1
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
2
|
Zhang Y, Su Q, Xia W, Jia K, Meng D, Wang X, Ni X, Su Z. MiR-140-3p directly targets Tyro3 to regulate OGD/R-induced neuronal injury through the PI3K/Akt pathway. Brain Res Bull 2023; 192:93-106. [PMID: 36372373 DOI: 10.1016/j.brainresbull.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are highly expressed in the central nervous system and play important roles in ischaemic stroke pathogenesis. However, the role of miRNAs in cerebral ischaemia-reperfusion injury remains unclear. Here, we investigated the role of miR-140-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro to identify a new biomarker for research on ischaemic stroke. METHODS The differential expression of miR-140-3p and Tyro3 in OGD/R-exposed N2a cells was verified by qRT-PCR. N2a cells were transfected with miR-140-3p mimic, miR-140-3p inhibitor, Tyro3 or siTyro3, and qRT-PCR, Western blotting, the Cell counting kit-8 (CCK-8) assay, Hoechst 33342/PI staining and flow cytometry analyses were performed to measure miRNA, mRNA and protein expression; cell viability; and apoptosis. RESULTS OGD/R-exposed N2a cells exhibited increased miR-140-3p expression, decreased viability, reduced Bcl-2 protein expression and increased Bax and Caspase-3 protein expression and apoptosis; the miR-140-3p mimic markedly amplified these changes, exacerbating OGD/R-induced injury to N2a cells, while the miR-140-3p inhibitor reversed these changes and alleviated OGD/R-induced injury. OGD/R-exposed N2a cells expressed less Tyro3, and Tyro3 overexpression increased cell viability and Bcl-2 protein expression, reduced Bax and Caspase-3 protein expression, and alleviated OGD/R-induced injury. However, silencing Tyro3 reversed these changes and exacerbated OGD/R-induced injury. MiR-140-3p directly bound the Tyro3 mRNA 3'UTR. Rescue experiments indicated that the miR-140-3p mimic-induced changes in cell viability and protein expression were alleviated by Tyro3 overexpression and that the miR-140-3p inhibitor-induced changes in cell viability and protein expression were alleviated by silencing Tyro3. Tyro3 overexpression increased cell viability and PI3K and p-Akt protein expression, but these effects were weakened by the addition of LY294002. CONCLUSIONS MiR-140-3p directly targets Tyro3 to regulate cell viability and apoptosis of OGD/R-exposed N2a cells through the PI3K/Akt pathway, suggesting that miR-140-3p is a novel biomarker and therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Central Laboratory of the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qian Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Wenbo Xia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Kejuan Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Delong Meng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xunran Ni
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
3
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
4
|
Sim MM, Wood JP. Dysregulation of Protein S in COVID-19. Best Pract Res Clin Haematol 2022; 35:101376. [PMID: 36494145 PMCID: PMC9395234 DOI: 10.1016/j.beha.2022.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) has been widely associated with increased thrombotic risk, with many different proposed mechanisms. One such mechanism is acquired deficiency of protein S (PS), a plasma protein that regulates coagulation and inflammatory processes, including complement activation and efferocytosis. Acquired PS deficiency is common in patients with severe viral infections and has been reported in multiple studies of COVID-19. This deficiency may be caused by consumption, degradation, or clearance of the protein, by decreased synthesis, or by binding of PS to other plasma proteins, which block its anticoagulant activity. Here, we review the functions of PS, the evidence of acquired PS deficiency in COVID-19 patients, the potential mechanisms of PS deficiency, and the evidence that those mechanisms may be occurring in COVID-19.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA,Gill Heart and Vascular Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Corresponding author. University of Kentucky, 741 S Limestone, BBSRB B359, Lexington, KY, 40536, USA
| |
Collapse
|
5
|
Benmelouka AY, Munir M, Sayed A, Attia MS, Ali MM, Negida A, Alghamdi BS, Kamal MA, Barreto GE, Ashraf GM, Meshref M, Bahbah EI. Neural Stem Cell-Based Therapies and Glioblastoma Management: Current Evidence and Clinical Challenges. Int J Mol Sci 2021; 22:2258. [PMID: 33668356 PMCID: PMC7956497 DOI: 10.3390/ijms22052258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Gliomas, which account for nearly a quarter of all primary CNS tumors, present significant contemporary therapeutic challenges, particularly the highest-grade variant (glioblastoma multiforme), which has an especially poor prognosis. These difficulties are due to the tumor's aggressiveness and the adverse effects of radio/chemotherapy on the brain. Stem cell therapy is an exciting area of research being explored for several medical issues. Neural stem cells, normally present in the subventricular zone and the hippocampus, preferentially migrate to tumor masses. Thus, they have two main advantages: They can minimize the side effects associated with systemic radio/chemotherapy while simultaneously maximizing drug delivery to the tumor site. Another feature of stem cell therapy is the variety of treatment approaches it allows. Stem cells can be genetically engineered into expressing a wide variety of immunomodulatory substances that can inhibit tumor growth. They can also be used as delivery vehicles for oncolytic viral vectors, which can then be used to combat the tumorous mass. An alternative approach would be to combine stem cells with prodrugs, which can subsequently convert them into the active form upon migration to the tumor mass. As with any therapeutic modality still in its infancy, much of the research regarding their use is primarily based upon knowledge gained from animal studies, and a number of ongoing clinical trials are currently investigating their effectiveness in humans. The aim of this review is to highlight the current state of stem cell therapy in the treatment of gliomas, exploring the different mechanistic approaches, clinical applicability, and the existing limitations.
