1
|
Banerjee S, Baidya SK, Ghosh B, Jha T, Adhikari N. Exploring the key structural attributes and chemico-biological interactions of pyridinone-based SARS-CoV-2 3CL pro inhibitors through validated structure-based drug design strategies. Heliyon 2024; 10:e40404. [PMID: 39654708 PMCID: PMC11626027 DOI: 10.1016/j.heliyon.2024.e40404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
The global outbreak of COVID-19 infection is the first pandemic the world has experienced in this 21st century. The novel coronavirus 2019 (nCoV-19) also called the SARS-CoV-2 is the reason behind the severe acute respiratory syndrome (SARS) that led to this worldwide crisis. In this current post-pandemic situation, despite having effective vaccines, the paucity of orally administrable drug molecules for such infections is a major drawback in this current scenario. Among the different viral enzymes, the SARS-CoV-2 3CLpro is an encouraging target for effective drug discovery and development. In this context, the understanding of the requirements of the small molecules at the active site and their interactions is a crucial aspect of such drug candidate development. Here in this study, structure-based pharmacophore model development and molecular docking-dependent 2D-interaction-based and 3D-field-based QSAR studies have been carried out for a set of potential SARS-CoV-2 3CLpro inhibitors. This study exposed the importance of interactions with amino acids of the active site (such as Leu167 and Gln189 amino acid residues) as well as the importance of hydrogen bond acceptor groups at the S2 and S1' pockets. The presence of hydrophobic aromatic features as well as hydrophobic contacts at the S1 and S4 pockets were also found to have a key contribution to the SARS-CoV-2 3CLpro inhibition. Moreover, the screened drug candidate Elobixibat from the structure-based virtual screening also explored promising results as evidenced in MD simulation study and thus, can be a promising drug candidate that can be repurposed to assist in the development of effective anti-SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Fusti-Molnar L. Integrating Quantum Mechanics into Protein-Ligand Docking: Toward Higher Accuracy and Reliability. RESEARCH SQUARE 2024:rs.3.rs-5433993. [PMID: 39678339 PMCID: PMC11643324 DOI: 10.21203/rs.3.rs-5433993/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
I introduce two new methods, QFVina and QFVinardo, for protein-ligand docking that leverage precomputed high-quality conformational libraries with QM-optimized geometries and ab initio DFT-D4-based conformational rankings and strain energies. These methods provide greater accuracy in docking-based virtual screening by addressing the inaccuracies in intramolecular relative energies of conformations, a critical component often misrepresented in flexible ligand docking calculations. I demonstrate that numerous force field-based methods widely used today exhibit substantial errors in conformational relative energies, and that it is unrealistic to expect better accuracy from the faster scoring functions typically employed in docking. Consistent with these findings, I show that traditional flexible ligand docking often produces geometries with significant strain energies and large deviations, with magnitudes comparable to the protein-ligand binding energies themselves and much larger than the differences we aim to estimate in docking hitlists. By using physically realistic ligand conformations with accurate strain energies in the scoring function, QFVina and QFVinardo produce markedly different docking results, even with the same docking parameters and scoring functions for protein-ligand interaction energies. I analyzed these differences in docking hitlists and selected protein-ligand interactions using three protein targets from COVID-19 research.
Collapse
|
3
|
Shafiq N, Jannat A, Munir H, Rashid M, Parveen S. Exploring the potential of FDA approved anti-diabetic drugs for repurposing against COVID-19: a core combination of multiple computational strategies and integrated artificial intelligence. J Biomol Struct Dyn 2024; 42:6556-6576. [PMID: 37455488 DOI: 10.1080/07391102.2023.2234993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The latest variant of coronavirus is omicron. The World Health Organization (WHO) designated variation 'B.1.1.529' named omicron as a variant of concern (VOC) on 26 November 2021. By September 2020, it will have infected over 16 million patients and killed over 600,000 people over the world. This very infectious viral illness still poses a danger to world health; it has also become the greatest problem the world is facing and become the main area of research. The development of vaccines is insufficient to stop their spread and serious effects. Despite several reputable pharmaceutical firms claiming to have developed a cure for COVID-19. For that purpose, the field-based 3D-QSAR model has been used to analyze a series of anti-diabetic drugs to repurpose them against COVID-19. The LOO verified partial least square (PLS) model generates satisfactory q2 (0.4) and r2 (0.5) values. By using this model 10 compounds were screened out of 55 FDA approved anti-diabetic drugs (built-up library). Additionally, these substances were examined using molecular docking screening and ADMET. Finally, the drugs L8, and L23 were discovered to be the lead drugs. Density functional theory at the B3LYP/6-311G* technique was used to examine structural geometries, electronic characteristics, and molecular electrostatic potential (MEP). This work will greatly assist in the detection and development of leads for early drug development to control COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Aqsa Jannat
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Huma Munir
- Green Chemistry Lab., Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
5
|
Tassakka ACMAR, Iskandar IW, Alam JF, Permana AD, Massi MN, Jompa J, Liao LM. Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2. BIOTECH 2023; 12:46. [PMID: 37366794 DOI: 10.3390/biotech12020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 disease is a major problem affecting human health all over the world. Consequently, researchers have been trying to find solutions to treat this pandemic-scale disease. Even if there are vaccines and approved drugs that could decrease the spread of this pandemic, multidisciplinary approaches are still needed to identify new small molecules as alternatives to combat COVID-19, especially those from nature. In this study, we employed computational approaches by screening 17 natural compounds from the tropical brown seaweed Sargassum polycystum known to have anti-viral properties that benefit human health. This study assessed some seaweed natural products that are bound to the PLpro of SARS-CoV-2. By employing pharmacophore and molecular docking, these natural compounds from S. polycystum showed remarkable scores for protein targets with competitive scores compared to X-ray crystallography ligands and well-known antiviral compounds. This study provides insightful information for advanced study and further in vitro examination and clinical investigation for drug development prospects of abundant yet underexploited tropical seaweeds.
