1
|
Goto K, Amano R, Ichinose A, Michishita A, Hamada M, Nakamura Y, Takahashi M. Generation of RNA aptamers against chikungunya virus E2 envelope protein. J Virol 2025; 99:e0209524. [PMID: 39927773 PMCID: PMC11915788 DOI: 10.1128/jvi.02095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Nucleic acid aptamers are a promising drug modality, whereas the generation of virus-neutralizing aptamers has remained difficult due to the lack of a robust system for targeting the viral particles of interest. Here, we took advantage of our latest platform technology of Systematic Evolution of Ligands by EXponential enrichment (SELEX) with virus-like particles (VLPs) and targeted chikungunya virus (CHIKV) as a model, the pathogenic reemerging virus with an unmet need for control. The identified aptamer against CHIKV-VLPs, Apt#1, and its truncated derivatives showed neutralizing activity with nanomolar IC50 values in a cell-based assay system using a pseudoviral particle of CHIKV (CHIKVpp). An antiviral-based chemical genetics approach revealed significant competition of Apt#1 with suramin, a reported interactant with domain A of the E2 envelope protein (E2DA), in both CHIKVpp and surface plasmon resonance (SPR) analyses, predicting E2DA to be the Apt#1 interface. In addition, Apt#1 interfered with the attachment of CHIKVpp, collectively suggesting its property as an attachment inhibitor via E2DA of CHIKV. Thus, the generation of the VLP-targeted aptamers proved to contribute to anti-CHIKV strategies and confirmed the utility of the platform as a novel and viable option for the development of neutralizing agents against viral particles of interest.IMPORTANCEOur latest SELEX technology using VLPs has generated aptamers that bind the native conformation of the incorporated envelope protein and achieve the virus binding and neutralizing effects. Indeed, the aptamer-probed target E2DA is a representative neutralization site on the surface of the viral particle, validating the utility of the VLP-driven procedure. Simultaneously, the enhanced antiviral effects of the aptamer in combination with approved drugs using the CHIKVpp assay with human cells indicated potential therapeutic strategies that are expected to help address unmet needs in CHIKV control. The robust affinity of the aptamer to viral particles demonstrated by SPR analysis can also lead to conjugates with antivirals as guiding molecules and aptasensors for diagnostic tools. Overall, our VLP-based method provided anti-CHIKV as well as a versatile platform applicable to other emerging and reemerging viruses, in preparation for outbreaks with the need for rapid development of antiviral strategies as next-generation theranostics.
Collapse
Affiliation(s)
- Kaku Goto
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Amano
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Ichinose
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Akiya Michishita
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshikazu Nakamura
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- RIBOMIC Inc., Tokyo, Japan
| | - Masaki Takahashi
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Wang X, Liu G, Pu X, Ren T, Zhang F, Shen M, Zhu Y, Kros A, Yang J. Combating cisplatin-resistant lung cancer using a coiled-coil lipopeptides modified membrane fused drug delivery system. J Control Release 2025; 379:45-58. [PMID: 39756686 DOI: 10.1016/j.jconrel.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Drug resistance to chemotherapy in treating cancers becomes an increasingly serious challenge, which leads to treatment failure and poor patient survival. Drug-resistant cancer cells normally reduce intracellular accumulation of drugs by controlling drug uptake and promoting drug efflux, which severely limits the efficacy of chemotherapy. To overcome this problem, a membrane fused drug delivery system (MF-DDS) was constructed to treat cisplatin (DDP)-resistant lung cancer (A549-DDP) by delivering DDP via membrane fusion using a complementary coiled-coil forming peptides (CP8K4/CP8E4). The lipopeptide CP8K4 was pre-incubated firstly and decorated on the surface of A549-DDP cells, and then the cells interacted with the lipopeptide CP8E4 modified on the lipid bilayer (LB) coated PLGA nanoparticles loading DDP (PLGA-DDP@LB-CP8E4), leaded to the direct cytosolic DDP delivery and cancer cell death. Compared with free DDP, this MF-DDS achieved a 13.42-folds reduced IC50 value of A549-DDP cells in vitro, and tumor size was down-regulated, showing only 1/5.26 of the original weight in vivo. Meanwhile, the anti-drug resistant mechanism was explored, where the MF-DDS inhibited the expression of efflux protein genes, including MRP1, MRP2, and ABCG2, leading to increased intracellular drug accumulations. Altogether, this MF-DDS effectively delivered DDP into DDP-resistant cancer cells, making it a promising and improved pharmacological therapeutic approach for drug-resistant tumor treatment.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tangjun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - MengJie Shen
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Du Y, Xiong Y, Sha Z, Guo D, Fu B, Lin X, Wu H. Cell-Penetrating Peptides in infection and immunization. Microbiol Res 2025; 290:127963. [PMID: 39522201 DOI: 10.1016/j.micres.2024.127963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Bacteria and viruses pose significant threats to human health, as drug molecules and therapeutic agents are often hindered by cell membranes and tissue barriers from reaching intracellular targets. Cell-penetrating peptides (CPPs), composed of 5-30 amino acids, function as molecular shuttles that facilitate the translocation of therapeutic agents across biological barriers. Despite their therapeutic potential, CPPs exhibit limitations, such as insufficient cell specificity, low in vivo stability, reduced delivery efficiency, and limited tolerance under serum conditions. However, intelligent design and chemical modifications can enhance their cell penetration, stability, and selectivity. These advancements could significantly improve CPP-based drug delivery strategies, facilitating both infection treatment and immunization against bacterial and viral diseases. This review provides an overview of the applications of CPPs in various infections and immune diseases, summarizing their mechanisms and the challenges encountered during their application.
Collapse
Affiliation(s)
- Yongliang Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Beibei Fu
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China
| | - Xiaoyuan Lin
- College of Pharmacy and Medical Laboratory, Medical Laboratory, Army Medical University, Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Tsolaki E, Healy AM, Ferguson S. Development of polymer-encapsulated microparticles of a lipophilic API-IL and its lipid based formulations for enhanced solubilisation. Int J Pharm 2024; 667:124878. [PMID: 39491654 DOI: 10.1016/j.ijpharm.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Active Pharmaceutical Ingredient-Ionic liquids (API-ILs) have the potential to improve the bioavailability of BCS Class IV Drugs. However, the problematic physical handling properties of room temperature API-ILs have impaired clinical and commercial exploitation to date. Lipid-based formulations (LBFs) are used to improve the absorption of drugs with limited bioavailability. Nonetheless, LBFs face limitations such as low drug loading capacity and sub-par physical stability. A platform for transforming API-ILs into solid forms at high loadings via spray encapsulation with polymers has been developed and previously demonstrated for hydrophilic API-ILs. The current work demonstrates that this platform technology can be applied to a lipophilic API-IL of the BCS Class IV API, chlorpromazine, and to multi-component solutions comprising API-IL and a LBF. Furthermore, solidification of a type IIIB, liquid LBF was achieved via spray encapsulation with cellulose- and methacrylate- based polymers for the first time. The spray-encapsulated formulations had excellent physical handling properties, and successfully eluted the API-IL in aqueous media. The chlorpromazine release profiles from the API-IL, the API-IL containing LBF, and the solidified formulations, were evaluated in vitro using phosphate buffer (pH 6.8) and fasted state simulated intestinal fluid (FaSSIF). Spray-encapsulated formulations exhibited improved release profiles compared to the liquid formulations. Overall, these findings indicate that phase-separated, polymeric, solid formulations of liquid API forms represent a promising platform technology for developing oral solid dosage forms of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Anne Marie Healy
- EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; National Institute for Bioprocessing Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
5
|
Kowalska O, Piergies N, Barbasz A, Niemiec P, Gnacek P, Duraczyńska D, Oćwieja M. Spectroscopic Properties and Biological Activity of Fluphenazine Conjugates with Gold Nanoparticles. Molecules 2024; 29:5948. [PMID: 39770038 PMCID: PMC11676885 DOI: 10.3390/molecules29245948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Fluphenazine (FPZ) is a well-known neuroleptic that has attracted considerable scientific interest due to its biocidal, virucidal, and antitumor properties. Although methods for encapsulating and delivering FPZ to enhance its activity and reduce side effects have been developed, there is still limited knowledge about its conjugates with gold nanoparticles (AuNPs). Therefore, the aim of this research was to develop a preparation method for stable FPZ-AuNP conjugates and to investigate their physicochemical and biological properties. FPZ-AuNP conjugates were synthesized via a ligand exchange process on the surface of gold nanoparticles (AuNPs) with an average size of 17 ± 5 nm. Electrokinetic measurements revealed that the zeta potential of FPZ-AuNPs is affected by both their composition and pH. The FPZ-AuNPs exhibited an isoelectric point due to the acid-base properties of FPZ. Surface-enhanced Raman spectroscopy (SERS), combined with density functional theory (DFT), was used to determine the adsorption structure of FPZ after conjugation. Studies with human neuroblastoma cells (SH-SY5Y) revealed that FPZ-AuNP conjugates more effectively reduced cell viability compared to citrate-stabilized AuNPs alone or free FPZ molecules. The reduction in SH-SY5Y cell viability was found to be dependent on the FPZ-AuNP concentration.
