1
|
Inoue T, Maehara S, Maruyama M, Higaki K. Combination of co-amorphization with SNEDDS outperforms Ofev® in the oral absorption of nintedanib. Int J Pharm 2024; 657:124197. [PMID: 38703930 DOI: 10.1016/j.ijpharm.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/04/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Nintedanib (NTD), approved for the treatment of idiopathic pulmonary fibrosis and advanced non-small cell lung cancer, is one of brick dusts with high melting point. Although NTD has been marketed as Ofev®, a soft capsule of NTD ethanesulfonate (NTD-ESA) suspended in oil components, the oral bioavailability is quite low and highly variable. To improve the oral absorption behavior of NTD, we prepared SNEDDS formulation containing NTD-(+)-10-camphorsulfonic acid (CSA) complex with 2% HPMCP-50. CSA disrupted the high crystallinity of NTD-ESA and the formed complex, NTD-CSA, was found to be amorphous by DSC and XRPD. NTD-CSA provided solubilities in various vehicles much higher than NTD-ESA. Under the gastric luminal condition, NTD-CSA SNEDDS with or without 2% HPMCP-50 and NTD-CSA powder indicated very good dissolution of NTD from early time periods, while NTD was gradually dissolved until around 60 min from NTD-ESA and Ofev®. Under the small intestinal luminal condition, in contrast, both NTD-CSA SNEDDS formulations almost completely dissolved NTD throughout the experiments, while Ofev®, NTD-CSA, and NTD-ESA exhibited a very poor dissolution of NTD. In the in vivo absorption study, NTD-CSA SNEDDS with 2% HPMCP-50 significantly improved NTD absorption and reduced the inter-individual variation in oral absorption behavior compared with Ofev®.
Collapse
Affiliation(s)
- Tomoya Inoue
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Formulation Research, Biopharmaceutical Research, Pharmaceutical Technology Division, Taiho Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Seito Maehara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Chang S, Yang Q, Liu J, Yin L, Han J, Zong L, Pu X. The Increased Dissolution and Oral Absorption of Itraconazole by Nanocrystals with an Endogenous Small-Molecule Surfactant as a Stabilizer. Molecules 2024; 29:1769. [PMID: 38675589 PMCID: PMC11052100 DOI: 10.3390/molecules29081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.
Collapse
Affiliation(s)
- Sheng Chang
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Qiang Yang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jiahuan Liu
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Li Yin
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Jihong Han
- School of Pharmacy and Bioengineering, Keele University, Kiel ST5 5BG, UK;
| | - Lanlan Zong
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China (L.Z.)
| |
Collapse
|
3
|
Jain KMH, Hou HH, Siegel RA. An Artificial Gut/Absorption Simulator: Understanding the Impact of Absorption on In Vitro Dissolution, Speciation, and Precipitation of Amorphous Solid Dispersions. Mol Pharm 2024; 21:1884-1899. [PMID: 38512389 DOI: 10.1021/acs.molpharmaceut.3c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.
Collapse
Affiliation(s)
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, California 94080, United States
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Kataoka M, Itaka Y, Masada T, Minami K, Higashino H, Yamashita S. Near-infrared imaging of in vivo performance of orally administered solid forms to rats: Feasibility study with indocyanine green. Int J Pharm 2024; 649:123677. [PMID: 38061499 DOI: 10.1016/j.ijpharm.2023.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
This study demonstrates the applicability of near-infrared (NIR) imaging to evaluating in vivo oral formulation performance. As a NIR probe and model drug, indocyanine green (ICG) and acetaminophen (ACE) were selected, respectively. The fluorescence intensity of ICG greatly increased upon dissolution, with the dissolved ICG passing through the gastrointestinal tract over time. Both compounds (0.05 mg of ICG and 0.5 mg of ACE) were encapsulated in gelatin and hydroxypropyl methylcellulose (HPMC) capsules in the solid form. In vitro, the HPMC capsules showed a disintegration lag time, a feature that was not observed for the gelatin capsules. After oral administration of each capsule to rats, blood samples were collected, followed by fluorescent imaging of the abdominal region. At 0.25 h after HPMC capsule administration, the fluorescence area and intensity were significantly small and relatively weak compared to that of the gelatin capsule. These tendencies resulted from the difference in capsule disintegration times, leading to a change in gastric emptying, which corresponded well with the initial time profile of the plasma concentration of ACE. These results indicate that possibility of NIR imaging with ICG to evaluate in vivo performance of orally administered formulations.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | - Yoshiya Itaka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takato Masada
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
5
|