Collapse
Affiliation(s)
| | | | - Jamaluddin Fitrah Alam
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | | | - Jamaluddin Jompa
- Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Lawrence Manzano Liao
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
6
|
Ghavami G, Adibzadeh S, Amiri S, Sardari S. Combined in silico strategy for repurposing DrugBank entries towards introducing potential anti-SARS-CoV-2 drugs. Can J Physiol Pharmacol 2023; 101:268-285. [PMID: 36848647 DOI: 10.1139/cjpp-2022-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from China in December 2019 led to the coronavirus disorder 2019 pandemic, which has affected tens of millions of humans worldwide. Various in silico research via bio-cheminformatics methods were performed to examine the efficiency of a range of repurposed approved drugs with a new role as anti-SARS-CoV-2 drugs. The current study has been performed to screen the approved drugs in the DrugBank database based on a novel bioinformatics/cheminformatics strategy to repurpose available approved drugs towards introducing them as a possible anti-SARS-CoV-2 drug. As a result, 96 approved drugs with the best docking scores passed through several relevant filters were presented as the candidate drugs with potential novel antiviral activities against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Amiri
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Dritsas E, Trigka M. Supervised Machine Learning Models to Identify Early-Stage Symptoms of SARS-CoV-2. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010040. [PMID: 36616638 PMCID: PMC9824026 DOI: 10.3390/s23010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/12/2023]
Abstract
The coronavirus disease (COVID-19) pandemic was caused by the SARS-CoV-2 virus and began in December 2019. The virus was first reported in the Wuhan region of China. It is a new strain of coronavirus that until then had not been isolated in humans. In severe cases, pneumonia, acute respiratory distress syndrome, multiple organ failure or even death may occur. Now, the existence of vaccines, antiviral drugs and the appropriate treatment are allies in the confrontation of the disease. In the present research work, we utilized supervised Machine Learning (ML) models to determine early-stage symptoms of SARS-CoV-2 occurrence. For this purpose, we experimented with several ML models, and the results showed that the ensemble model, namely Stacking, outperformed the others, achieving an Accuracy, Precision, Recall and F-Measure equal to 90.9% and an Area Under Curve (AUC) of 96.4%.
Collapse
|
8
|
Pourasghari H, Rezapour A, Tahernezhad A, Mazaheri E, Nikoo RM, Jabbari A, Hadian M. Iran's Struggling Health System in the Policy of Managing the COVID-19 Pandemic. Int J Prev Med 2022; 13:131. [PMID: 36452466 PMCID: PMC9704485 DOI: 10.4103/ijpvm.ijpvm_291_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/25/2022] [Indexed: 06/17/2023] Open
Abstract
Background Infectious diseases are one of the most important problems that affect the whole world. The World Health Organization (WHO), an active health organization, has identified coronavirus disease 19 (COVID-19) as a public health emergency and advises governments not to waste time on effective measures and interventions to attack and suppress the virus. In Iran, so far, the total number of screening tests has exceeded 21 million tests and more than 5 million doses of vaccine have been injected. However, we are still far from controlling the epidemic wave. Given the current situation, it is necessary to identify the challenges of managing the new coronavirus epidemic (COVID-19) in the country's medical universities. Methods This qualitative study was conducted from January 2020 to January 2021 to explore the views of a group of service providers and staff managers of medical universities who were selected via purposeful sampling (n = 47). Data were collected through semi-structured interviews and analyzed using Graneheim and Lundman's conventional content analysis methods. The trial version of MAXQDA 16 software was used to manage the coding process. Results Upon analysis of data by service providers and staff managers of medical universities, five main themes including governance and leadership, service delivery, human resources, medicine and technology, and financing and 15 sub-themes including management and leadership, culture and society, process, infrastructure, manpower, training and skills, mental pressure, work pressure, nutrition, safety, employee motivation, medical equipment, medicine, payment, and funds were found. Conclusions Identification of the most important challenges of service providers and staff managers can play an important role in improving the management of the new coronavirus epidemic (COVID-19). It seems that in order to solve some of these challenges, coordination is needed outside the field of health, and considering the formation of the National Corona Headquarters at the national level, it is possible to use this infrastructure to provide the necessary policies and strategies.