Collapse
Affiliation(s)
- Oliwia Kowalska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, PL-30084 Krakow, Poland;
| | - Piotr Niemiec
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Applied Sciences in Tarnow, Mickiewicza 8, PL-33100 Tarnow, Poland;
| | - Patrycja Gnacek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; (O.K.); (P.G.); (D.D.)
| |
Collapse
|
6
|
Alizadeh Saghati A, Sharifi Z, Hatamikhah M, Salimi M, Talkhabi M. Unraveling the relevance of SARS-Cov-2 infection and ferroptosis within the heart of COVID-19 patients. Heliyon 2024; 10:e36567. [PMID: 39263089 PMCID: PMC11388749 DOI: 10.1016/j.heliyon.2024.e36567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a huge mortality rate and imposed significant costs on the health system, causing severe damage to the cells of different organs such as the heart. However, the exact details and mechanisms behind this damage are not clarified. Therefore, we aimed to identify the cell and molecular mechanism behind the heart damage caused by SARS-Cov-2 infection. Methods RNA-seq data for COVID-19 patients' hearts was analyzed to obtain differentially expressed genes (DEGs) and differentially expressed ferroptosis-related genes (DEFRGs). Then, DEFRGs were used for analyzing GO and KEGG enrichment, and perdition of metabolites and drugs. we also constructed a PPI network and identified hub genes and functional modules for the DEFRGs. Subsequently, the hub genes were validated using two independent RNA-seq datasets. Finally, the miRNA-gene interaction networks were predicted in addition to a miRNA-TF co-regulatory network, and important miRNAs and transcription factors (TFs) were highlighted. Findings We found ferroptosis transcriptomic alterations within the hearts of COVID-19 patients. The enrichment analyses suggested the involvement of DEFRGs in the citrate cycle pathway, ferroptosis, carbon metabolism, amino acid biosynthesis, and response to oxidative stress. IL6, CDH1, AR, EGR1, SIRT3, GPT2, VDR, PCK2, VDR, and MUC1 were identified as the ferroptosis-related hub genes. The important miRNAs and TFs were miR-124-3P, miR-26b-5p, miR-183-5p, miR-34a-5p and miR-155-5p; EGR1, AR, IL6, HNF4A, SRC, EZH2, PPARA, and VDR. Conclusion These results provide a useful context and a cellular snapshot of how ferroptosis affects cardiomyocytes (CMs) in COVID-19 patients' hearts. Besides, suppressing ferroptosis seems to be a beneficial therapeutic approach to mitigate heart damage in COVID-19.
Collapse
Affiliation(s)
- Amin Alizadeh Saghati
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Sharifi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Hatamikhah
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marieh Salimi
- Department of Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
8
|
Sultan NS, Shoukry AA, Rashidi FB, Elhakim HKA. Biological Applications, In Vitro Cytotoxicity, Cellular Uptake, and Apoptotic Pathway Studies Induced by Ternary Cu (II) Complexes Involving Triflupromazine with Biorelevant Ligands. Cell Biochem Biophys 2024; 82:2651-2671. [PMID: 39018004 DOI: 10.1007/s12013-024-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
The novel mixed-ligand complexes derived from the parent antidepressant phenothiazine drug triflupromazine (TFP) were synthesized along with the secondary ligands glycine and histidine. [Cu(TFP)(Gly)Cl]·2H2O (1) and [Cu(TFP)(His)Cl]·2H2O (2) were examined for their in vitro biological properties. Cyclic voltammetry was used to study the binding of both complexes to CT-DNA. The two complexes were examined for antiviral, antiparasite, and anti-inflammatory applications. An in vitro cytotoxicity study on two different cancer cell lines, MCF-7, HepG2, and a normal cell line, HSF, shows promising selective cytotoxicity for cancer cells. An investigation of the cell cycle and apoptosis rates was evaluated by flow cytometry with Annexin V-FITC/Propidium Iodide (PI) staining of the treated cells. Gene expression and western blotting were carried out to determine the expression levels of the pro-apoptotic markers and the anti-apoptotic marker Bcl2. The tested complexes decreased cell viability and triggered apoptosis in human tumor cell lines. Molecular docking was also used to simulate Bcl2 inhibition. Finally, complex (2) has potent antitumor effects on human tumor cells, especially against HepG2 cells, as seen in the cellular drug uptake assay. Consequently, complex (2) may prove useful against cancer, especially liver cancer. For further understanding, it needs to be explored in vivo.
Collapse
Affiliation(s)
- Nourhan S Sultan
- Biotechnology department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba K A Elhakim
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
9
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
10
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
11
|
Lopes RM, Souza ACS, Otręba M, Rzepecka-Stojko A, Tersariol ILS, Rodrigues T. Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy. Biochem Pharmacol 2024; 222:116075. [PMID: 38395266 DOI: 10.1016/j.bcp.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Collapse
Affiliation(s)
- Rayssa M Lopes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Ana Carolina S Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Michał Otręba
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Ivarne L S Tersariol
- Departament of Molecular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
12
|
Pintos-Rodríguez S, Visos-Varela I, Rodríguez-Fernández A, Zapata-Cachafeiro M, Piñeiro-Lamas M, Herdeiro MT, García-Álvarez RM, Figueiras A, Salgado-Barreira Á. Outpatient Antipsychotic Use and Severe COVID-19: Avoiding the Impact of Age in a Real-World Data Study. Int J Neuropsychopharmacol 2024; 27:pyae020. [PMID: 38600711 PMCID: PMC11059787 DOI: 10.1093/ijnp/pyae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The association between use of antipsychotics and COVID-19 outcomes is inconsistent, which may be linked to use of these drugs in age-related diseases. Furthermore, there is little evidence regarding their effect in the nongeriatric population. We aim to assess the association between antipsychotic use and risk of disease progression and hospitalization due to COVID-19 among the general population, stratifying by age. METHODS We conducted a population-based, multiple case-control study to assess risk of hospitalization, with cases being patients with a PCR(+) test who required hospitalization and controls being individuals without a PCR(+) test; and risk of progression to hospitalization, with cases being the same as those used in the hospitalization substudy and controls being nonhospitalized PCR(+) patients. We calculated adjusted odds-ratios (aOR) and 95% confidence intervals (CI), both overall and stratified by age. RESULTS Antipsychotic treatment in patients younger than 65 years was not associated with a higher risk of hospitalization due to COVID-19 (aOR 0.94 [95%CI = 0.69-1.27]) and disease progression among PCR(+) patients (aOR 0.96 [95%CI = 0.70-1.33]). For patients aged 65 years or older, however, there was a significant, increased risk of hospitalization (aOR 1.58 [95% CI = 1.38-1.80]) and disease progression (aOR 1.31 [95% CI = 1.12-1.55]). CONCLUSIONS The results of our large-scale real-world data study suggest that antipsychotic use is not associated with a greater risk of hospitalization due to COVID-19 and progression to hospitalization among patients younger than 65 years. The effect found in the group aged 65 years or older might be associated with off-label use of antipsychotics.