Shamshina JL, Rogers RD. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem Rev 2023; 123:11894-11953. [PMID: 37797342 DOI: 10.1021/acs.chemrev.3c00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This Review aims to summarize advances over the last 15 years in the development of active pharmaceutical ingredient ionic liquids (API-ILs), which make up a prospective game-changing strategy to overcome multiple problems with conventional solid-state drugs, for example, polymorphism. A critical part of the present Review is the collection of API-ILs and deep eutectic solvents (DESs) prepared to date. The Review covers rules for rational design of API-ILs and tools for API-IL formation, syntheses, and characterization. Nomenclature and ionic speciation, and the confusion that these may cause, are highlighted, particularly for speciation in both ILs and DESs of intermediate ionicity. We also highlight in vivo and in vitro pharmaceutical activity studies, with differences in pharmacokinetic/pharmacodynamic depending on ionicity of API-ILs. A brief overview is provided for the ILs used to deliver drugs, and the Review concludes with key prospects and roadblocks in translating API-ILs into pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, Texas 79409, United States
| | - Robin D Rogers
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|
6
|
Rajbhar K, Karodadeo GR, Kumar V, Barethiya V, Lahane A, Kale S, Thakre V, Dixit G, Kohale N, Hiradeve S, Rarokar NR. Comparative assessment of solubility enhancement of itroconazole by solid dispersion and co-crystallization technique: Investigation of simultaneous effect of media composition on drug dissolution. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:843-855. [PMID: 37182590 DOI: 10.1016/j.pharma.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Solubility of the drug is an important property of the drug as it affects the release, absorption, dissolution rate and ultimately bioavailability of the drug. Hence, the poorly aqueous soluble drug, need to be processed, to enhance its solubility and dissolution. The Biopharmaceutical System of Classification (BCS) II drugs are poorly soluble and have high permeability. Though their good ability to permeate through the membrane make them clinically useful but the problem associated with the solubility restrict their clinical use. Therefore, there is need to improve the solubility of such drug molecules to get effective pharmacological action. Itraconazole (ITZ) is an antifungal agent used in the treatment of fungal infections having poor aqueous solubility as belonging to BCS class II. The present study was aim to enhance the solubility of ITZ by solid dispersion and co-crystallization techniques. Investigation of simultaneous effect of media composition on drug dissolution was also the objective of this work. The ITZ-SD and ITZ-CCs were prepared from ITZ and other excipients like PEG 4000, oxalic acid, fumaric and malic acid by solvent evaporation, kneading technique, slurry conversion and solvent drop grinding methods. The prepared ITZ-SD, ITZ-OA-CCs, ITZ-FA-CCs and ITZ-MA-CCs were evaluated for FTIR, DSC, PXRD, % yield, micromeritic properties. The optimized ITZ-SD and ITZ-CCs were used to compress a tablet and subject to post-compression parameters. The results of FTIR and DSC showed the absence of interaction between the drug and excipients. The PXRD pattern demonstrated the formation of crystalline structures with 6 folds increased in solubility during saturation solubility analysis. In vitro dissolution was carried out in dissolution media with different pH which shows the maximum release from ITZ-SD and ITZ-CCs in pH 6.8. This also revealed the highly pH dependent solubility and dissolution behavior of the weakly basic BCS class II drug (ITZ) with pKa value of 3.7. The overall results in this study indicated the potential of solid dispersion and co-crystals for enhancement of solubility of the poorly water-soluble drugs.
Collapse
Affiliation(s)
- Kusum Rajbhar
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Gaurav Ramesh Karodadeo
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India.
| | - Vivek Kumar
- Sir H.N. Reliance Foundation Hospital and Research Centre, Prarthana Samaj, Raja Rammohan Roy Road, Girgaon, Mumbai, 400004, Maharashtra, India
| | - Varsha Barethiya
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Amol Lahane
- Dr. R.N. Lahoti Pharmaceutical Education and Research Center, Sultanpur, Buldhana, 443302, India
| | - Shubham Kale
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Vaibhav Thakre
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Gouri Dixit
- Department of Pharmaceutics, Priyadarshini J.L. College of Pharmacy, Electronic zone building, Hingna road, Nagpur, 440016, Maharashtra, India
| | - Nitin Kohale
- Vardhaman College of Pharmacy, Karanja (Lad), Dist-Washim, 444105 Washim, India
| | - Sachin Hiradeve
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India
| | - Nilesh Ramesh Rarokar
- G H Raisoni Institute of Life Sciences, Shradha Park, Hingna-Wadi Link Road, Nagpur, 440016, Maharashtra, India.