Collapse
Affiliation(s)
- Hamid Pourasghari
- Hospital Management Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aziz Rezapour
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Tahernezhad
- Health Management Research Center, Bagiyatallah University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Health Information Technology Research Center, Student Research Committee, Department of Medical Library and Information Sciences, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rouhollah Moghadas Nikoo
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Jabbari
- Health Services Management, Health Management and Economics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Hadian
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Riccò M, Ferraro P, Camisa V, Satta E, Zaniboni A, Ranzieri S, Baldassarre A, Zaffina S, Marchesi F. When a Neglected Tropical Disease Goes Global: Knowledge, Attitudes and Practices of Italian Physicians towards Monkeypox, Preliminary Results. Trop Med Infect Dis 2022; 7:135. [PMID: 35878146 PMCID: PMC9316880 DOI: 10.3390/tropicalmed7070135] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Monkeypox (MPX) has been regarded as a neglected tropic disease of Western and Central Africa since the early 70s. However, during May 2022, an unprecedent outbreak of MPX has involved most of European Countries, as well as North and South America. While the actual extent of this outbreak is being assessed by health authorities, we performed a pilot study on specific knowledge, attitudes, and practices (KAP) in a sample of Italian medical professionals (24-30 May 2022; 10,293 potential recipients), focusing on Occupational Physicians (OP), Public Health Professionals (PH), and General Practitioners (GP), i.e., medical professionals more likely involved in the early management of incident cases. More specifically, we inquired into their attitude on the use of variola vaccine in order to prevent MPX infection. From a total of 566 questionnaire (response rate of 5.5%), 163 participants were included in the final analyses. Knowledge status was quite unsatisfying, with substantial knowledge gaps on all aspect of MPX. In turn, analysis of risk perception suggested a substantial overlooking of MPX as a pathogen, particularly when compared to SARS-CoV-2, TB, HIV, and HBV. Overall, 58.6% of respondents were somehow favorable to implement variola vaccination in order to prevent MPX, and the main effectors of this attitude were identified in having been previously vaccinated against seasonal influenza (adjusted Odds Ratio [aOR] 6.443, 95% Confidence Interval [95%CI] 1.798-23.093), and being favorable to receive variola vaccine (aOR 21.416; 95%CI 7.290-62.914). In summary, the significant extent of knowledge gaps and the erratic risk perception, associated collectively stress the importance of appropriate information campaigns among first-line medical professionals.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
| | - Pietro Ferraro
- Occupational Medicine Unit, Direzione Sanità, Italian Railways’ Infrastructure Division, RFI SpA, I-00161 Rome, Italy;
| | - Vincenzo Camisa
- Health Directorate, Occupational Medicine Unit, Bambino Gesù Children’s Hospital IRCCS, I-00146 Rome, Italy; (V.C.); (S.Z.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy; (E.S.); (A.Z.); (S.R.); (F.M.)
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy; (E.S.); (A.Z.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy; (E.S.); (A.Z.); (S.R.); (F.M.)
| | - Antonio Baldassarre
- Occupational Medicine Unit, Careggi University Hospital, I-50134 Florence, Italy;
| | - Salvatore Zaffina
- Health Directorate, Occupational Medicine Unit, Bambino Gesù Children’s Hospital IRCCS, I-00146 Rome, Italy; (V.C.); (S.Z.)