Collapse
Affiliation(s)
- Samuel Pintos-Rodríguez
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Visos-Varela
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Almudena Rodríguez-Fernández
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maruxa Zapata-Cachafeiro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Piñeiro-Lamas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Teresa Herdeiro
- Department of Medical Sciences, iBiMED-Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Rosa María García-Álvarez
- Santiago de Compostela Health Area, Galician Health Service (Servizo Galego de Saúde - SERGAS), Santiago de Compostela, Spain
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Adolfo Figueiras
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Salgado-Barreira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health - CIBERESP), Madrid, Spain
- Department of Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Tausk F. Finally, successful interventions to ameliorate cutaneous infestations. J DERMATOL TREAT 2024; 35:2326655. [PMID: 38465790 DOI: 10.1080/09546634.2024.2326655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Francisco Tausk
- Department of Dermatology, Allergy, Immunology and Rheumatology University of Rochester, Rochester, NY, USA
| |
Collapse
|
14
|
Prajapat SK, Mishra L, Khera S, Owusu SD, Ahuja K, Sharma P, Choudhary E, Chhabra S, Kumar N, Singh R, Kaushal PS, Mahajan D, Banerjee A, Motiani RK, Vrati S, Kalia M. Methotrimeprazine is a neuroprotective antiviral in JEV infection via adaptive ER stress and autophagy. EMBO Mol Med 2024; 16:185-217. [PMID: 38177535 PMCID: PMC10897192 DOI: 10.1038/s44321-023-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Collapse
Affiliation(s)
- Surendra K Prajapat
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sakshi Khera
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Shadrack D Owusu
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67000, Strasbourg, France
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Puja Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Eira Choudhary
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajan Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Arup Banerjee
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
15
|
Shao WB, Liao YM, Luo RS, Ji J, Xiao WL, Zhou X, Liu LW, Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:4231-4243. [PMID: 37345486 DOI: 10.1002/ps.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 μg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 μg/mL) and ribavirin (557.47 μg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
16
|
González-González A, Vázquez C, Encalada R, Saavedra E, Vázquez-Jiménez LK, Ortiz-Pérez E, Bolognesi ML, Rivera G. Phenothiazine-based virtual screening, molecular docking, and molecular dynamics of new trypanothione reductase inhibitors of Trypanosoma cruzi. Mol Inform 2023; 42:e2300069. [PMID: 37490403 DOI: 10.1002/minf.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Phenothiazine derivatives can unselectively inhibit the trypanothione-dependent antioxidant system enzyme trypanothione reductase (TR). A virtual screening of 2163 phenothiazine derivatives from the ZINC15 and PubChem databases docked on the active site of T. cruzi TR showed that 285 compounds have higher affinity than the natural ligand trypanothione disulfide. 244 compounds showed higher affinity toward the parasite's enzyme than to its human homolog glutathione reductase. Protein-ligand interaction profiling predicted that the main interactions for the top scored compounds were with residues important for trypanothione disulfide binding: Phe396, Pro398, Leu399, His461, Glu466, and Glu467, particularly His461, which participates in catalysis. Two compounds with the desired profiles, ZINC1033681 (Zn_C687) and ZINC10213096 (Zn_C216), decreased parasite growth by 20 % and 50 %, respectively. They behaved as mixed-type inhibitors of recombinant TR, with Ki values of 59 and 47 μM, respectively. This study provides a further understanding of the potential of phenothiazine derivatives as TR inhibitors.
Collapse
Affiliation(s)
- Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, México
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, México
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, México
| | - María Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, México
| |
Collapse
|
17
|
Tendilla-Beltrán H, Carbajal-Rimoldi LA, Flores F, Gómez-Mendoza LE, Loaiza G, Flores G. Antipsychotics modified COVID-19 prevalence in hospitalized patients diagnosed with mental illnesses. Gen Hosp Psychiatry 2023; 84:250-252. [PMID: 37098446 PMCID: PMC10116153 DOI: 10.1016/j.genhosppsych.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Affiliation(s)
- Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | | | | | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
18
|
Otręba M, Stojko J, Rzepecka-Stojko A. Phenothiazine derivatives and their impact on the necroptosis and necrosis processes. A review. Toxicology 2023; 492:153528. [PMID: 37127180 DOI: 10.1016/j.tox.2023.153528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The current review focuses on the effect of phenothiazine derivatives, tested in vitro, on necrosis and necroptosis, the latter constitutes one of the kinds of programmed cell death. Necroptosis is a necrotic and inflammatory type of programmed cell death. Phenothiazines are D1 and D2-like family receptor antagonists, which are used in the treatment of schizophrenia. Necroptosis begins from TNF-α, whose synthesis is stimulated by dopamine receptors, thus it can be concluded that phenothiazine derivatives may modulate necroptosis. We identified 19 papers reporting in vitro assays of necroptosis and necrosis in which phenothiazine derivatives, and both normal and cancer cell lines were used. Chlorpromazine, fluphenazine, levomepromazine, perphenazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate necroptosis and necrosis. The type of a drug, concentration and a cell line have an impact on the ultimate effect. Unfortunately, the authors confirmed both processes on the basis of TNF-α and ATP levels as well as the final steps of necrosis/necroptosis related to membrane permeability (PI staining, LDH release, and HMGB1 amount), which makes it impossible to understand the complete mechanism of phenothiazines impact on necroptosis and necrosis. Studies analyzing the effect of phenothiazines on RIPK1, RIPK3, or MLKL has not been performed yet. Only the analysis of the expression of those proteins as well as necrosis and necroptosis inhibitors can help us to comprehend how phenothiazine derivatives act, and how to improve their therapeutic potential.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogorska 30, 41-200 Sosnowiec, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland.