| |
Collapse
|
7
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
An Artificial Gut/Absorption Simulator: Simultaneous Evaluation of Desupersaturation and Absorption from Ketoconazole Supersaturated Solutions. J Pharm Sci 2022:S0022-3549(22)00418-X. [PMID: 36162494 DOI: 10.1016/j.xphs.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
For supersaturating formulations of BCS-II compounds, which by definition have high intestinal permeability, a closed USP apparatus does not provide the necessary absorptive conditions during dissolution. To address this, an artificial gut simulator (AGS) has been constructed consisting of a 2.5 mL donor compartment in which a hollow fiber-based absorption module is suspended. Drug from donor diffuses across the hollow fiber membrane to be absorbed by the continuously flowing intraluminal receiver fluid. The membrane surface area and intraluminal fluid flow rate are tuned to obtain the physiologically observed absorption rate constant for a weakly basic, poorly water-soluble model compound, ketoconazole (KTZ). Supersaturated solutions of KTZ were generated in the donor in pH 6.5 phosphate buffer by the pH-shift method in the absence (closed system, control) and presence (open system, biorelevant) of an optimally or suboptimally tuned absorption module. Drug concentrations in the donor and intraluminal fluids were determined by in-line UV spectroscopy. The presence of an absorptive sink reduced the supersaturated solution's crystallization propensity, more so in the case of the optimally tuned AGS. This study demonstrates the significance of simulating absorption of drug at a physiological rate during dissolution studies, especially to predict the performance of formulations of BCS-II drugs.
Collapse
|
9
|
Enteric Polymer-Based Amorphous Solid Dispersions Enhance Oral Absorption of the Weakly Basic Drug Nintedanib via Stabilization of Supersaturation. Pharmaceutics 2022; 14:pharmaceutics14091830. [PMID: 36145578 PMCID: PMC9506478 DOI: 10.3390/pharmaceutics14091830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The pH−induced crystallization of weakly basic drugs in the small intestine limits oral bioavailability. In this study, we investigated the solubilization and inhibitory effects on nintedanib in the presence of enteric polymers (HPMCAS LG, HPMCAS MG, Eudragit L100 55, and Eudragit L100). These polymers provided maintenance of supersaturation by increasing the solubility of nintedanib in PBS 6.8 in a concentration-dependent manner, and the improved ranking was as follows: Eudragit L100 > Eudragit L100 55 > HPMCAS MG > HPMCAS LG. After being formulated into amorphous solid dispersions (ASDs) by a solvent evaporation method, the drug exhibited an amorphous state. The pH shift dissolution results of polymer-ASDs demonstrated that four polymers could effectively maintain the drug supersaturation even at the lowest ratio of nintedanib and polymer (1:1, w/w). Eudragit L100−ASD could provide both acid resistance and the favorable mitigation of crystallization in GIF. In comparison to the coarse drug, the relative bioavailability of Eudragit L100−ASD was 245% after oral administration in rats, and Tmax was markedly delayed from 2.8 ± 0.4 h to 5.3 ± 2.7 h. Our findings indicate that enteric ASDs are an effective strategy to increase the intestinal absorption of nintedanib by improving physiologically generated supersaturation and subsequent crystallization.
Collapse
|
10
|
Willmann AC, Berkenfeld K, Faber T, Wachtel H, Boeck G, Wagner KG. Itraconazole Nanosuspensions via Dual Centrifugation Media Milling: Impact of Formulation and Process Parameters on Particle Size and Solid-State Conversion as Well as Storage Stability. Pharmaceutics 2022; 14:pharmaceutics14081528. [PMID: 35893783 PMCID: PMC9332252 DOI: 10.3390/pharmaceutics14081528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Nanocrystal suspensions proved to be a potent enabling principle for biopharmaceutics classification system class II drugs with dissolution limited bioavailability. In the example of itraconazole (ITZ) as a model drug combined with electrosteric stabilization using hydroxypropyl cellulose (HPC-SL), sodium dodecyl sulfate (SDS) and polysorbate 80 (PS80), the impacts of formulation and process parameters of a dual centrifugal mill on material attributes such as particle size, zeta potential, particle morphology, storage stability and especially solid-state characteristics were evaluated. A minimal concentration of 0.9% (w/w) HPC-SL, 0.14% (w/w) SDS and 0.07% (w/w) PS80 was necessary for sufficient nanoparticle stabilization. Despite the minor effect of PS80, its presence was beneficial for electrosteric stabilization. Choosing lower stabilizer concentrations resulted in a pronounced increase in particle size due to agglomeration, which was confirmed by SEM imaging and a decrease in zeta potential in combination with an amorphization of the particles. Milling temperature had no significant impact on the particle size, whereas milling speed and the size of the milling beads used were found to have a strong impact on the critical material attributes such as particle size and polydispersity index. The smallest particle sizes could be obtained by using the smallest milling bead size. However, the smallest obtainable particle size could only be achieved by using two-fold stabilizer concentrations, as smaller particles exhibit a larger specific surface area.
