PEIP = 2-phenethyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(ppy)2(SIP)](PF6) (2) (SIP = 2-styryl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(ppy)2(PEYIP)](PF6) (3) (PEYIP = 2-phenethynyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The anticancer activity in vitro was investigated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The results show that the complexes induce apoptosis via ROS-mediated endoplasmic reticulum stress-mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| | - Degang Xing
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
41
|
Zhang H, Qian J, Jin M, Fan L, Fan S, Pan H, Li Y, Wang N, Jian B. Jolkinolide B induces cell cycle arrest and apoptosis in MKN45 gastric cancer cells and inhibits xenograft tumor growth in vivo. Biosci Rep 2022; 42:BSR20220341. [PMID: 35674158 PMCID: PMC9245080 DOI: 10.1042/bsr20220341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer is one of the most common digestive carcinomas throughout the world and represents high mortality. There is an urgent quest for seeking a novel and efficient antigastric cancer drug. Euphorbia fischeriana Steud had long been used as a traditional Chinese medicine for the treatment of cancer. According to the basic theory of traditional Chinese medicine, its antitumor mechanism is 'to combat poison with poison'. However, its effective material foundation of it is still ambiguous. In our previous work, we studied the chemical constituents of E. fischeriana Steud. Jolkinolide B (JB) is an ent-abietane-type diterpenoid we isolated from it. The purpose of the present study was to investigate the antigastric effect and mechanism of JB. Results revealed that JB could suppress the proliferation of MKN45 cells in vitro and inhibit MKN45 xenograft tumor growth in nude mice in vivo. We further investigated its anticancer mechanism. On the one hand, JB caused DNA damage in gastric cancer MKN45 cells and induced the S cycle arrest by activating the ATR-CHK1-CDC25A-Cdk2 signaling pathway, On the other hand, JB induced MKN45 cells apoptosis through the mitochondrial pathway, and ultimately effectively inhibited the growth of gastric cancer cells. These results suggest that JB appears to be a promising candidate drug with antigastric cancer activity and warrants further research.
Collapse
Affiliation(s)
- Hao Zhang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Ming Jin
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Li Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - SongJie Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Hong Pan
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Yang Li
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Ningning Wang
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| | - Baiyu Jian
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161000, P. R. China
| |
Collapse
|
42
|
Isolation, synthesis and bioactivity evaluation of isoquinoline alkaloids from Corydalis hendersonii Hemsl. against gastric cancer in vitro and in vivo. Bioorg Med Chem 2022; 60:116705. [PMID: 35286954 DOI: 10.1016/j.bmc.2022.116705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
Isoquinoline alkaloid displays significant anti-gastric cancer effects due to its unique structure, which is attracting more and more attention for the development of anti-gastric cancer drugs. In this study, we explore the active components against gastric cancer from the Tibetan Medicine Corydalis hendersonii Hemsl, which is rich in isoquinoline alkaloids. 14 compounds including 2 previously undescribed natural products were obtained. Interestingly, an new active compound displays potent anti-gastric cancer activity. After accomplishing the total syntheses of the active compound and its derivatives, the anti-gastric cancer activity of the active compound was further investigated. In vitro experiments revealed that the active compound significantly attenuated the proliferative capacity, caused G2/M phase arrest, inhibited the cell migration and invasion, and induced cell apoptosis. Mechanistically, the active compound could increase the Bax/Bcl-2 ratio, elevate cytochrome c in the cytosol, and activate caspase-9/3, along with inactivating the upstream PI3K/Akt/mTOR signaling pathway. In addition, the active compound could also cause gastric cancer cell death by inhibiting topoisomerase I activity. More importantly, the anti-gastric cancer activity of the active compound was confirmed in MGC-803 xenograft nude mice in vivo. This work not only promotes the exploitation of Corydalis hendersonii Hemsl., but also provides some experience for discovering new entities from natural sources.