| |
Collapse
|
19
|
Otręba M, Stojko J, Rzepecka-Stojko A. The role of phenothiazine derivatives in autophagy regulation: A systematic review. J Appl Toxicol 2023; 43:474-489. [PMID: 36165981 DOI: 10.1002/jat.4397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
In this review, we summarized the current literature on the impact of phenothiazine derivatives on autophagy in vitro. Phenothiazines are antipsychotic drugs used in the treatment of schizophrenia, which is related to altered neurotransmission and dysregulation of neuronal autophagy. Thus, phenothiazine derivatives can impact autophagy. We identified 35 papers, where the use of the phenothiazines in the in vitro autophagy assays on normal and cancer cell lines, Caenorhabditis elegans, and zebrafish were discussed. Chlorpromazine, fluphenazine, mepazine, methotrimeprazine, perphenazine, prochlorperazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate autophagy. Stimulation of autophagy by phenothiazines may be either mammalian target of rapamycin (mTOR)-dependent or mTOR-independent. The final effect depends on the used concentration as well as the cell line. A further investigation of the mechanisms of autophagy regulation by phenothiazine derivatives is required to understand the biological actions and to increase the therapeutic potential of this class of drugs.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
20
|
Zhang R, Sun C, Han Y, Huang L, Sheng H, Wang J, Zhang Y, Lai J, Yuan J, Chen X, Jiang C, Wu F, Wang J, Fan X, Wang J. Neutrophil autophagy and NETosis in COVID-19: perspectives. Autophagy 2023; 19:758-767. [PMID: 35951555 PMCID: PMC9980466 DOI: 10.1080/15548627.2022.2099206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has caused substantial losses worldwide in people's lives, health, and property. Currently, COVID-19 is still prominent worldwide without any specific drug treatment. The SARS-CoV-2 pathogen is the cause of various systemic diseases, mainly acute pneumonia. Within the pathological process, neutrophils are recruited to infected sites, especially in the lungs, for the first stage of removing invading SARS-CoV-2 through a range of mechanisms. Macroautophagy/autophagy, a conserved autodegradation process in neutrophils, plays a crucial role in the neutrophil phagocytosis of pathogens. NETosis refers to neutrophil cell death, while auto-inflammatory factors and antigens release NETs. This review summarizes the latest research progress and provides an in-depth explanation of the underlying mechanisms of autophagy and NETosis in COVID-19. Furthermore, after exploring the relationship between autophagy and NETosis, we discuss potential targets and treatment options. This review keeps up with the latest research on COVID-19 from neutrophil autophagy and NETosis with a new perspective, which can guide the urgent development of antiviral drugs and provide guidance for the clinical treatment of COVID-19.Abbreviations: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; AP: autophagosome; ARDS: acute respiratory distress syndrome; ATG: autophagy related; BECN1: beclin 1; cfDNA: cell-free DNA; COVID-19: coronavirus disease 2019; CQ: chloroquine; DMVs: double-membrane vesicles; ELANE/NE: elastase, neutrophil expressed; F3: coagulation factor III, tissue factor; HCQ: hydroxychloroquine; MAP1LC3/LC3: microtubule associated protein 1 light chain of 3; MPO: myeloperoxidase; MTORC1: mechanistic target of rapamycin kinase complex 1; NETs: neutrophil traps; NSP: nonstructural protein; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SKP2: S-phase kinase associated protein 2; TCC: terminal complement complex; ULK1: unc-51 like.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Sun
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunze Han
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Honghui Sheng
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuqing Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jonathan Lai
- Premed track majoring in Biology, Baylor University, Waco, Texas, USA
| | - Jiahao Yuan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fuyuan Wu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaochong Fan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
21
|
Cai X, Shi W, Lian J, Zhang G, Cai Y, Zhu L. Characterization of immune landscape and development of a novel N7-methylguanine-related gene signature to aid therapy in recurrent aphthous stomatitis. Inflamm Res 2023; 72:133-148. [PMID: 36352034 DOI: 10.1007/s00011-022-01665-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Recurrent aphthous stomatitis (RAS) is the most common inflammatory disease of the oral mucosa resulting in an impaired life quality and even leading to tumors in susceptible populations. N7-Methylguanine (m7G) plays a vital role in various cellular activities but has not yet been investigated in RAS. We aimed at picturing the immune landscape and constructing an m7G-related gene signature, and investigating candidate drugs and gene-disease association to aid therapy for RAS. METHODS For our study, m7G-related differentially expressed genes (DEGs) were screened. We outlined the immune microenvironment and studied the correlations between the m7G-related DEGs and immune cells/pathways. We performed functional enrichment analyses and constructed the protein-protein interaction (PPI) and multifactor regulatory network in RAS. The m7G-related hub genes were extracted to formulate the corresponding m7G predictive signature. RESULTS We obtained 11 m7G-related DEGs and studied a comprehensive immune infiltration landscape, which indicated several immune markers as possible immunotherapeutic targets. The PPI and multifactor regulatory network was constructed and 4 hub genes (DDX58, IFI27, IFIT5, and PML) were identified, followed by validation of the corresponding m7G predictive signature for RAS. GO and KEGG analyses revealed the participation of JAK-STAT and several immune-related pathways. Finally, we suggested candidate drugs and gene-disease associations for potential RAS medical interventions. CONCLUSIONS The present study pictured a comprehensive immune infiltration landscape and suggested that m7G played a vital role in RAS through immune-related pathways. This study provided new insight for the future investigation of the mechanisms and therapeutic strategies for RAS.
Collapse
Affiliation(s)
- Xueyao Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China
| | - Wenjun Shi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China
| | - Jie Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China
| | - Yuchen Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China.
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi-Zao-Ju Road, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
22
|
Phenothiazines inhibit SARS-CoV-2 cell entry via a blockade of spike protein binding to neuropilin-1. Antiviral Res 2023; 209:105481. [PMID: 36481388 PMCID: PMC9721373 DOI: 10.1016/j.antiviral.2022.105481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.
Collapse
|
23
|
Hasannejad-Asl B, Pooresmaeil F, Takamoli S, Dabiri M, Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front Pharmacol 2022; 13:1072685. [PMID: 36425579 PMCID: PMC9679422 DOI: 10.3389/fphar.2022.1072685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
One of the main obstacles to most medication administrations (such as the vaccine constructs) is the cellular membrane's inadequate permeability, which reduces their efficiency. Cell-penetrating peptides (CPPs) or protein transduction domains (PTDs) are well-known as potent biological nanocarriers to overcome this natural barrier, and to deliver membrane-impermeable substances into cells. The physicochemical properties of CPPs, the attached cargo, concentration, and cell type substantially influence the internalization mechanism. Although the exact mechanism of cellular uptake and the following processing of CPPs are still uncertain; but however, they can facilitate intracellular transfer through both endocytic and non-endocytic pathways. Improved endosomal escape efficiency, selective cell targeting, and improved uptake, processing, and presentation of antigen by antigen-presenting cells (APCs) have been reported by CPPs. Different in vitro and in vivo investigations using CPP conjugates show their potential as therapeutic agents in various medical areas such as infectious and non-infectious disorders. Effective treatments for a variety of diseases may be provided by vaccines that can cooperatively stimulate T cell-mediated immunity (T helper cell activity or cytotoxic T cell function), and immunologic memory. Delivery of antigen epitopes to APCs, and generation of a potent immune response is essential for an efficacious vaccine that can be facilitated by CPPs. The current review describes the delivery of numerous vaccine components by various CPPs and their immunostimulatory properties.
Collapse
Affiliation(s)
- Behnam Hasannejad-Asl
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pooresmaeil
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mehran Dabiri
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Edinoff AN, Armistead G, Rosa CA, Anderson A, Patil R, Cornett EM, Murnane KS, Kaye AM, Kaye AD. Phenothiazines and their Evolving Roles in Clinical Practice: A Narrative Review. Health Psychol Res 2022; 10:38930. [PMID: 36425230 PMCID: PMC9680852 DOI: 10.52965/001c.38930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
Phenothiazines, a diverse class of drugs, can be used to treat multiple mental health and physical conditions. Phenothiazines have been used for decades to treat mental illnesses, including schizophrenia, mania in bipolar disorder, and psychosis. Additionally, these drugs offer relief for physical illnesses, including migraines, hiccups, nausea, and vomiting in both adults and children. Further research is needed to prove the efficacy of phenothiazines in treating physical symptoms. Phenothiazines are dopaminergic antagonists that inhibit D2 receptors with varying potency. High potency phenothiazines such as perphenazine are used to treat various psychiatric conditions such as the positive symptoms of schizophrenia, the symptoms of psychosis, and mania that can occur with bipolar disorder. Low/mid potency phenothiazines such as chlorpromazine antipsychotic drugs that have been used to treat schizophrenia and schizophrenia-like disorders since the 1950s and are utilized in numerous disease states. The present investigation aims to elucidate the effects of phenothiazines in clinical practice.