Collapse
Affiliation(s)
- Ann-Cathrin Willmann
- Pharmaceutical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany;
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany; (K.B.); (T.F.)
| | - Kai Berkenfeld
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany; (K.B.); (T.F.)
| | - Thilo Faber
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany; (K.B.); (T.F.)
| | - Herbert Wachtel
- Device Development, Boehringer Ingelheim GmbH & Co. KG, Binger Straße 173, 55216 Ingelheim am Rhein, Germany;
| | - Georg Boeck
- Department Discovery Research, Boehringer Ingelheim RCV GmbH & Co. KG, Dr.-Boehringer-Gasse 5-11, 1121 Vienna, Austria;
| | - Karl G. Wagner
- Department of Pharmaceutical Technology, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany; (K.B.); (T.F.)
- Correspondence: ; Tel.: +49-228-73-5271
| |
Collapse
|
11
|
Sharma A, Arora K, Mohapatra H, Sindhu RK, Bulzan M, Cavalu S, Paneshar G, Elansary HO, El-Sabrout AM, Mahmoud EA, Alaklabi A. Supersaturation-Based Drug Delivery Systems: Strategy for Bioavailability Enhancement of Poorly Water-Soluble Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092969. [PMID: 35566319 PMCID: PMC9101434 DOI: 10.3390/molecules27092969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
At present, the majority of APIs synthesized today remain challenging tasks for formulation development. Many technologies are being utilized or explored for enhancing solubility, such as chemical modification, novel drug delivery systems (microemulsions, nanoparticles, liposomes, etc.), salt formation, and many more. One promising avenue attaining attention presently is supersaturated drug delivery systems. When exposed to gastrointestinal fluids, drug concentration exceeds equilibrium solubility and a supersaturation state is maintained long enough to be absorbed, enhancing bioavailability. In this review, the latest developments in supersaturated drug delivery systems are addressed in depth.
Collapse
Affiliation(s)
- Arvind Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
- Correspondence: (R.K.S.); (S.C.)
| | - Madalin Bulzan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (R.K.S.); (S.C.)
| | - Gulsheen Paneshar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (K.A.); (H.M.); (G.P.)
| | - Hosam O. Elansary
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| | - Abdullah Alaklabi
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia;
| |
Collapse
|
12
|
Hwang KM, Choi MS, Seok SH, Park ES. Development of self-microemulsifying tablets containing dutasteride for enhanced dissolution and pharmacokinetic profile. Int J Pharm 2022; 618:121660. [PMID: 35292395 DOI: 10.1016/j.ijpharm.2022.121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to develop self-microemulsifying tablets containing the hydrophobic drug dutasteride for easy administration and high in vivo absorption. The candidate lipids and surfactants were formulated into a self-microemulsifying drug delivery system (SMEDDS), and their mean droplet size upon dilution was evaluated. The SMEDDS containing Capmul® MCM, Captex® 355, and Cremophor® EL showed improved dissolution in the gastric medium when compared to the dissolution of the conventional product (Avodart®) and the raw drug. Among the various porous silicon microparticles for solidifying SMEDDS, Neusilin® US2 showed favorable properties in terms of maximum adsorption capacity, powder flow, and compaction. However, the amount of drug released from the solidified SMEDDS after the adsorption process was lower than that of liquid SMEDDS, indicating incomplete desorption. After observing the effect of the solid-to-liquid ratio and pre-filling the pores with blank SMEDDS, complete desorption was obtained when the pores were first adsorbed with polyvinylpyrrolidone. The self-microemulsifying tablets exhibited improved bioavailability (29.9% and 15.2%) compared to the conventional soft gelatin product. Therefore, the proposed system could successfully solubilize the hydrophobic drug while maintaining rapid and complete desorption from the solid carrier, resulting in enhanced in vivo performance.
Collapse
Affiliation(s)
- Kyu-Mok Hwang
- Pharmaceutical Technology Research Center, JW Pharmaceutical Corporation, Seoul 06725, Republic of Korea
| | - Min-Seok Choi
- Pharmaceutical Technology Research Center, JW Pharmaceutical Corporation, Seoul 06725, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Hyun Seok
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Gottschalk T, Grönniger B, Ludwig E, Wolbert F, Feuerbach T, Sadowski G, Thobmmes M. Influence of Process Temperature and Residence Time on the Manufacturing of Amorphous Solid Dispersions in Hot Melt Extrusion. Pharm Dev Technol 2022; 27:313-318. [PMID: 35272581 DOI: 10.1080/10837450.2022.2051549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The manufacturing of amorphous solid dispersions via hot melt extrusion is a topic of high interest in pharmaceutical development. By this technique, the drug is dissolved in the molten polymer above solubility temperature within the process time. In this study an experimental framework is proposed determining the minimum required process temperature and the residence time using particularly low quantities of material. Drug/polymer mixtures in different ratios were processed in a micro scale extruder while the process temperature and residence time were varied systematically. The phase situation was assessed by the turbidity of the final extrudate. Four different drug/polymer mixtures were investigated in three drug/polymer ratios. The minimum required process temperature was close to solubility temperature for each specific formulation. Moreover, an influence of residence time on the phase situation was found. About 3 minutes were required in order to dissolve the drug in the polymer at these process conditions.