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy; (E.S.); (A.Z.); (S.R.); (F.M.)
| |
Collapse
|
10
|
Masyeni S, Iqhrammullah M, Frediansyah A, Nainu F, Tallei T, Emran TB, Ophinni Y, Dhama K, Harapan H. Molnupiravir: A lethal mutagenic drug against rapidly mutating severe acute respiratory syndrome coronavirus 2-A narrative review. J Med Virol 2022; 94:3006-3016. [PMID: 35315098 PMCID: PMC9088670 DOI: 10.1002/jmv.27730] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Broad-spectrum antiviral agents targeting viral RNA-dependent RNA polymerase (RdRp) are expected to be a key therapeutic strategy in the ongoing coronavirus disease 2019 (COVID-19) pandemic and its future variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Molnupiravir is a nucleoside analog that in vivo experiments have been reported to inhibit the replication of SARS-CoV-2, the virus that causes COVID-19. Clinical trials of molnupiravir as a therapy for patients with mild-to-moderate COVID-19 also suggest its significant therapeutic efficacy in comparison to placebo. Molnupiravir is lethally mutagenic against viral RNA, but its effect on host cell DNA is being questioned. Herein, the safety concerns of molnupiravir are discussed with recent findings from published reports and clinical trials. The unchanged efficacy of molnupiravir against mutated SARS-CoV-2 variants is also highlighted. With its administration via the oral route, molnupiravir is expected to turn the tide of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sri Masyeni
- Department of Internal Medicine, Faculty of Medicine and Health SciencesUniversitas WarmadewaDenpasarIndonesia
- Department of Internal MedicineSanjiwani HospitalGianyarIndonesia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Natural SciencesUniversitas Syiah KualaBanda AcehIndonesia
| | - Andri Frediansyah
- National Research and Innovation Agency (BRIN)WonosariIndonesia
- Research Division for Natural Product Technology (BPTBA)Indonesian Institute of Sciences (LIPI)WonosariIndonesia
- Department of Pharmaceutical Biology, Pharmaceutical InstituteUniversity of TübingenTübingenGermany
| | - Firzan Nainu
- Department of Pharmacy, Faculty of PharmacyHasanuddin UniversityMakassarIndonesia
| | - Trina Tallei
- Department of Biology, Faculty of Mathematics and Natural SciencesSam Ratulangi UniversityManadoIndonesia
- The University Centre of Excellence for Biotechnology and Conservation of Wallacea, Institute for Research and Community ServicesSam Ratulangi UniversityManadoIndonesia
| | - Talha Bin Emran
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
| | - Youdiil Ophinni
- Ragon Institute of MGHMIT and HarvardCambridgeMassachusettsUSA
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| | - Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Tropical Disease Centre, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Department of Microbiology, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
| |
Collapse
|
11
|
Ceballo Y, López A, González CE, Ramos O, Andújar I, Martínez RU, Hernández A. Transient production of receptor-binding domain of SARS-CoV-2 in Nicotiana benthamiana plants induces specific antibodies in immunized mice. Mol Biol Rep 2022; 49:6113-6123. [PMID: 35526244 PMCID: PMC9079970 DOI: 10.1007/s11033-022-07402-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has currently affected millions of people around the world. To combat the rapid spread of COVID-19 there is an urgent need to implement technological platforms for the production of vaccines, drugs and diagnostic systems by the scientific community and pharmaceutical companies. The SARS-CoV-2 virus enters the cells by the interaction between the receptor-binding domain (RBD) present in the viral surface spike protein and its human receptor ACE2. The RBD protein is therefore considered as the target for potential subunit-based vaccines. METHODS AND RESULTS We evaluate the use of Nicotiana benthamiana plants as the host to transiently-producing recombinant RBD (RBDr) protein. The identity of the plant-produced RBDr was confirmed by immune assays and mass spectrometry. Immunogenicity was confirmed through the specific antibodies generated in all of the immunized mice compared to the PBS treated group. CONCLUSIONS In conclusions, the immunogenicity of the RBDr produced in N. benthamiana was confirmed. These findings support the use of plants as an antigen expression system for the rapid development of vaccine candidates.
Collapse
Affiliation(s)
- Yanaysi Ceballo
- Bioreactors Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology, PO Box 6162, 10600, Havana, Cuba.
| | - Alina López
- Bioreactors Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carlos E González
- Bioreactors Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osmany Ramos
- Bioreactors Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Iván Andújar
- Proteomic Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ricardo U Martínez
- Diagnostic Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Abel Hernández
- Bioreactors Laboratory, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
12
|
Perez RE, Saleiro D, Ilut L, Schiltz GE, Eckerdt F, Fish EN, Platanias LC. Regulation of IFNα-induced expression of the short ACE2 isoform by ULK1. Mol Immunol 2022; 147:1-9. [PMID: 35489289 PMCID: PMC9045748 DOI: 10.1016/j.molimm.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to hijack angiotensin converting enzyme 2 (ACE2) for entry into mammalian cells. A short isoform of ACE2, termed deltaACE2 (dACE2), has recently been identified. In contrast to ACE2, the short dACE2 isoform lacks the ability to bind the spike protein of SARS-CoV-2. Several studies have proposed that expression of ACE2 and/or dACE2 is induced by interferons (IFNs). Here, we report that drug-targeted inhibition or silencing of Unc51-like kinase 1 (ULK1) results in repression of type I IFN-induced expression of the dACE2 isoform. Notably, dACE2 is expressed in various squamous tumors. In efforts to identify pharmacological agents that target this pathway, we found that fisetin, a natural flavonoid, is an ULK1 inhibitor that decreases type I IFN-induced dACE2 expression. Taken together, our results establish a requirement for ULK1 in the regulation of type I IFN-induced transcription of dACE2 and raise the possibility of clinical translational applications of fisetin as a novel ULK1 inhibitor.