Collapse
|
43
|
Miranda AR, Scotta AV, Cortez MV, González-García N, Galindo-Villardón MP, Soria EA. Association of Dietary Intake of Polyphenols with an Adequate Nutritional Profile in Postpartum Women from Argentina. Prev Nutr Food Sci 2022; 27:20-36. [PMID: 35465116 PMCID: PMC9007708 DOI: 10.3746/pnf.2022.27.1.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
HJ-Biplot analysis is a multivariate graphic representation that collects data covariation structure between variables and individuals to represent them in a low-dimensional space with the highest quality in the same reference system. Consequently, it is a promising technique for evaluating dietary exposure to polyphenols and accurately characterizing female nutrition. Herein, we hypothesized that polyphenol intake defines specific clusters with dietary impacts, which can be assessed using HJ-Biplot, based on a cross-sectional study in Argentina. The study included 275 healthy postpartum women who provided information about their food frequency intake and other conditions, which were then used to evaluate polyphenolic intake using the Phenol-Explorer database. Outcomes were established using HJ-Biplot for clustering and ANOVA to compare their impact on diet quality indicators. Two HJ-Biplot models were run (for intakes >20 mg/d and 5∼20 mg/d, respectively) to identify three clusters per model with excellent statistical fitness to explain the data. Thus, specific polyphenolic clusters with potentially bioactive and safe compounds were defined despite significant interindividual variability. In fact, women with the lowest polyphenolic intake exhibited worse dietary quality, body fat, and physical activity. As a result, HJ-Biplot proved to be an effective technique for clustering women based on their dietary intake of these compounds. Furthermore, cluster membership improved the intake of antioxidants, water, fiber, and healthy fats. Additionally, women with formal jobs and a higher educational level showed a better diet. Dietary polyphenols are critical during postpartum because they exert beneficial effects on women and breastfed infants.
Collapse
Affiliation(s)
- Agustín Ramiro Miranda
- Faculty of Medical Sciences, National University of Córdoba, Córdoba 506, Argentina
- National Scientific and Technical Research Council, Córdoba 5014, Argentina
| | - Ana Veronica Scotta
- Faculty of Medical Sciences, National University of Córdoba, Córdoba 506, Argentina
- National Scientific and Technical Research Council, Córdoba 5014, Argentina
| | - Mariela Valentina Cortez
- Faculty of Medical Sciences, National University of Córdoba, Córdoba 506, Argentina
- National Scientific and Technical Research Council, Córdoba 5014, Argentina
| | - Nerea González-García
- Department of Statistics, University of Salamanca, Salamanca 7007, Spain
- Institute for Biomedical Research of Salamanca, University Hospital of Salamanca, Salamanca 37007, Spain
| | - María Purificación Galindo-Villardón
- Department of Statistics, University of Salamanca, Salamanca 7007, Spain
- Institute for Biomedical Research of Salamanca, University Hospital of Salamanca, Salamanca 37007, Spain
| | - Elio Andrés Soria
- Faculty of Medical Sciences, National University of Córdoba, Córdoba 506, Argentina
- National Scientific and Technical Research Council, Córdoba 5014, Argentina
| |
Collapse
|
44
|
Su Y, Lu S, Hou C, Ren K, Wang M, Liu X, Zhao S, Liu X. Mitigation of liver fibrosis via hepatic stellate cells mitochondrial apoptosis induced by metformin. Int Immunopharmacol 2022; 108:108683. [PMID: 35344814 DOI: 10.1016/j.intimp.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/05/2022]
Abstract
Liver fibrosis, a disease characterized by the excessive accumulation of extracellular matrix originating from activated hepatic stellate cells (HSCs), is a common pathological response to chronic liver injury resulting from a variety of insults. However, drugs that effectively block the activation of HSCs have still not been adequately investigated. This study demonstrates that metformin decreased the number of activated-HSCs through induction of apoptosis, but did not impact numbers of hepatocytes. Metformin upregulated BAX activation with facilitation of BIM, BAD and PUMA; downregulated Bcl-2 and Bcl-xl, but did not affect Mcl-1. Additionally, metformin induced cytochrome c release from mitochondria into the cytoplasm, directly triggering caspase-9-mediated mitochondrial apoptosis. The decline in mitochondrial membrane potential (ΔΨm) and deposition of superoxide in mitochondria accelerated the destruction of the integrity of mitochondrial membrane. Moreover, we verified the therapeutic effect of metformin in our mouse model of liver fibrosis associated with nonalcoholic steatohepatitis (NASH) in which hepatic function, NASH lesions and fibrosis were improved by metformin. In conclusion, this study indicated that metformin has significant therapeutic value in NASH-derived liver fibrosis by inducing apoptosis in HSCs, but does not affect the proliferation of hepatocytes.