Collapse
Affiliation(s)
- Tobias Gottschalk
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany.,INVITE GmbH, Drug Delivery Innovation Center, Leverkusen, Germany
| | - B Grönniger
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany.,Laboratory of Thermodynamics, TU Dortmund University, Dortmund, Germany
| | - E Ludwig
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - F Wolbert
- Laboratory of Thermodynamics, TU Dortmund University, Dortmund, Germany.,INVITE GmbH, Drug Delivery Innovation Center, Leverkusen, Germany
| | - T Feuerbach
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - G Sadowski
- Laboratory of Thermodynamics, TU Dortmund University, Dortmund, Germany
| | - M Thobmmes
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
14
|
Huang Z, Staufenbiel S, Bodmeier R. Kinetic solubility improvement and influence of polymers on controlled supersaturation of itraconazole-succinic acid nano-co-crystals. Int J Pharm 2022; 616:121536. [PMID: 35124120 DOI: 10.1016/j.ijpharm.2022.121536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
Nano-co-crystals enhance the solubility and dissolution rate of poorly soluble drugs. The objective of this study was to obtain a better understanding of the dissolution process of nano-co-crystals and of the precipitation inhibition by various polymers. Itraconazole-succinic acid (ITZ-SUC) nano-co-crystal was chosen as model drug formulation to investigate the supersaturation and precipitation inhibition capabilities of various polymers (HPMC E5, HPMC E50, HPMCAS, HPC-SSL, PVPK30 and PVPVA64). The kinetic concentration-time profiles of nano-co-crystal were measured under non-sink conditions with in situ UV-VIS spectroscopy. HPMC E5 performed best by achieving the greatest extended supersaturation/precipitation inhibition. The precipitation inhibition capacity of HPMC E5 was proportional to its concentration. The maximum achievable supersaturation was proportional to the dissolution rate which can be modulated by the rate of supersaturation generation (i.e., addition rate or dose). Supersaturation could be prolonged significantly resulting in 2-5-fold increased area under the dissolution curves compared to nano-co-crystals alone. This effect was limited by a critical excess of undissolved particles with high specific surface area which acted as crystallization seeds resulting in faster precipitation. The study highlighted that a faster dissolution rate and the use of precipitation inhibitors were two key factors determining the extent and time of supersaturation of nano-co-crystals.
Collapse
Affiliation(s)
- Zun Huang
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Sven Staufenbiel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| |
Collapse
|
15
|
Chivate A, Garkal A, Hariharan K, Mehta T. Exploring novel carrier for improving bioavailability of Itraconazole: Solid dispersion through hot-melt extrusion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Schittny A, Waldner S, Duthaler U, Vorobyev A, Abramovich R, Krähenbühl S, Puchkov M, Huwyler J. Particle Forming Amorphous Solid Dispersions: A Mechanistic Randomized Pharmacokinetic Study in Humans. Pharmaceutics 2021; 13:401. [PMID: 33803049 PMCID: PMC8003007 DOI: 10.3390/pharmaceutics13030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are a promising drug-delivery strategy to overcome poor solubility through formulation. Currently, the understanding of drug absorption mechanisms from ASDs in humans is incomplete. Aiming to gain insights in this matter, we conducted a randomized cross-over design open-label clinical study (NCT03886766) with 16 healthy male volunteers in an ambulatory setting, using micro-dosed efavirenz as a model drug. In three phases, subjects were administered (1) solid ASD of efavirenz 50 mg or (2) dissolved ASD of efavirenz 50 mg or (3) a molecular solution of efavirenz 3 mg (non-ASD) as a control in block-randomized order. Endpoints were the pharmacokinetic profiles (efavirenz plasma concentration vs. time curves) and derived pharmacokinetic parameters thereof (AUC0-t, Cmax, tmax, and ka). Results showed that the dissolved ASD (intervention 2) exhibited properties of a supersaturated solution (compared to aqueous solubility) with rapid and complete absorption of the drug from the drug-rich particles. All interventions showed similar AUC0-t and were well tolerated by subjects. The findings highlight the potential of particle forming ASDs as an advanced drug-delivery system for poorly soluble drugs and provide essential insights into underlying mechanisms of ASD functioning in humans, partially validating current conceptual models.