Collapse
Affiliation(s)
- Amber N Edinoff
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport
| | - Grace Armistead
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport
| | - Christina A Rosa
- Department of Psychology, University of California, Santa Barbara
| | | | - Ronan Patil
- School of Medicine, The George Washington University
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport
| | - Kevin S Murnane
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport; Louisiana State University Health Shreveport, Department of Pharmacology, Toxicology & Neuroscience; Louisiana Addiction Research Center
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport
| |
Collapse
|
25
|
Testing the Protective Effects of Sulfobutylether-Βeta-Cyclodextrin (SBECD) and Sugammadex against Chlorpromazine-Induced Acute Toxicity in SH-SY5Y Cell Line and in NMRI Mice. Pharmaceutics 2022; 14:pharmaceutics14091888. [PMID: 36145637 PMCID: PMC9504268 DOI: 10.3390/pharmaceutics14091888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-β-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand–CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.
Collapse
|
26
|
Members of Venezuelan Equine Encephalitis complex entry into host cells by clathrin-mediated endocytosis in a pH-dependent manner. Sci Rep 2022; 12:14556. [PMID: 36008558 PMCID: PMC9411563 DOI: 10.1038/s41598-022-18846-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 01/20/2023] Open
Abstract
Pixuna virus (PIXV) and Río Negro virus (RNV) are mosquito-borne alphaviruses belonging to the Venezuelan Equine Encephalitis (VEE) complex, which includes pathogenic epizootic and enzootic subtypes responsible for life-threatening diseases in equines. Considering that the first steps in viral infection are crucial for the efficient production of new progeny, the aim of this study was to elucidate the early events of the replication cycle of these two viruses. To this end, we used chemical inhibitors and the expression of dominant-negative constructs to study the dependence of clathrin and endosomal pH on PIXV and RNV internalization mechanisms. We demonstrated that both viruses are internalized primarily via clathrin-mediated endocytosis, where the low pH in endosomes is crucial for viral replication. Contributing knowledge regarding the entry route of VEE complex members is important to understand the pathogenesis of these viruses and also to develop new antiviral strategies.
Collapse
|
27
|
Tao L, Qing Y, Cui Y, Shi D, Liu W, Chen L, Cao Y, Dai Z, Ge X, Zhang L. Lysosomal membrane permeabilization mediated apoptosis involve in perphenazine-induced hepatotoxicity in vitro and in vivo. Toxicol Lett 2022; 367:76-87. [PMID: 35914675 DOI: 10.1016/j.toxlet.2022.07.814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
Abstract
Antipsychotic drugs represent a class of lysosomotropic drugs widely used in clinical practice. However, the hepatotoxicity of these drugs has been reported in recent years. Therefore, understanding the changes in cellular homeostasis mediated by these drugs is of great significance for revealing the true mechanisms underlying hepatotoxicity. Perphenazine is a classical antipsychotic drug that can reportedly induce extrapyramidal and sympatholytic side effects. The present research focuses on the toxicity effect of perphenazine on normal human hepatocytes. To assess the hepatotoxicity of continuous administration of perphenazine and investigate potential mechanisms related to apoptosis, human normal L02 hepatocytes were exposed to 10-40μM perphenazine in vitro. The results showed that perphenazine inhibited cell viability in a concentration and time-dependent manner. Furthermore, 30μM perphenazine induced intense lysosome vacuolation, impaired lysosomal membrane, and induced lysosomal membrane permeabilization (LMP), ultimately triggering lysosomal cell death in L02 cells. Knockdown cathepsin D(CTSD) also ameliorated perphenazine-induced liver injury via the inhibition of LMP. In vivo, ICR mice received intragastric administration of 10-180mg/kg B.W. perphenazine every other day for 21 days. 180mg/kg perphenazine significantly increased histological injury and aminotransferases compared with control. Taken together, our findings suggest that perphenazine can trigger hepatotoxicity through lysosome disruption both in vitro and in vivo.
Collapse
Affiliation(s)
- Lei Tao
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Yingjie Qing
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 211198, China.
| | - Yingyue Cui
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing 211198, China.
| | - Da Shi
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Wenting Liu
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Lei Chen
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Yu Cao
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Zhen Dai
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Xiaoming Ge
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| | - Ling Zhang
- Nanjing Institute for Food and Drug Control, Jiangsu, Nanjing 211198, China.
| |
Collapse
|
28
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
29
|
Chlorpromazine, a Clinically Approved Drug, Inhibits SARS-CoV-2 Nucleocapsid-Mediated Induction of IL-6 in Human Monocytes. Molecules 2022; 27:molecules27123651. [PMID: 35744777 PMCID: PMC9228867 DOI: 10.3390/molecules27123651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic, caused by the rapidly spreading SARS-CoV-2 virus, led to the unprecedented mobilization of scientists, resulting in the rapid development of vaccines and potential pharmaceuticals. Although COVID-19 symptoms are moderately severe in most people, in some cases the disease can result in pneumonia and acute respiratory failure as well as can be fatal. The severe course of COVID-19 is associated with a hyperinflammatory state called a cytokine storm. One of the key cytokines creating a proinflammatory environment is IL-6, which is secreted mainly by monocytes and macrophages. Therefore, this cytokine has become a target for some therapies that inhibit its biological action; however, these therapies are expensive, and their availability is limited in poorer countries. Thus, new cheaper drugs that can overcome the severe infections of COVID-19 are needed. Here, we show that chlorpromazine inhibits the expression and secretion of IL-6 by monocytes activated by SARS-CoV-2 virus nucleocapsid protein and affects the activity of NF-κB and MEK/ERK signaling. Our results, including others, indicate that chlorpromazine, which has been used for several decades as a neuroleptic, exerts antiviral and immunomodulatory activity, is safe and inexpensive, and might be a desirable drug to support the therapy of patients with COVID-19.
Collapse
|
30
|
Peng H, Ding C, Jiang L, Tang W, Liu Y, Zhao L, Yi Z, Ren H, Li C, He Y, Zheng X, Tang H, Chen Z, Qi Z, Zhao P. Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1181-1197. [PMID: 34962614 PMCID: PMC8713546 DOI: 10.1007/s11427-021-2031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Cuiling Ding
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Liangliang Jiang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Wanda Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Yan Liu
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Lanjuan Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Chong Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Xu Zheng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhihui Chen
- Department of Infectious Disease, Changhai Hospital, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| |
Collapse
|
31
|
Milenina LS, Krutetskaya ZI, Antonov VG, Krutetskaya NI. Sigma-1 Receptor Ligands Chlorpromazine and Trifluoperazine Attenuate Ca 2+ Responses in Rat Peritoneal Macrophages. CELL AND TISSUE BIOLOGY 2022; 16:233-244. [PMID: 35668825 PMCID: PMC9136207 DOI: 10.1134/s1990519x22030075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1 receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor ligands, phenothiazine neuroleptics chlorpromazine and trifluoperazine, on Ca2+ responses induced by inhibitors of endoplasmic Ca2+-ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-containing immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM microfluorimetry we showed for the first time that chlorpromazine and trifluoperazine inhibit both phases of Ca2+ responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macrophages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macrophages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent Ca2+entry in macrophages.
Collapse
Affiliation(s)
- L. S. Milenina
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Z. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - V. G. Antonov
- Department of Clinical Biochemistry and Laboratory Diagnostics, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - N. I. Krutetskaya
- Department of Biophysics, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
32
|
Yuan W, Dong X, Chen L, Lei X, Zhou Z, Guo L, Wang J. Screening for inhibitors against SARS-CoV-2 and its variants. BIOSAFETY AND HEALTH 2022; 4:186-192. [PMID: 35574239 PMCID: PMC9077799 DOI: 10.1016/j.bsheal.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health; therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original strain (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insights into the development of novel therapeutics.