Collapse
Affiliation(s)
- Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shan Lu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
45
|
Characterization of chikusetsusaponin IV and V induced apoptosis in HepG2 cancer cells. Mol Biol Rep 2022; 49:4247-4255. [PMID: 35212926 DOI: 10.1007/s11033-022-07259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chikusetsusaponin IV and V (CsIV and CsV), two typical oleanolic acid saponins, are mainly derived from the rhizome of Panax japonicus C.A. Mey. To reveal the anti-cancer effect of CsIV and CsV on liver cancer cells, human hepatic cancer cell lines (HepG2) were exposed to these saponins, and various physiological responses of HepG2 were investigated. METHODS AND RESULTS HepG2 cells were treated with CsIV, CsV and 5-fluorouracil (5-FU). Cell proliferation was measured by CCK-8 assay. The cell cycle arrest, cell apoptosis and intracellular Ca2+ levels were respectively identified by flow cytometry. The mitochondrial membrane potential was detected by fluorescence microscopy. And, the levels of apoptosis-related proteins were analyzed by western blotting. Both CsIV and CsV were demonstrated to inhibit cell viability, and induce cell cycle arrest and apoptosis of HepG2 in a dose-dependent manner. They also enhanced the intracellular Ca2+ level and decreased the mitochondrial membrane potential in HepG2 cells. Furthermore, p53 and p21 were found up-regulated in HepG2 cells treated by CsIV and CsV. The apoptotic proteins, bax, cytochrome c, cleaved caspase-3/-9, were all found activated in HepG2 cells after CsIV and CsV treatment. The anti-apoptotic protein, bcl-2, was significantly down-regulated in all treated HepG2 cells. CONCLUSION Our data demonstrated that CsIV and CsV exerted significant cytotoxic effects on HepG2 cells without affecting normal liver cells. And, these chikusetsusaponins, especially for CsIV, showed a potent effect on promoting cell apoptosis in HepG2 cells, which was associated with the activation of p53-mediated apoptosis pathway.
Collapse
|
46
|
Chen J, Wu H, Tang X, Chen L. 4-Phenylbutyrate protects against rifampin-induced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress. Bioengineered 2022; 13:2866-2877. [PMID: 35045794 PMCID: PMC8974152 DOI: 10.1080/21655979.2021.2024970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rifampin (RFP), a first-line anti-tuberculosis drug, often induces cholestatic liver injury and hyperbilirubinemia which limits its clinical use. Multidrug resistance-associated protein 2 (MRP2) localizes to the hepatocyte apical membrane and plays a pivotal role in the biliary excretion of bilirubin glucuronides. RFP is discovered to reduce MRP2 expression in liver cells. 4-Phenylbutyrate (4-PBA), a drug used to treat ornithine transcarbamylase deficiency (DILI), is reported to alleviate RFP-induced liver cell injury. However, the underlying mechanism still remains unclear. In the current study, we discovered that RFP induced HepG2 cell viability reduction, apoptosis and MRP2 ubiquitination degradation. Administration of 4-PBA alleviated the effect of RFP on HepG2 cell viability reduction, apoptosis and MRP2 ubiquitination degradation. In mechanism, 4-PBA suppressed RPF-caused intracellular Ca2+ disorder and endoplasmic reticulum (ER) stress, as well as the increases of Clathrin and adapter protein 2 (AP2). ER stress marker protein C/EBP homologous protein took part in the modulation of AP2 and clathrin. Besides, 4-PBA reduced the serum bilirubin level in RFP-induced cholestasis mouse model, along with raised the MRP2 expression in liver tissues. These findings indicated that 4-PBA could alleviate RFP-induced cholestatic liver injury and thereby decreased serum total bilirubin concentration via inhibiting ER stress and ubiquitination degradation of MRP2, which provides new insights into the mechanism of 4-PBA in the treatment of RFP-induced cholestasis and liver damage.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Hongbo Wu
