1
|
Singh S, Ahmad F, Aruri H, Das S, Parajuli P, Gavande NS, Singh PK, Kumar A. Novel quinoline substituted autophagy inhibitors attenuate Zika virus replication in ocular cells. Virus Res 2024; 347:199419. [PMID: 38880335 PMCID: PMC11239713 DOI: 10.1016/j.virusres.2024.199419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Zika virus (ZIKV) is a re-emerging RNA virus that is known to cause ocular and neurological abnormalities in infants. ZIKV exploits autophagic processes in infected cells to enhance its replication and spread. Thus, autophagy inhibitors have emerged as a potent therapeutic target to combat RNA viruses, with Hydroxychloroquine (HCQ) being one of the most promising candidates. In this study, we synthesized several novel small-molecule quinoline derivatives, assessed their antiviral activity, and determined the underlying molecular mechanisms. Among the nine synthesized analogs, two lead candidates, labeled GL-287 and GL-382, significantly attenuated ZIKV replication in human ocular cells, primarily by inhibiting autophagy. These two compounds surpassed the antiviral efficacy of HCQ and other existing autophagy inhibitors, such as ROC-325, DC661, and GNS561. Moreover, unlike HCQ, these novel analogs did not exhibit cytotoxicity in the ocular cells. Treatment with compounds GL-287 and GL-382 in ZIKV-infected cells increased the abundance of LC3 puncta, indicating the disruption of the autophagic process. Furthermore, compounds GL-287 and GL-382 effectively inhibited the ZIKV-induced innate inflammatory response in ocular cells. Collectively, our study demonstrates the safe and potent antiviral activity of novel autophagy inhibitors against ZIKV.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Huang X, Shu Q, Luo X, Ge W, Xie H, Zhou Y. Analysis of Factors Influencing Whole Blood Hydroxychloroquine Concentration in Patients with Systemic Lupus Erythematosus in China. Rheumatol Ther 2023; 10:1597-1607. [PMID: 37755649 PMCID: PMC10654291 DOI: 10.1007/s40744-023-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION The aim of this study was to determine the factors associated with the concentrations of hydroxychloroquine (HCQ) and its major metabolite, desethylhydroxychloroquine (DHCQ), in patients with systemic lupus erythematosus (SLE). METHODS Patients with SLE taking oral HCQ for at least 3 months were recruited from the Department of Rheumatology and Immunology of Nanjing Drum Tower Hospital. Clinical characteristics and laboratory values were examined. The concentrations of HCQ and DHCQ were measured by high-performance liquid chromatography, and the effects of various factors on the concentrations were investigated. RESULTS A total of 272 patients were included in this study. The average concentration of HCQ was 690.90 ng/ml and the average concentration of DHCQ was 431.84 ng/ml. Multivariate analysis indicated that gender (P = 0.015), age (year) (P < 0.001), weight (kg) (P = 0.013), duration of HCQ use (month) (P < 0.001), systemic lupus erythematosus disease activity index (SLEDAI) (P < 0.001), platelet count (× 109/l) (P < 0.001), immunoglobulin G levels (g/l) (P = 0.014) were associated with low HCQ concentrations. Gender (P = 0.006), duration of HCQ use (month) (P < 0.001), SLEDAI (P = 0.007), and platelet count (× 109/l) (P < 0.001) were associated with low DHCQ concentrations. CONCLUSIONS Patients with SLE require long-term administration of HCQ, but blood levels vary widely between individuals. Studying the factors influencing the blood HCQ and DHCQ concentrations and optimizing the dose according to individual characteristics might help to improve the efficacy of HCQ. TRIAL REGISTRATION ChiCTR2300070628.
Collapse
Affiliation(s)
- Xuan Huang
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Qing Shu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Xuemei Luo
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| | - Han Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| | - Yujie Zhou
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
3
|
Gao B, Tan T, Cao X, Pan M, Yang C, Wang J, Shuai Z, Xia Q. Relationship of cytochrome P450 gene polymorphisms with blood concentrations of hydroxychloroquine and its metabolites and adverse drug reactions. BMC Med Genomics 2022; 15:23. [PMID: 35135554 PMCID: PMC8822703 DOI: 10.1186/s12920-022-01171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Hydroxychloroquine (HCQ) is a cornerstone therapy for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This study aimed to investigate the relationship of cytochrome P450 (CYP450) gene polymorphisms with blood concentrations of HCQ and its metabolites and adverse drug reactions (ADRs) in patients with SLE and RA. Methods A cohort of 146 patients with SLE and RA treated with HCQ was reviewed. The ADRs of the patients were recorded. The blood concentrations of HCQ and its metabolites were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Genotyping of single nucleotide polymorphisms (SNPs) in CYP450, a metabolic enzyme involved in the HCQ metabolic pathway, was performed using a MassARRAY system. The chi-square test, T-test, and one-way analysis of variance were used to analyse data. Results Among 29 candidate SNPs, we found that CYP3A4 (rs3735451) was significantly associated with blood levels of HCQ and its metabolites in both the unadjusted model and adjusted model (patients taking HCQ for > 10 years) (P < 0.05). For CYP3A5 (rs776746), a greater risk of skin and mucous membrane ADRs was associated with the TT genotype than with the CT + CC genotypes (P = 0.033). For CYP2C8 (rs1058932), the AG genotype carried a greater risk of abnormal renal function than the AA + GG genotype (P = 0.017); for rs10882526, the GG genotype carried a greater risk of ophthalmic ADRs than the AA + AG genotypes (P = 0.026). Conclusions The CYP2C8 (rs1058932 and rs10882526) and CYP3A5 (rs776746) polymorphisms are likely involved in the ADRs of HCQ. Gene polymorphism analysis of CYP450 and therapeutic drug monitoring of HCQ and its metabolites might be useful to optimise HCQ administration and predict ADRs.