Collapse
Affiliation(s)
- Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA,Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Liliana Ilut
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Gary E. Schiltz
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA,Department of Chemistry, Northwestern University, Evanston, IL, USA,Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA,Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA,Corresponding authors at: Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Analysing supply chain coordination mechanisms dealing with repurposing challenges during Covid-19 pandemic in an emerging economy: a multi-layer decision making approach. OPERATIONS MANAGEMENT RESEARCH 2022. [PMCID: PMC9135609 DOI: 10.1007/s12063-021-00224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following the outbreak of the Covid-19 pandemic, there was a serious need for the pharmaceutical industry to combat the disease more quickly and effectively. In this regard, numerous companies set out to repurpose current drugs. The noticed decision has major challenges in various dimensions, including the creation and management of an efficient supply chain. The present study attempts to examine the significance and relationships of the repurposing challenges and analyze the effectiveness of supply chain coordination contracts confronting them. In this regard, a combination of Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Analytic Network Process (ANP) named DANP method is applied to investigate the relationships and extracting the weights of the mentioned challenges and the multi-criteria optimization and compromise solution technique called VIKOR is employed to prioritize the supply chain coordination contracts found on their impact facing with repurposing challenges. The mentioned techniques have been conducted under the condition of linguistic Z-numbers. The results demonstrated that financial support and digitalization are the most influential challenges. Moreover, collaboration and data availability have the most weight. In addition, four contracts including effort sharing, cost-sharing, credit option and buyback are the best contracts that companies in the merging economy of Iran should concentrate on them. This research proposes a novel framework of decision-making by integrating DANP and VIKOR with linguistic Z-numbers. Additionally, this study takes a new look at the use of coordination contracts from the viewpoint of repurposing challenges which is highlighted particularly during the Covid-19 pandemic.
Collapse
|
14
|
Mostafa-Hedeab G, Al-kuraishy HM, Al-Gareeb AI, Welson NN, El-Saber Batiha G, Conte-Junior CA. Selinexor and COVID-19: The Neglected Warden. Front Pharmacol 2022; 13:884228. [PMID: 35559257 PMCID: PMC9086449 DOI: 10.3389/fphar.2022.884228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
A novel severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) has been confirmed as the cause of the global pandemic coronavirus disease 2019 (COVID-19). Different repurposed drugs have been trialed and used in the management of COVID-19. One of these agents was the anti-cancer Selinexor (SXR). SXR is an anti-cancer drug that acts by inhibition of nuclear exportin-1 (XPO1), which inhibits transport of nuclear proteins from the nucleus to the cytoplasm, leading to the induction of cell-cycle arrest and apoptosis. XPO1 inhibitors had antiviral effects, mainly against respiratory syncytial virus (RSV) and influenza virus. SXR inhibits transport of SARS-CoV-2 nuclear proteins to the cytoplasm with further inhibition of SARS-CoV-2 proliferation. SXR has the ability to prevent the development of a cytokine storm in COVID-19 by inhibiting the release of pro-inflammatory cytokines with the augmentation release of anti-inflammatory cytokines. In conclusion, SARS-CoV-2 infection is linked with activation of XPO1, leading to the triggering of inflammatory reactions and oxidative stress. Inhibition of XPO1 by Selinexor (SXR), a selective inhibitor of nuclear export (SINE), can reduce the proliferation of SARS-CoV-2 and associated inflammatory disorders. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt,*Correspondence: Nermeen N. Welson, ; Gaber El-Saber Batiha,
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt,*Correspondence: Nermeen N. Welson, ; Gaber El-Saber Batiha,
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Concise synthesis of antiviral drug, Molnupiravir by direct coupling of fully protected D-Ribose with cytosine. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Schellack N, Strydom M, Pepper MS, Herd CL, Hendricks CL, Bronkhorst E, Meyer JC, Padayachee N, Bangalee V, Truter I, Ellero AA, Myaka T, Naidoo E, Godman B. Social Media and COVID-19—Perceptions and Public Deceptions of Ivermectin, Colchicine and Hydroxychloroquine: Lessons for Future Pandemics. Antibiotics (Basel) 2022; 11:antibiotics11040445. [PMID: 35453198 PMCID: PMC9031711 DOI: 10.3390/antibiotics11040445] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The capacity for social media to influence the utilization of re-purposed medicines to manage COVID-19, despite limited availability of safety and efficacy data, is a cause for concern within health care systems. This study sought to ascertain links between social media reports and utilization for three re-purposed medicines: hydroxychloroquine (HCQ), ivermectin and colchicine. A combined retrospective analysis of social media posts for these three re-purposed medicines was undertaken, along with utilization and clinical trials data, in South Africa, between January 2020 and June 2021. In total, 77,257 posts were collected across key social media platforms, of which 6884 were relevant. Ivermectin had the highest number of posts (55%) followed by HCQ (44%). The spike in ivermectin use was closely correlated to social media posts. Similarly, regarding chloroquine (as HCQ is not available in South Africa), social media interest was enhanced by local politicians. Sentiment analysis revealed that posts regarding the effectiveness of these repurposed medicines were positive. This was different for colchicine, which contributed only a small number of mentions (1%). Of concern is that the majority of reporters in social media (85%) were unidentifiable. This study provides evidence of social media as a driver of re-purposed medicines. Healthcare professionals have a key role in providing evidence-based advice especially with unidentifiable posts.