Collapse
|
33
|
Repurposing drugs targeting epidemic viruses. Drug Discov Today 2022; 27:1874-1894. [DOI: 10.1016/j.drudis.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
|
34
|
Mueller JK, Riederer P, Müller WE. Neuropsychiatric Drugs Against COVID-19: What is the Clinical
Evidence? PHARMACOPSYCHIATRY 2022; 55:7-15. [DOI: 10.1055/a-1717-2381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractSince the beginning of the coronavirus disease (COVID)-19 pandemic, the need for
effective treatments for COVID-19 led to the idea of
“repurposing” drugs for antiviral treatment. Several
antipsychotics and antidepressants have been tested for in vitro activity
against the severe acute respiratory syndrome coronavirus 2. Chlorpromazine,
other phenothiazine antipsychotics, and the antidepressant fluoxetine were found
to be rather potent in these studies. However, whether effective plasma
concentrations can be obtained with clinically accepted doses of these drugs is
not clear. Data of COVID-19 patients are not yet available but several clinical
studies are currently underway.The specific serotonin reuptake inhibitor fluvoxamine is a potent Sigma-1
receptor agonist and reduces inflammation in animal models of cytokine-stress.
Accordingly, fluvoxamine treatment was superior to placebo in reducing impaired
respiratory function and other symptoms of inflammation in COVID-19 patients in
a placebo-controlled clinical study and another open clinical trial. The
beneficial effects of fluvoxamine on the course of COVID-19 were recently
confirmed in a large placebo-controlled double-blind trial with several hundred
patients.Inflammation represents a major risk factor for many psychiatric disorders which
explains the high susceptibilitiy of COVID-19 patients for psychiatric diseases.
Many antidepressants and antipsychotics possess anti-inflammatory properties
independent of sigma-1 activity which might be important to reduce psychiatric
symptoms of COVID-19 patients and to improve respiratory dysfunction and other
consequences of inflammation. This might explain the rather unspecific benefit
which has been reported for several cohorts of COVID-19 patients treated with
different psychotropic drugs.
Collapse
Affiliation(s)
- Juliane K. Mueller
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy,
University Hospital Frankfurt, Frankfurt/M, Germany
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy,
University Hospital Würzburg, Würzburg, Germany
- University of Southern Denmark Odense, J.B. Winslows Vey Odense,
Denmark
| | - Walter E. Müller
- Department of Pharmacology und Clinical Pharmacy, University Frankfurt,
Frankfurt/M, Germany
| |
Collapse
|
35
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
36
|
Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010276. [PMID: 35011508 PMCID: PMC8746661 DOI: 10.3390/molecules27010276] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.
Collapse
|
37
|
Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021; 169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.
Collapse
|
38
|
Javelot H, Straczek C, Meyer G, Gitahy Falcao Faria C, Weiner L, Drapier D, Fakra E, Fossati P, Weibel S, Dizet S, Langrée B, Masson M, Gaillard R, Leboyer M, Llorca PM, Hingray C, Haffen E, Yrondi A. Psychotropics and COVID-19: An analysis of safety and prophylaxis. L'ENCEPHALE 2021; 47:564-588. [PMID: 34548153 PMCID: PMC8410507 DOI: 10.1016/j.encep.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
The use of psychotropics during the COVID-19 pandemic has raised two questions, in order of importance: first, what changes should be made to pharmacological treatments prescribed to mental health patients? Secondly, are there any positive side effects of these substances against SARS-CoV-2? Our aim was to analyze usage safety of psychotropics during COVID-19; therefore, herein, we have studied: (i) the risk of symptomatic complications of COVID-19 associated with the use of these drugs, notably central nervous system activity depression, QTc interval enlargement and infectious and thromboembolic complications; (ii) the risk of mistaking the iatrogenic impact of psychotropics with COVID-19 symptoms, causing diagnostic error. Moreover, we provided a summary of the different information available today for these risks, categorized by mental health disorder, for the following: schizophrenia, bipolar disorder, anxiety disorder, ADHD, sleep disorders and suicidal risk. The matter of psychoactive substance use during the pandemic is also analyzed in this paper, and guideline websites and publications for psychotropic treatments in the context of COVID-19 are referenced during the text, so that changes on those guidelines and eventual interaction between psychotropics and COVID-19 treatment medication can be reported and studied. Finally, we also provide a literature review of the latest known antiviral properties of psychotropics against SARS-CoV-2 as complementary information.
Collapse
Affiliation(s)
- H Javelot
- Établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Laboratoire de toxicologie et pharmacologie neuro cardiovasculaire, centre de recherche en biomédecine de Strasbourg, université de Strasbourg, 1, rue Eugène-Boeckel, 67000 Strasbourg, France.
| | - C Straczek
- Département de pharmacie, CHU d'Henri-Mondor, université Paris Est Créteil (UPEC), AP-HP, 1, rue Gustave-Eiffel, 94000 Créteil, France; Inserm U955, institut Mondor de recherche biomédical, neuropsychiatrie translationnelle, 8, rue du Général-Sarrail, 94000 Créteil, France
| | - G Meyer
- Service pharmacie, établissement public de santé Alsace Nord, 141, avenue Strasbourg, 67170 Brumath, France; Service pharmacie, CHU de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - C Gitahy Falcao Faria
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), avenue Pedro-Calmon, 550 - Cidade Universitária da Universidade Federal do Rio de Janeiro, 21941-901 Rio de Janeiro, Brazil
| | - L Weiner
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - D Drapier
- Pôle hospitalo-universitaire de psychiatrie adulte, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; EA 4712, comportements et noyaux gris centraux, université de Rennes 1, 2, avenue du Professeur Léon-Bernard, CS 34317, campus santé de Villejean, 35043 Rennes cedex, France
| | - E Fakra
- Pôle universitaire de psychiatrie, CHU de Saint-Étienne, 37, rue Michelet, 42000 Saint-Étienne, France
| | - P Fossati
- Inserm U1127, ICM, service de psychiatrie adultes, groupe hospitalier pitié Salpêtrière, Sorbonne université, AP-HP, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Weibel
- Clinique de psychiatrie, hôpitaux universitaire de Strasbourg, 1, porte de L'Hôpital, 67000 Strasbourg, France
| | - S Dizet
- Centre de ressources et d'expertise en psychopharmacologie (CREPP) Bourgogne Franche-Comté, Chalon-sur-Saône, France; Service Pharmacie, CHS de Sevrey, 55, rue Auguste-Champio, 71100 Sevrey, France
| | - B Langrée
- Service pharmacie, centre hospitalier Guillaume-Régnier, rue du Moulin-de-Joué, 35700 Rennes, France; Clinique du Château de Garches, Nightingale Hospitals-Paris, 11, bis rue de la Porte-Jaune, 92380 Garches, France
| | - M Masson
- SHU, GHU psychiatrie et neurosciences, 1, rue Cabanis, 75014 Paris, France; GHU psychiatrie et neurosciences, université de Paris, Paris, France
| | - R Gaillard
- Conseil national des universités (CNU), 1, rue Cabanis, 75014 Paris, France
| | - M Leboyer
- Inserm, DMU IMPACT, IMRB, translational neuropsychiatry, fondation FondaMental, hôpitaux universitaires « H. Mondor », université Paris Est Créteil (UPEC), AP-HP, 40, rue de Mesly, 94000 Créteil, France; CHU de Clermont-Ferrand, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - P M Llorca
- Université Clermont-Auvergne, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France; Pôle hospitalo-universitaire de psychiatrie d'adultes du Grand Nancy, centre psychothérapique de Nancy, 1, rue Docteur Archambault, 54520 Laxou, France
| | - C Hingray
- Département de neurologie, CHU de Nancy, 25, rue Lionnois, 54000 Nancy, France; CIC-1431 Inserm, service de psychiatrie, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25000 Besançon, France
| | - E Haffen
- Laboratoire de neurosciences, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - A Yrondi
- Unité ToNIC, UMR 1214 CHU Purpan-Pavillon Baudot, place du Dr Joseph Baylac, 31024 Toulouse cedex 3, France
| |
Collapse
|
39
|
Empel A, Bak A, Kozik V, Latocha M, Cizek A, Jampilek J, Suwinska K, Sochanik A, Zieba A. Towards Property Profiling: SYNTHESIS and SAR Probing of New Tetracyclic Diazaphenothiazine Analogues. Int J Mol Sci 2021; 22:ijms222312826. [PMID: 34884631 PMCID: PMC8658022 DOI: 10.3390/ijms222312826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
A series of new tertiary phenothiazine derivatives containing a quinoline and a pyridine fragment was synthesized by the reaction of 1-methyl-3-benzoylthio-4-butylthioquinolinium chloride with 3-aminopyridine derivatives bearing various substituents on the pyridine ring. The direction and mechanism of the cyclization reaction of intermediates with the structure of 1-methyl-4-(3-pyridyl)aminoquinolinium-3-thiolate was related to the substituents in the 2- and 4-pyridine position. The structures of the compounds were analyzed using 1H, 13C NMR (COSY, HSQC, HMBC) and X-ray analysis, respectively. Moreover, the antiproliferative activity against tumor cells (A549, T47D, SNB-19) and a normal cell line (NHDF) was tested. The antibacterial screening of all the compounds was conducted against the reference and quality control strain Staphylococcus aureus ATCC 29213, three clinical isolates of methicillin-resistant S. aureus (MRSA). In silico computation of the intermolecular similarity was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of structure/property-related descriptors calculated for the novel tetracyclic diazaphenothiazine derivatives. The distance-oriented property evaluation was correlated with the experimental anticancer activities and empirical lipophilicity as well. The quantitative shape-based comparison was conducted using the CoMSA method in order to indicate the potentially valid steric, electronic and lipophilic properties. Finally, the numerical sampling of similarity-related activity landscape (SALI) provided a subtle picture of the SAR trends.