Collapse
Affiliation(s)
- Beibei Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingfei Tan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi Cao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Menglu Pan
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunlan Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianxiong Wang
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China. .,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
4
|
Molecular Networking for Drug Toxicities Studies: The Case of Hydroxychloroquine in COVID-19 Patients. Int J Mol Sci 2021; 23:ijms23010082. [PMID: 35008505 PMCID: PMC8744768 DOI: 10.3390/ijms23010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/18/2022] Open
Abstract
Using drugs to treat COVID-19 symptoms may induce adverse effects and modify patient outcomes. These adverse events may be further aggravated in obese patients, who often present different illnesses such as metabolic-associated fatty liver disease. In Rennes University Hospital, several drug such as hydroxychloroquine (HCQ) have been used in the clinical trial HARMONICOV to treat COVID-19 patients, including obese patients. The aim of this study is to determine whether HCQ metabolism and hepatotoxicity are worsened in obese patients using an in vivo/in vitro approach. Liquid chromatography high resolution mass spectrometry in combination with untargeted screening and molecular networking were employed to study drug metabolism in vivo (patient’s plasma) and in vitro (HepaRG cells and RPTEC cells). In addition, HepaRG cells model were used to reproduce pathophysiological features of obese patient metabolism, i.e., in the condition of hepatic steatosis. The metabolic signature of HCQ was modified in HepaRG cells cultured under a steatosis condition and a new metabolite was detected (carboxychloroquine). The RPTEC model was found to produce only one metabolite. A higher cytotoxicity of HCQ was observed in HepaRG cells exposed to exogenous fatty acids, while neutral lipid accumulation (steatosis) was further enhanced in these cells. These in vitro data were compared with the biological parameters of 17 COVID-19 patients treated with HCQ included in the HARMONICOV cohort. Overall, our data suggest that steatosis may be a risk factor for altered drug metabolism and possibly toxicity of HCQ.
Collapse
|
5
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
6
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
7
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Booz GW, Zouein FA. Science unites a troubled world: Lessons from the pandemic. Eur J Pharmacol 2020; 890:173696. [PMID: 33130278 PMCID: PMC7598756 DOI: 10.1016/j.ejphar.2020.173696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022]
Abstract
European Journal of Pharmacology has published a special issue entitled Therapeutic targets and pharmacological treatment of COVID-19 that contains more than 30 manuscripts. Scientists from around the world contributed both review articles and original manuscripts that are remarkable in their diversity. Each contribution offers a unique perspective on the current approaches of the discipline called pharmacology. Yet the contributions share an enthusiasm to put forward a fresh viewpoint and make a positive difference by the exchange of ideas during the troubled times of this pandemic. What other enterprise but science can unite so many diverse cultures and nationalities in global uncertainty and discord, and mobilize an effective response against a common enemy. The efforts of science are in stark contrast to those of populism that has introduced division and a self-serving attitude that are not simply ill-matched to tackle the pandemic, but foster its spread and severity. We trust that the readers of European Journal of Pharmacology will discover new ideas and concepts in our special COVID-19 series as members of the scientific community and shared world.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|
9
|
Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020; 12:156. [PMID: 33087172 PMCID: PMC7576975 DOI: 10.1186/s13148-020-00946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| |
Collapse
|
10
|
Pey AL. Towards Accurate Genotype-Phenotype Correlations in the CYP2D6 Gene. J Pers Med 2020; 10:jpm10040158. [PMID: 33049937 PMCID: PMC7711719 DOI: 10.3390/jpm10040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Establishing accurate and large-scale genotype-phenotype correlations and predictions of individual response to pharmacological treatments are two of the holy grails of Personalized Medicine. These tasks are challenging and require an integrated knowledge of the complex processes that regulate gene expression and, ultimately, protein functionality in vivo, the effects of mutations/polymorphisms and the different sources of interindividual phenotypic variability. A remarkable example of our advances in these challenging tasks is the highly polymorphic CYP2D6 gene, which encodes a cytochrome P450 enzyme involved in the metabolization of many of the most marketed drugs (including SARS-Cov-2 therapies such as hydroxychloroquine). Since the introduction of simple activity scores (AS) over 10 years ago, its ability to establish genotype-phenotype correlations on the drug metabolizing capacity of this enzyme in human population has provided lessons that will help to improve this type of score for this, and likely many other human genes and proteins. Multidisciplinary research emerges as the best approach to incorporate additional concepts to refine and improve such functional/activity scores for the CYP2D6 gene, as well as for many other human genes associated with simple and complex genetic diseases.
Collapse
Affiliation(s)
- Angel L Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|