Collapse
Affiliation(s)
- Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.); (A.A.E.); (T.M.); (E.N.)
- Correspondence: (N.S.); or (B.G.)
| | - Morné Strydom
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.); (A.A.E.); (T.M.); (E.N.)
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.P.); (C.L.H.); (C.L.H.)
| | - Candice L. Herd
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.P.); (C.L.H.); (C.L.H.)
| | - Candice Laverne Hendricks
- Institute for Cellular and Molecular Medicine, Department of Immunology and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.P.); (C.L.H.); (C.L.H.)
| | - Elmien Bronkhorst
- School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0084, South Africa; (E.B.); (J.C.M.)
| | - Johanna C. Meyer
- School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0084, South Africa; (E.B.); (J.C.M.)
| | - Neelaveni Padayachee
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg 2050, South Africa;
| | - Varsha Bangalee
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Ilse Truter
- Drug Utilization Research Unit (DURU), Department of Pharmacy, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Andrea Antonio Ellero
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.); (A.A.E.); (T.M.); (E.N.)
- Centre for Neuroendocrinology (CNE), Department of Immunology, University of Pretoria, Pretoria 0084, South Africa
| | - Thulisa Myaka
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.); (A.A.E.); (T.M.); (E.N.)
| | - Elysha Naidoo
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa; (M.S.); (A.A.E.); (T.M.); (E.N.)
| | - Brian Godman
- School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0084, South Africa; (E.B.); (J.C.M.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Correspondence: (N.S.); or (B.G.)
| |
Collapse
|
17
|
Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022; 147:112700. [PMID: 35131656 PMCID: PMC8813547 DOI: 10.1016/j.biopha.2022.112700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents an unmet clinical need, due to a high mortality rate, rapid mutation rate in the virus, increased chances of reinfection, lack of effectiveness of repurposed drugs and economic damage. COVID-19 pandemic has created an urgent need for effective molecules. Clinically proven efficacy and safety profiles have made favipiravir (FVP) and remdesivir (RDV) promising therapeutic options for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Even though both are prodrug molecules with an antiviral role based on a similar mechanism of action, differences in pharmacological, pharmacokinetic and pharmacotoxicological mechanisms have been identified. The present study aims to provide a comprehensive comparative assessment of FVP and RDV against SARS-CoV-2 infections, by centralizing medical data provided by significant literature and authorized clinical trials, focusing on the importance of a better understanding of the interactions between drug molecules and infectious agents in order to improve the global management of COVID-19 patients and to reduce the risk of antiviral resistance.
Collapse
Affiliation(s)
- Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Bianca Pasca
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
18
|
Non-clinical safety assessment and in vivo biodistribution of CoviFab, an RBD-specific F(ab')2 fragment derived from equine polyclonal antibodies. Toxicol Appl Pharmacol 2022; 434:115796. [PMID: 34785274 PMCID: PMC8590615 DOI: 10.1016/j.taap.2021.115796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has required the urgent development of new therapies, among which passive immunotherapy is contemplated. CoviFab (INM005) is a RBD-specific F(ab′)2 fragment derived from equine polyclonal antibodies. We investigate their preclinical security and biodistribution by in vivo and ex vivo NIR imaging after intravenous administration of a dose of 4 mg/kg at time 0 and 48 h. Images were taken at 1, 12, 24, 36, 48, 49, 60, 72, 84, 96, 108, 120, 132 and 144 h after the first intravenous injection. At 96 and 144 h, mice were sacrificed for haematology, serum chemistry, clinical pathology, histopathology and ex vivo imaging. The biodistribution profile was similar in all organs studied, with the highest fluorescence at 1 h after each injection, gradually decreasing after that each one and until the end of the study (144 h). The toxicology study revealed no significant changes in the haematology and serum chemistry parameters. Further, there were no changes in the gross and histological examination of organs. Nonclinical data of the current study confirm that CoviFab is safe, without observable adverse effects in mice. Furthermore, we confirm that bioimaging studies are a useful approach in preclinical trials to determine biodistribution.