Collapse
Affiliation(s)
- Andreas Schittny
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Samuel Waldner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Alexander Vorobyev
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Rimma Abramovich
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Schlauersbach J, Hanio S, Lenz B, Vemulapalli SPB, Griesinger C, Pöppler AC, Harlacher C, Galli B, Meinel L. Leveraging bile solubilization of poorly water-soluble drugs by rational polymer selection. J Control Release 2020; 330:36-48. [PMID: 33333120 DOI: 10.1016/j.jconrel.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Poorly water-soluble drugs frequently solubilize into bile colloids and this natural mechanism is key for efficient bioavailability. We tested the impact of pharmaceutical polymers on this solubilization interplay using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and by assessing the flux across model membranes. Eudragit E, Soluplus, and a therapeutically used model polymer, Colesevelam, impacted the bile-colloidal geometry and molecular interaction. These polymer-induced changes reduced the flux of poorly water-soluble and bile interacting drugs (Perphenazine, Imatinib) but did not impact the flux of bile non-interacting Metoprolol. Non-bile interacting polymers (Kollidon VA 64, HPMC-AS) neither impacted the flux of colloid-interacting nor colloid-non-interacting drugs. These insights into the drug substance/polymer/bile colloid interplay potentially point towards a practical optimization parameter steering formulations to efficient bile-solubilization by rational polymer selection.
Collapse
Affiliation(s)
- Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, DE-37077 Goetingen, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Bruno Galli
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany; Helmholtz Institute for RNA-based Infection Biology (HIRI), DE-97070 Wuerzburg, Germany.
| |
Collapse
|
18
|
Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv 2020; 27:110-127. [PMID: 31885288 PMCID: PMC6968646 DOI: 10.1080/10717544.2019.1704940] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amorphous solid dispersions (ASDs) can increase the oral bioavailability of poorly soluble drugs. However, their use in drug development is comparably rare due to a lack of basic understanding of mechanisms governing drug liberation and absorption in vivo. Furthermore, the lack of a unified nomenclature hampers the interpretation and classification of research data. In this review, we therefore summarize and conceptualize mechanisms covering the dissolution of ASDs, formation of supersaturated ASD solutions, factors responsible for solution stabilization, drug uptake from ASD solutions, and drug distribution within these complex systems as well as effects of excipients. Furthermore, we discuss the importance of these findings on the development of ASDs. This improved overall understanding of these mechanisms will facilitate a rational ASD formulation development and will serve as a basis for further mechanistic research on drug delivery by ASDs.
Collapse
Affiliation(s)
- Andreas Schittny
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland.,Department of Biomedicine, Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Solubilization of itraconazole by surfactants and phospholipid-surfactant mixtures: interplay of amphiphile structure, pH and electrostatic interactions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
21
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
22
|
Long CM, Tang K, Chokshi H, Fotaki N. Surface Dissolution UV Imaging for Investigation of Dissolution of Poorly Soluble Drugs and Their Amorphous Formulation. AAPS PharmSciTech 2019; 20:113. [PMID: 30761437 PMCID: PMC6394625 DOI: 10.1208/s12249-019-1317-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to investigate the dissolution properties of poorly soluble drugs from their pure form and their amorphous formulation under physiological relevant conditions for oral administration based on surface dissolution ultraviolet (UV) imaging. Dissolution of two poorly soluble drugs (cefuroxime axetil and itraconazole) and their amorphous formulations (Zinnat® and Sporanox®) was studied with the Sirius Surface Dissolution Imager (SDI). Media simulating the fasted state conditions (compendial and biorelevant) with sequential media/flow rate change were used. The dissolution mechanism of cefuroxime axetil in simulated gastric fluid (SGF), fasted state simulated gastric fluid (FaSSGF) and simulated intestinal fluid (SIF) is predominantly swelling as opposed to the convective flow in fasted state simulated intestinal fluid (FaSSIF-V1), attributed to the effect of mixed micelles. For the itraconazole compact in biorelevant media, a clear upward diffusion of the dissolved itraconazole into the bulk buffer solution is observed. Dissolution of itraconazole from the Sporanox® compact is affected by the polyethylene glycol (PEG) gelling layer and hydroxypropyl methylcellulose (HPMC) matrix, and a steady diffusional dissolution pattern is revealed. A visual representation and a quantitative assessment of dissolution properties of poorly soluble compounds and their amorphous formulation can be obtained with the use of surface dissolution imaging under in vivo relevant conditions.