Collapse
Affiliation(s)
- Anna Empel
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland;
- Correspondence: (A.B.); (A.Z.)
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland;
| | - Malgorzata Latocha
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 9, 41-200 Sosnowiec, Poland;
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946/1, 61242 Brno, Czech Republic;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia;
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Kinga Suwinska
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, K. Woycickiego 1/3, 01-938 Warszawa, Poland;
| | - Aleksander Sochanik
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Wybrzeże AK 15, 44-101 Gliwice, Poland;
| | - Andrzej Zieba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland;
- Correspondence: (A.B.); (A.Z.)
| |
Collapse
|
40
|
Lucchetta M, Pellegrini M. Drug repositioning by merging active subnetworks validated in cancer and COVID-19. Sci Rep 2021; 11:19839. [PMID: 34615934 PMCID: PMC8494853 DOI: 10.1038/s41598-021-99399-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
Computational drug repositioning aims at ranking and selecting existing drugs for novel diseases or novel use in old diseases. In silico drug screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs and diseases in the context of a large gene co-expression network. Experiments with four benchmark diseases demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Application of DrugMerge to COVID-19 found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge can mimic human expert judgment.
Collapse
Affiliation(s)
- Marta Lucchetta
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, 53100, Italy
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, Pisa, 56124, Italy.
| |
Collapse
|
41
|
Golden SR, Rosenstein DL, Belhorn T, Blatt J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev Technol 2021; 19:373-385. [PMID: 34375133 DOI: 10.1089/adt.2021.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the possible role of the antipsychotic chlorpromazine and the antidepressant fluvoxamine as anti-coronavirus disease 2019 (COVID-19) agents. The objective of this narrative review is to explore what is known about the activity of psychotropic medications against viruses in addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PubMed was queried for "drug repurposing, antiviral activity," and for "antiviral activity" with "psychotropic drugs" and individual agents, through November 2020. Of more than 100 psychotropic agents, 37 drugs, including 27 with a history of pediatric use were identified, which had been studied in the preclinical setting and found to have activity against viruses which are human pathogens. Effects were evaluated by type of virus and by category of psychotropic agent. Activity was identified both against viruses known to cause epidemics such as SARS-CoV-2 and Ebola and against those that are the cause of rare disorders such as Human Papillomatosis Virus-related respiratory papillomatosis. Individual drugs and classes of psychotropics often had activity against multiple viruses, with promiscuity explained by shared viral or cellular targets. Safety profiles of psychotropics may be more tolerable in this context than when they are used long-term in the setting of psychiatric illness. Nonetheless, translation of in vitro results to the clinical arena has been slow. Psychotropic medications as a class deserve further study, including in clinical trials for repurposing as antiviral drugs for children and adults.
Collapse
Affiliation(s)
- Shea R Golden
- Department of Neuroscience, Middlebury College, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donald L Rosenstein
- Department of Psychiatry, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tom Belhorn
- Department of Pediatric Infectious Diseases, and the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Department of Pediatric Hematology Oncology, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
42
|
Chen F, Shi Q, Pei F, Vogt A, Porritt RA, Garcia G, Gomez AC, Cheng MH, Schurdak ME, Liu B, Chan SY, Arumugaswami V, Stern AM, Taylor DL, Arditi M, Bahar I. A systems-level study reveals host-targeted repurposable drugs against SARS-CoV-2 infection. Mol Syst Biol 2021; 17:e10239. [PMID: 34339582 PMCID: PMC8328275 DOI: 10.15252/msb.202110239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Qingya Shi
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- School of MedicineTsinghua UniversityBeijingChina
| | - Fen Pei
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Andreas Vogt
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Rebecca A Porritt
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Gustavo Garcia
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Angela C Gomez
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Mary Hongying Cheng
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Mark E Schurdak
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Bing Liu
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine InstituteUniversity of Pittsburgh Medical CenterPittsburghPAUSA
- Division of CardiologyDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical PharmacologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | - Andrew M Stern
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - D Lansing Taylor
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| | - Moshe Arditi
- Department of PediatricsDivision of Pediatric Infectious Diseases and ImmunologyCedars‐Sinai Medical CenterLos AngelesCAUSA
- Biomedical Sciences, Infectious and Immunologic Diseases Research CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Ivet Bahar
- Department of Computational and Systems BiologySchool of MedicineUniversity of PittsburghPittsburghPAUSA
- University of Pittsburgh Drug Discovery InstitutePittsburghPAUSA
| |
Collapse
|
43
|
Sibilio P, Bini S, Fiscon G, Sponziello M, Conte F, Pecce V, Durante C, Paci P, Falcone R, Norata GD, Farina L, Verrienti A. In silico drug repurposing in COVID-19: A network-based analysis. Biomed Pharmacother 2021; 142:111954. [PMID: 34358753 PMCID: PMC8316014 DOI: 10.1016/j.biopha.2021.111954] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The SARS-CoV-2 pandemic is a worldwide public health emergency. Despite the beginning of a vaccination campaign, the search for new drugs to appropriately treat COVID-19 patients remains a priority. Drug repurposing represents a faster and cheaper method than de novo drug discovery. In this study, we examined three different network-based approaches to identify potentially repurposable drugs to treat COVID-19. We analyzed transcriptomic data from whole blood cells of patients with COVID-19 and 21 other related conditions, as compared with those of healthy subjects. In addition to conventionally used drugs (e.g., anticoagulants, antihistaminics, anti-TNFα antibodies, corticosteroids), unconventional candidate compounds, such as SCN5A inhibitors and drugs active in the central nervous system, were identified. Clinical judgment and validation through clinical trials are always mandatory before use of the identified drugs in a clinical setting.