Collapse
|
19
|
Jukič M, Kores K, Janežič D, Bren U. Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints. Front Chem 2021; 9:757826. [PMID: 35028304 PMCID: PMC8748264 DOI: 10.3389/fchem.2021.757826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 is a virus that belongs to the Coronaviridae family. This group of viruses commonly causes colds but possesses a tremendous pathogenic potential. In humans, an outbreak of SARS caused by the SARS-CoV virus was first reported in 2003, followed by 2012 when the Middle East respiratory syndrome coronavirus (MERS-CoV) led to an outbreak of Middle East respiratory syndrome (MERS). Moreover, COVID-19 represents a serious socioeconomic and global health problem that has already claimed more than four million lives. To date, there are only a handful of therapeutic options to combat this disease, and only a single direct-acting antiviral, the conditionally approved remdesivir. Since there is an urgent need for active drugs against SARS-CoV-2, the strategy of drug repurposing represents one of the fastest ways to achieve this goal. An in silico drug repurposing study using two methods was conducted. A structure-based virtual screening of the FDA-approved drug database on SARS-CoV-2 main protease was performed, and the 11 highest-scoring compounds with known 3CLpro activity were identified while the methodology was used to report further 11 potential and completely novel 3CLpro inhibitors. Then, inverse molecular docking was performed on the entire viral protein database as well as on the Coronaviridae family protein subset to examine the hit compounds in detail. Instead of target fishing, inverse docking fingerprints were generated for each hit compound as well as for the five most frequently reported and direct-acting repurposed drugs that served as controls. In this way, the target-hitting space was examined and compared and we can support the further biological evaluation of all 11 newly reported hits on SARS-CoV-2 3CLpro as well as recommend further in-depth studies on antihelminthic class member compounds. The authors acknowledge the general usefulness of this approach for a full-fledged inverse docking fingerprint screening in the future.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
20
|
Zeng H, Wang S, Chen L, Shen Z. Biologics for Psoriasis During the COVID-19 Pandemic. Front Med (Lausanne) 2021; 8:759568. [PMID: 34938746 PMCID: PMC8685238 DOI: 10.3389/fmed.2021.759568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a new form of acute infectious respiratory syndrome first reported in 2019, has rapidly spread worldwide and has been recognized as a pandemic by the WHO. It raised widespread concern about the treatment of psoriasis in this COVID-19 pandemic era, especially on the biologics use for patients with psoriasis. This review will summarize key information that is currently known about the relationship between psoriasis, biological treatments, and COVID-19, and vaccination-related issues. We also provide references for dermatologists and patients when they need to make clinical decisions. Currently, there is no consensus on whether biological agents increase the risk of coronavirus infection; however, current research shows that biological agents have no adverse effects on the prognosis of patients with COVID-19 with psoriasis. In short, it is not recommended to stop biological treatment in patients with psoriasis to prevent the infection risk, and for those patients who tested positive for SARS-CoV-2, the decision to pause biologic therapy should be considered on a case-by-case basis, and individual risk and benefit should be taken into account. Vaccine immunization against SARS-CoV-2 is strictly recommendable in patients with psoriasis without discontinuation of their biologics but evaluating the risk-benefit ratio of maintaining biologics before vaccination is mandatory at the moment.