Collapse
Affiliation(s)
- Chiau Ming Long
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Perak, Malaysia
| | - Kin Tang
- Genentech, Inc., South San Francisco, California, USA
| | - Hitesh Chokshi
- Roche Pharma Research and Early Development, Roche Innovation Center, New York City, New York, USA
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
23
|
Keen JM, LaFountaine JS, Hughey JR, Miller DA, McGinity JW. Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs. AAPS PharmSciTech 2018; 19:1998-2008. [PMID: 29192405 DOI: 10.1208/s12249-017-0903-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
The formulation factors relevant to developing immediate and controlled release dosage forms containing poorly soluble drugs dispersed in amorphous systems are poorly understood. While the utility of amorphous solid dispersions is becoming apparent in the pharmaceutical marketplace, literature reports tend to concentrate on the development of solid dispersion particulates, which then must be formulated into a tablet. Amorphous solid dispersions of itraconazole in high molecular weight hydroxypropyl methylcellulose were prepared by KinetiSol® Dispersing and tablets were formulated to immediately disintegrate or control the release of itraconazole. Formulated tablets were evaluated by two non-sink dissolution methodologies and the dosage form properties that controlled the gelling tendency of the dispersion carrier, hydroxypropyl methylcellulose, were investigated. Selected formulations were evaluated in an exploratory beagle dog pharmacokinetic study; the results of which indicate potential for a prolonged absorption phase relative to the commercially extruded control.
Collapse
|
24
|
Sun R, Zhang P, Bajnóczi ÉG, Neagu A, Tai CW, Persson I, Strømme M, Cheung O. Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21556-21564. [PMID: 29862822 DOI: 10.1021/acsami.8b03939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m2 g-1), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of ∼0.86 cm3 g-1 and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 Å. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m2 g-1. This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.
Collapse
Affiliation(s)
- Rui Sun
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Peng Zhang
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Éva G Bajnóczi
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , SE-750 07 Uppsala , Sweden
| | - Alexandra Neagu
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Ingmar Persson
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , SE-750 07 Uppsala , Sweden
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| |
Collapse
|
25
|
Démuth B, Galata DL, Balogh A, Szabó E, Nagy B, Farkas A, Hirsch E, Pataki H, Vigh T, Mensch J, Verreck G, Nagy ZK, Marosi G. Application of hydroxypropyl methylcellulose as a protective agent against magnesium stearate induced crystallization of amorphous itraconazole. Eur J Pharm Sci 2018; 121:301-308. [PMID: 29902510 DOI: 10.1016/j.ejps.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Itraconazole is a fungicide drug which has low bioavailability due to its poor water solubility. Amorphous solid dispersion (ASD) is a tool that has the potential to greatly increase the dissolution rate and extent of compounds. In this work, the dissolution of tablets containing the ASD of itraconazole with either hydroxypropyl methylcellulose (HPMC) or vinylpyrrolidone-vinyl acetate copolymer (PVPVA) was compared in order to find a formulation which can prevent the drug from the precipitation caused by magnesium stearate. Formulations containing the PVPVA-based ASD with HPMC included in various forms could reach 90% dissolution in 2 h, while HPMC-based ASDs could release 100% of the drug. However, HPMC-based ASD had remarkably poor grindability and low bulk density, which limited its processability and applicability. The latter issue could be resolved by roller compacting the ASD, which significantly increases the bulk density and the flowability of the powder blends used for tableting. This roller compaction step might be a base for the industrial application of HPMC-based, electrospun ASDs.
Collapse
Affiliation(s)
- B Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - D L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - A Balogh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - E Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - B Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - A Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - E Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - H Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| | - T Vigh
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - J Mensch
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - G Verreck
- Janssen Research and Development, 2340 Beerse, Turnhoutseweg 30, Belgium
| | - Z K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary.
| | - G Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Műegyetem rkp. 3, Hungary
| |
Collapse
|
26
|
Bhardwaj V, Trasi NS, Zemlyanov DY, Taylor LS. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. Int J Pharm 2018; 540:106-119. [DOI: 10.1016/j.ijpharm.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/27/2023]
|
27
|
Schver GCRM, Lee PI. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Mol Pharm 2018; 15:2017-2026. [DOI: 10.1021/acs.molpharmaceut.8b00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanna C. R. M. Schver
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ping I. Lee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
28
|
Solid dispersions to enhance the delivery of a potential drug candidate LPSF/FZ4 for the treatment of schistosomiasis. Eur J Pharm Sci 2018; 115:270-285. [DOI: 10.1016/j.ejps.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
|
29
|
|
30
|
Démuth B, Galata DL, Szabó E, Nagy B, Farkas A, Balogh A, Hirsch E, Pataki H, Rapi Z, Bezúr L, Vigh T, Verreck G, Szalay Z, Demeter Á, Marosi G, Nagy ZK. Investigation of Deteriorated Dissolution of Amorphous Itraconazole: Description of Incompatibility with Magnesium Stearate and Possible Solutions. Mol Pharm 2017; 14:3927-3934. [PMID: 28972782 DOI: 10.1021/acs.molpharmaceut.7b00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.