Collapse
Affiliation(s)
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt; (M.M.); (A.S.)
| | - Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt; (M.M.); (A.S.)
| | - Mohamed Salah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamad M. Ali
- Faculty of Medicine, Al-Azhar University, Damietta 34511, Egypt; (M.M.A.); (E.I.B.)
| | - Ahmed Negida
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 32310, Chile
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Eshak I. Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta 34511, Egypt; (M.M.A.); (E.I.B.)
| |
Collapse
|
6
|
Wang K, Wu Q, Li Z, Reger MK, Xiong Y, Zhong G, Li Q, Zhang X, Li H, Foukakis T, Xiang T, Zhang J, Ren G. Vitamin K intake and breast cancer incidence and death: results from a prospective cohort study. Clin Nutr 2020; 40:3370-3378. [PMID: 33277073 DOI: 10.1016/j.clnu.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Vitamin K prevents growth and metastasis of certain cancers, but there is little evidence regarding the association between dietary vitamin K and breast cancer incidence and death. We sought to examine whether intakes of total vitamin K, phylloquinone (vitamin K1) and menaquinones (MKs) (vitamin K2) may influence risks of breast cancer incidence and death in the US population. METHODS Herein, 2286 breast cancer cases and 207 breast cancer deaths were identified during 702,748 person-years of follow-up. Cox regression and competing risk regression were used to estimate multivariable-adjusted hazards ratios (HRs) and 95% confidence intervals (95% CIs) by dietary vitamin K intake quintile (Q) for risk of breast cancer incidence and mortality. RESULTS After adjustment for confounders, the total MK intake was associated with an increased risk of breast cancer (HR Q5 vs Q1, 1.26; 95% CI, 1.05 to 1.52; Ptrend, 0.01) and death from breast cancer (HR Q5 vs Q1, 1.71; 95% CI, 0.97 to 3.01; Ptrend, 0.04). Non-linear positive dose-response associations with risks of breast cancer incidence and death were found for total MKs intake (Pnon-linearity<0.05). No statistically significant associations were observed between the intake of total vitamin K and phylloquinone and breast cancer. CONCLUSIONS The present study suggests that total MK intake was associated with an altered risk of the occurrence and death of breast cancer in the general US population. If our findings are replicated in other epidemiological studies, reducing dietary intake of menaquinones may offer a novel strategy for breast cancer prevention.
Collapse
Affiliation(s)
- Kang Wang
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Qianxue Wu
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Zhuyue Li
- West China Hospital / West China School of Nursing, Sichuan University, Chengdu, China
| | - Michael K Reger
- College of Health Professions Ferris State University, 200 Ferris Drive, VFS 300B, Big Rapids, MI, 49307, USA
| | - Yongfu Xiong
- The First Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Li
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyuan Li
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Breast Center, Theme Cancer, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianjun Zhang
- Department of Epidemiology, Fairbanks School of Public Health Melvin and Bren Simon Comprehensive Cancer Center Indiana University, 1050 Wishard Boulevard, RG5118, Indianapolis, IN, 46202, USA.
| | - Guosheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Balaji E V, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol 2020; 887:173549. [PMID: 32926916 DOI: 10.1016/j.ejphar.2020.173549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor (WHO grade 4 astrocytoma) with unknown causes and is associated with a reduced life expectancy. The available treatment options namely radiotherapy, surgery and chemotherapy have failed to improve life expectancy. Out of the various therapeutic approaches, epigenetic therapy is one of the most studied. Epigenetic therapy is involved in the effective treatment of GBM by inhibiting DNA methyltransferase, histone deacetylation and non-coding RNA. It also promotes the expression of the tumor suppressor gene and is involved in the suppression of the oncogene. Various targets are being studied to implement proper epigenetic regulation to control GBM effectively. Zinc is one of the micronutrients which is considered to maintain epigenetic regulation by promoting the proper DNA folding, protecting genetic material from the oxidative damage and controlling the enzyme activation involved in the epigenetic regulation. Here, we are discussing the importance of zinc in regulating the epigenetic modifications and assessing its role in glioblastoma research. The discussion also highlights the importance of artificial intelligence using epigenetics for envisaging the glioma progression, diagnosis and its management.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|