Collapse
Affiliation(s)
- Huanhuan Zeng
- School of Medicine, Zunyi Medical University, Zunyi, China
| | - Siyu Wang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhu Shen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. Ligand-based quantitative structural assessments of SARS-CoV-2 3CL pro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences. J Mol Struct 2021; 1251:132041. [PMID: 34866654 PMCID: PMC8627846 DOI: 10.1016/j.molstruc.2021.132041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Due to COVID-19, the whole world is undergoing a devastating situation, but treatment with no such drug candidates still has been established exclusively. In that context, 69 diverse chemicals with potential SARS-CoV-2 3CLpro inhibitory property were taken into consideration for building different internally and externally validated linear (SW-MLR and GA-MLR), non-linear (ANN and SVM) QSAR, and HQSAR models to identify important structural and physicochemical characters required for SARS-CoV-2 3CLpro inhibition. Importantly, 2-oxopyrrolidinyl methyl and benzylester functions, and methylene (hydroxy) sulphonic acid warhead group, were crucial for retaining higher SARS-CoV-2 3CLpro inhibition. These GA-MLR and HQSAR models were also applied to predict some already repurposed drugs. As per the GA-MLR model, curcumin, ribavirin, saquinavir, sepimostat, and remdesivir were found to be the potent ones, whereas according to the HQSAR model, lurasidone, saquinavir, lopinavir, elbasvir, and paritaprevir were the highly effective SARS-CoV-2 3CLpro inhibitors. The binding modes of those repurposed drugs were also justified by the molecular docking, molecular dynamics (MD) simulation, and binding energy calculations conducted by several groups of researchers. This current work, therefore, may be able to find out important structural parameters to accelerate the COVID-19 drug discovery processes in the future.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India, 500078
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
22
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Amer M, Bayoumi Y, Shalaby TA, Eid Y, Zia-Ur-Rehman M. Nano-biofortification of different crops to immune against COVID-19: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112500. [PMID: 34274837 PMCID: PMC8270734 DOI: 10.1016/j.ecoenv.2021.112500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 05/04/2023]
Abstract
Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?
Collapse
Affiliation(s)
- Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Neama Abdalla
- Plant Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Center, 12622 Cairo, Egypt.
| | - Heba Elbasiouny
- Department of Environmental and Biological Sciences, Home Economy faculty, Al-Azhar University, 31732 Tanta, Egypt.
| | - Fathy Elbehiry
- Central Laboratory of Environmental Studies, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research Station, Agriculture Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Megahed Amer
- Soils Improvement Department, Soils, Water and Environment Research Institute (SWERI), Sakha Station, Agricultural Research Center (ARC), 33717 Kafr El-Sheikh, Egypt.
| | - Yousry Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Tarek A Shalaby
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Yahya Eid
- Poultry Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
24
|
Russo G, Di Salvatore V, Caraci F, Curreli C, Viceconti M, Pappalardo F. How can we accelerate COVID-19 vaccine discovery? Expert Opin Drug Discov 2021; 16:1081-1084. [PMID: 34058925 PMCID: PMC8204312 DOI: 10.1080/17460441.2021.1935861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Giulia Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Oasi Research Institute, IRCCS, Troina, Italy
| | - Valentina Di Salvatore
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Oasi Research Institute, IRCCS, Troina, Italy
| | - Cristina Curreli
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marco Viceconti
- Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Medical Technology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | |
Collapse
|
25
|
Jonsson CB, Golden JE, Meibohm B. Time to 'Mind the Gap' in novel small molecule drug discovery for direct-acting antivirals for SARS-CoV-2. Curr Opin Virol 2021; 50:1-7. [PMID: 34256351 PMCID: PMC8238655 DOI: 10.1016/j.coviro.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
A pipeline of effective direct-acting antivirals (DAAs) remains a critical gap in addressing the current pandemic given vaccination hesitancy, the emergence of viral variants of concern, susceptible populations for which vaccination is ineffective or unavailable, and the possibility that coronavirus disease 2019 (COVID-19) is here to stay. Since the start of the pandemic, global efforts in small molecule drug discovery have focused largely on testing of FDA-approved drugs to accelerate evaluation in clinical trials in hospitalized patients. With 80% of the population who test positive for SARS-CoV-2 having asymptomatic to mild COVID-19, early stage, DAAs would be of enormous benefit to reduce spread, duration of symptoms and quarantine length. We highlight a few of the most promising DAAs in clinical trials and discuss considerations in how to navigate the challenges and pitfalls of novel small molecule discovery and thereby accelerate the advancement of new, safe, and oral DAAs.
Collapse
Affiliation(s)
- Colleen B Jonsson
- Department of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163 USA; Regional Biocontainment Laboratory, University of Tennessee Health Science Center, 901 Monroe Avenue, Memphis, TN 38163 USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163 USA.
| | - Jennifer E Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin, Madison, Madison, WI 53705 USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163 USA
| |
Collapse
|
26
|
Novelli G, Colona VL, Pandolfi PP. A focus on the spread of the delta variant of SARS-CoV-2 in India. Indian J Med Res 2021; 153:537-541. [PMID: 34259195 PMCID: PMC8555585 DOI: 10.4103/ijmr.ijmr_1353_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome (RM), Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno (NV), USA
| | - Vito Luigi Colona
- Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome (RM), Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology & Health Sciences, MBC, University of Turin, Turin (TO), Italy
- Renown Institute for Cancer, Nevada System of Higher Education, Reno (NV), USA
| |
Collapse
|