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Xudong Tang
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Lei Chen
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| |
Collapse
|
47
|
Wu L, Shi Y, Ni Z, Yu T, Chen Z. Preparation of a Self-Assembled Rhein-Doxorubicin Nanogel Targeting Mitochondria and Investigation on Its Antihepatoma Activity. Mol Pharm 2022; 19:35-50. [PMID: 34890210 DOI: 10.1021/acs.molpharmaceut.1c00565] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are involved in the regulation of apoptosis, making them a promising target for the development of new anticancer drugs. Doxorubicin (DOX), a chemotherapeutic drug, can induce reactive oxygen species (ROS)-mediated apoptosis, improving its anticancer effects. Herein, Rhein, an active ingredient in rhubarb, with the capability of self-assembly and mitochondrial targeting, was used in conjunction with DOX to form efficient nanomaterials (Rhein-DOX nanogel) capable of sustained drug release. It was self-assembled with a hydrogen bond, π-π stacking interactions, and hydrophobic interactions as the main driving force, and its loading efficiency was up to 100%. Based on its self-assembly characteristics, we evaluated the mechanism of this material to target mitochondria, induce ROS production, and promote apoptosis. The IC50 of the Rhein-DOX nanogel (3.74 μM) was only 46.3% of that of DOX (11.89 μM), and the tumor inhibition rate of the Rhein-DOX nanogel was 79.4% in vivo, 2.3 times that of DOX. This study not only addresses the disadvantages of high toxicity of DOX and low bioavailability of Rhein, when DOX and Rhein are combined for the treatment of hepatoma, but it also significantly improved the synergistic antihepatoma efficacy of Rhein and DOX, which provides a new idea for the development of long-term antihepatoma agents with low toxicity.
Collapse
Affiliation(s)
- Li Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihui Ni
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhipeng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
48
|
Feng Z, Ye Z, Xie J, Chen W, Li W, Xing C. Study on the mechanism of LOXL1-AS1/miR-3614-5p/YY1 signal axis in the malignant phenotype regulation of hepatocellular carcinoma. Biol Direct 2021; 16:24. [PMID: 34863279 PMCID: PMC8645132 DOI: 10.1186/s13062-021-00312-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality worldwide. Accumulating researches have indicated that long non‑coding RNAs (lncRNAs) are involved in varies human cancers, including HCC. Nevertheless, the specific molecular mechanism of lncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in HCC is still unclear. Methods LOXL1-AS1 expression was tested via qRT-PCR in HCC cells. Functional and mechanism assays were respectively done to evaluate the biological functions of HCC cells and the potential interaction of LOXL1-AS1 and other factors. Results We discovered that LOXL1-AS1 was high expressed in HCC cells. Inhibition of LOXL1-AS1 repressed cell proliferation, migration and invasion, but enhanced cell apoptosis in HCC. Further, miR-3614-5p was proven to be sponged by LOXL1-AS1. Additionally, Yin Yang 1 (YY1) was proven as the target gene of miR-3614-5p, and YY1 depletion could repress HCC cell malignant behaviors. YY1 could also transcriptionally activate LOXL1-AS1 expression. In rescue assays, we confirmed that overexpression of YY1 or miR-3614-5p inhibition could reverse the suppressive effects of LOXL1-AS1 silence on the malignant behaviors of HCC cells. Conclusion In short, LOXL1-AS1/miR-3614-5p/YY1 forms a positive loop in modulating HCC cell malignant behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00312-8.