Collapse
Affiliation(s)
- Pasquale Sibilio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy; Fondazione per la Medicina Personalizzata, Via Goffredo Mameli, 3/1, Genova, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy; Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy.
| | - Rosa Falcone
- Phase 1 Unit-Clinical Trial Center Gemelli University Hospital, Rome, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan and Center for the Study of Atherosclerosis, SISA Bassini Hospital, Milan, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic Analysis of Psychotropic and Antihistaminic Drugs in the Light of Experimental Anti-SARS-CoV-2 Activities. Adv Appl Bioinform Chem 2021; 14:71-85. [PMID: 33880039 PMCID: PMC8051956 DOI: 10.2147/aabc.s304649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Objective Based upon clinical observations, we proposed that some psychotropic and antihistaminic drugs could protect psychiatric patients from SARS-CoV-2 infection. This observation is investigated in the light of experimental in vitro data on SARS-CoV-2. Methods SARS-CoV-2 high-throughput screening results are available at the NCATS COVID-19 portal. We investigated the in vitro anti-viral activity of many psychotropic and antihistaminic drugs using chemoinformatics approaches. Results and Discussion We analyze our clinical observations in the light of SARS-CoV-2 experimental screening results and propose that several cationic amphiphilic psychotropic and antihistaminic drugs could protect people from SARS-CoV-2 infection; some of these molecules have very limited adverse effects and could be used as prophylactic drugs. Other cationic amphiphilic drugs used in other disease areas are also highlighted. Recent analyses of patient electronic health records reported by several research groups indicate that some of these molecules could be of interest at different stages of the disease progression. In addition, recently reported drug combination studies further suggest that it might be valuable to associate several cationic amphiphilic drugs. Taken together, these observations underline the need for clinical trials to fully evaluate the potentials of these molecules, some fitting in the so-called category of broad-spectrum antiviral agents. Repositioning orally available drugs that have moderate side effects and should act on molecular mechanisms less prone to drug resistance would indeed be of utmost importance to deal with COVID-19.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- INSERM U1141, NeuroDiderot, Université de Paris, Hôpital Robert-Debré, Paris, F-75019, France
| | - Rajagopal Krishnamoorthy
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Philippe Beaune
- INSERM U1138, Centre de Recherche des Cordeliers, Université de Paris, Paris, 75006, France
| |
Collapse
|
45
|
Otręba M, Sjölander JJ, Grøtli M, Sunnerhagen P. A Small Molecule Targeting Human MEK1/2 Enhances ERK and p38 Phosphorylation under Oxidative Stress or with Phenothiazines. Life (Basel) 2021; 11:297. [PMID: 33807495 PMCID: PMC8066054 DOI: 10.3390/life11040297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Small molecules are routinely used to inhibit protein kinases, but modulators capable of enhancing kinase activity are rare. We have previously shown that the small molecule INR119, designed as an inhibitor of MEK1/2, will enhance the activity of its fission yeast homologue, Wis1, under oxidative stress. To investigate the generality of these findings, we now study the effect of INR119 in human cells under similar conditions. Cells of the established breast cancer line MCF-7 were exposed to H2O2 or phenothiazines, alone or combined with INR119. In line with the previous results in fission yeast, the phosphorylation of the MAPKs ERK and p38 increased substantially more with the combination treatment than by H2O2 or phenothiazines, whereas INR119 alone did not affect phosphorylation. We also measured the mRNA levels of TP53 and BAX, known to be affected by ERK and p38 activity. Similarly, the combination of INR119 and phenothiazines increased both mRNAs to higher levels than for phenothiazines alone. In conclusion, the mechanism of action of INR119 on its target protein kinase may be conserved between yeast and humans.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Johanna Johansson Sjölander
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden; (J.J.S.); (M.G.)
| |
Collapse
|
46
|
Eugene AR, Eugene B, Masiak M, Masiak JS. Head-to-Head Comparison of Sedation and Somnolence Among 37 Antipsychotics in Schizophrenia, Bipolar Disorder, Major Depression, Autism Spectrum Disorders, Delirium, and Repurposed in COVID-19, Infectious Diseases, and Oncology From the FAERS, 2004-2020. Front Pharmacol 2021; 12:621691. [PMID: 33841149 PMCID: PMC8027114 DOI: 10.3389/fphar.2021.621691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: Antipsychotic compounds are known to induce sedation somnolence and have expanded clinical indications beyond schizophrenia to regulatory approval in bipolar disorder, treatment-resistant depression, and is being repurposed in infectious diseases and oncology. However, the medical sciences literature lacks a comprehensive association between sedation and somnolence among a wide-range of antipsychotic compounds. The objective of this study is to assess the disproportionality of sedation and somnolence among thirty-seven typical and atypical antipsychotics. Materials and Methods: Patient adverse drug reactions (ADR) cases were obtained from the United States Food and Drug Administration Adverse Events Reporting System (FAERS) between January 01, 2004 and September 30, 2020 for a wide-array of clinical indications and off-label use of antipsychotics. An assessment of disproportionality were based on cases of sedation and somnolence and calculated using the case/non-case methodology. Statistical analysis resulting in the reporting odds-ratio (ROR) with corresponding 95% confidence intervals (95% CI) were conducted using the R statistical programming language. Results: Throughout the reporting period, there were a total of 9,373,236 cases with 99,251 specific ADRs reporting sedation and somnolence. Zuclopenthixol (n = 224) ROR = 13.3 (95% CI, 11.6–15.3) was most strongly associated of sedation and somnolence and haloperidol decanoate long-acting injection (LAI) was not statistically associated sedation and somnolence. Further, among atypical antipsychotic compounds, tiapride and asenapine were the top two compounds most strongly associated with sedation and somnolence. Comprehensively, the typical antipsychotics ROR = 5.05 (95%CI, 4.97–5.12) had a stronger association with sedation and somnolence when compared to atypical antipsychotics ROR = 4.65 (95%CI, 4.47–4.84). Conclusion: We conducted a head-to-head comparison of thirty-seven antipsychotics and ranked the compounds based on the association of sedation and somnolence from ADR data collected throughout 16 years from the FAERS. The results are informative and with recent interests in repurposing phenothiazine antipsychotics in infectious disease and oncology provides an informative assessment of the compounds during repurposing and in psychopharmacology.
Collapse
Affiliation(s)
- Andy R Eugene
- Independent Neurophysiology Unit, Department of Psychiatry, Medical University of Lublin, Lublin, Poland
| | | | | | - Jolanta Sylwia Masiak
- Independent Neurophysiology Unit, Department of Psychiatry, Medical University of Lublin, Lublin, Poland.,Medical Center, Lublin, Poland.,II Department of Psychiatry and Psychiatric Rehabilitation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
47
|
Booz GW, Zouein FA. Science unites a troubled world: Lessons from the pandemic. Eur J Pharmacol 2020; 890:173696. [PMID: 33130278 PMCID: PMC7598756 DOI: 10.1016/j.ejphar.2020.173696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022]
Abstract
European Journal of Pharmacology has published a special issue entitled Therapeutic targets and pharmacological treatment of COVID-19 that contains more than 30 manuscripts. Scientists from around the world contributed both review articles and original manuscripts that are remarkable in their diversity. Each contribution offers a unique perspective on the current approaches of the discipline called pharmacology. Yet the contributions share an enthusiasm to put forward a fresh viewpoint and make a positive difference by the exchange of ideas during the troubled times of this pandemic. What other enterprise but science can unite so many diverse cultures and nationalities in global uncertainty and discord, and mobilize an effective response against a common enemy. The efforts of science are in stark contrast to those of populism that has introduced division and a self-serving attitude that are not simply ill-matched to tackle the pandemic, but foster its spread and severity. We trust that the readers of European Journal of Pharmacology will discover new ideas and concepts in our special COVID-19 series as members of the scientific community and shared world.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| |
Collapse
|