Collapse
Affiliation(s)
- ZhenYu Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - ZhenYu Ye
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - JiaMing Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - ChunGen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
49
|
Li M, Cheng W, Zhang L. Maternal selenium deficiency suppresses proliferation, induces autophagy dysfunction and apoptosis in the placenta of mice. Metallomics 2021; 13:6406492. [PMID: 34669944 DOI: 10.1093/mtomcs/mfab058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Selenium deficiency is thought to be associated with the occurrence of gestational complications. However, the underlying mechanism of selenium deficiency impairs placental function remains unclear. In this study, female mice were separately supplemented with a Se-deficient (0.02 mg/kg Se) or control diet (0.2 mg/kg Se) for 12 weeks before mating and throughout gestation. Maternal liver and placentas were collected at embryonic day 15.5 and analyzed for Se content. Oxidative stress status, proliferation capability, autophagy, and apoptosis of the placenta were determined. We found that maternal selenium deficiency decreased placental Se concentration and some antioxidant selenoproteins expressions. The concentrations of catalase and glutathione in selenium-deficient placentas were reduced, along with an increase in hydrogen peroxide (H2O2) content. Selenium deficiency inhibited the expression of proliferating cell nuclear antigen. Autophagosomes, autophagolysosomes, and upregulation of autophagy-related protein microtubule-associated protein 1 light chain 3 alpha II (LC3B), Beclin1, PTEN-induced putative kinase 1 (PINK1), and Parkin were found in the selenium-deficient trophoblasts. Autophagic substrate p62/sequestosome 1 was surprisingly increased, indicating autophagy flux dysfunction. Selenium deficiency increased expressions of B cell leukemia/lymphoma 2 associated X protein (Bax), cleaved caspase-9/-3, and decreased the B cell leukemia/lymphoma 2 (Bcl2) level. Moreover, typical apoptotic ultrastructure and apoptosis-positive cells were observed in the selenium-deficient placenta. Our results suggested that maternal selenium deficiency impaired placental proliferation, induced autophagy dysfunction and apoptosis via increasing oxidative stress, and the Akt/mechanistic target of rapamycin (mTOR) pathway involved in this process. This study revealed a novel mechanism by which maternal selenium deficiency caused impairment of the placenta.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lantian Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.,Department of Anatomy, Basic Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
50
|
Xu W, Li J, Li D, Tan J, Ma H, Mu Y, Wen Y, Gan L, Huang X, Li L. Chemical characterization, antiproliferative and antifungal activities of Clinacanthus nutans. Fitoterapia 2021; 155:105061. [PMID: 34673146 DOI: 10.1016/j.fitote.2021.105061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022]
Abstract
Clinacanthus nutans Lindau (Family: Acanthaceae) is a medicinal herb widely distributed in the tropic and subtropic areas of Asia. C. nutans is traditionally consumed as vegetable or herbal tea, as well as a folk medicine for anticancer and antifungal activities. However, to date, chemical constituent responsible for observed health beneficial effects of this medicinal plant is not clear. In the current study, 32 compounds (1-32), including three new megastigmanes (1-3) were isolated from the aerial parts of C. nutans. Their structures were elucidated on the basis of comprehensive NMR, MS, and CD spectroscopic data analysis, as well as chemical hydrolysis. Among the isolates, cycloartane triterpenoids (9, 10, and 12) displayed moderate anti-proliferative effects against HepG2 cell growth with IC50 values ranging from 9.12 to 19.89 μM. Data obtained from flow cytometry analysis and western blotting assays revealed that compounds 9 and 12 induced apoptosis of HepG2 cells by modulating the expression of proteins associated to mitochondrial-mediated apoptotic pathway. Furthermore, megastigmanes 1, 2, 7, and 8 enhanced the anti-Candida albicans activity of amphotericin B (AmB), supporting the synergistic effects between megastigmanes and AmB. This is the first report of anticancer and antifungal potential of cycloartane triterpenoids and megastigmanes in C. nutans, which shed useful insights on the relationship between C. nutans's chemical constituent and its beneficial effects to health. Findings from this study support further development of this medicinal plant for potential pharmaceutical applications.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jiaying Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Junfeng Tan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yan Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|