Collapse
Affiliation(s)
- B Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - D L Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - E Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - B Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - A Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - A Balogh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - E Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - H Pataki
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Z Rapi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - L Bezúr
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics (BME) , Szent Gellért tér 4, H-1111, Budapest, Hungary
| | - T Vigh
- Drug Product Development, Janssen R&D , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - G Verreck
- Drug Product Development, Janssen R&D , Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Z Szalay
- Drug Polymorphism Research, Gedeon Richter Plc. , Gyömrői út 30-32, H-1103 Budapest, Hungary
| | - Á Demeter
- Drug Polymorphism Research, Gedeon Richter Plc. , Gyömrői út 30-32, H-1103 Budapest, Hungary
| | - G Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Z K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME) , Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
31
|
Chamsai B, Limmatvapirat S, Sungthongjeen S, Sriamornsak P. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm 2017; 43:2064-2075. [DOI: 10.1080/03639045.2017.1371731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Benchawan Chamsai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Sontaya Limmatvapirat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Srisagul Sungthongjeen
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
32
|
Sim T, Lim C, Lee JW, Kim DW, Kim Y, Kim M, Choi S, Choi HG, Lee ES, Kim KS, Kang W, Oh KT. Characterization and pharmacokinetic study of itraconazole solid dispersions prepared by solvent-controlled precipitation and spray-dry methods. J Pharm Pharmacol 2017; 69:1707-1715. [PMID: 28872678 DOI: 10.1111/jphp.12805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Solid dispersion formulations have attracted attention to improve solubility and bioavailability of water-insoluble drugs. In this study, the variation of solubility and bioavailability by different preparation methods were studied using itraconazole (ITZ) solid dispersions. METHODS Itraconazole solid dispersions were prepared by a solvent-controlled precipitation method (SCPM) using HPMCAS-LF, HCl antisolvent or a spray-drying method (SDM) for comparison. Dissolution tests by pH transition and pharmacokinetic study using male Sprague Dawley rats were conducted. KEY FINDINGS Itraconazole solid dispersion dissolution tests by pH transition exhibited better dissolution compared to naive ITZ, limited dissolution in acidic conditions and a burst release at neutral pH. The ITZ solid dispersions by SCPM indicated a smaller-sized particle dispersion, limited dissolution at acidic pH and a higher release at neutral pH compared to those by SDM, suggesting that the increased protonation of anionic polymers and HPMCAS-LF by acidic antisolvent could form a tighter hydrophobic aggregation with ITZ in solid dispersions. ITZ solid dispersion prepared by SCPM also showed improved ITZ absorption in male Sprague Dawley rats compared to SDM and naïve ITZ. CONCLUSIONS This study suggests that the SCPM method can be widely used for solid dispersion preparations due to improved dissolution and PK profile.
Collapse
Affiliation(s)
- Taehoon Sim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Chaemin Lim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Jun Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Dong Wuk Kim
- College of Pharmacy, Hanyang University, Gyeonggi-do, South Korea
| | - Youngsam Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Minsoo Kim
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seungmok Choi
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Gyeonggi-do, South Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Kil-Soo Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
33
|
Dereymaker A, Cinghia G, Van den Mooter G. Eudragit® RL as a stabilizer for supersaturation and a substrate for nanocrystal formation. Eur J Pharm Biopharm 2017; 114:250-262. [DOI: 10.1016/j.ejpb.2017.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 02/04/2023]
|
34
|
Berben P, Mols R, Brouwers J, Tack J, Augustijns P. Gastrointestinal behavior of itraconazole in humans - Part 2: The effect of intraluminal dilution on the performance of a cyclodextrin-based solution. Int J Pharm 2017; 526:235-243. [PMID: 28450167 DOI: 10.1016/j.ijpharm.2017.04.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/16/2022]
Abstract
Hydroxypropyl-β-cyclodextrin (HP-β-CD) is known to enable absorption of the lipophilic drug itraconazole. Since the interaction between HP-β-CD and itraconazole is characterized by a non-lineair, AP-type phase-solubility diagram, the present study aimed to investigate the influence of intraluminal dilution (water intake) on the behavior and performance of an orally administered cyclodextrin-based solution of itraconazole. Subsequently, the in vivo behavior was simulated by combining in vitro dilution with permeation assessment. After the administration of a Sporanox® solution to healthy volunteers with or without a glass of water, gastrointestinal and systemic concentrations of itraconazole were simultaneously monitored. Independently of the intake of water, no gastric precipitation of itraconazole was observed. After transfer to the duodenum, precipitation occurred and was more pronounced in the condition with water, resulting in a 7.6-fold reduction in duodenal AUC0-3h compared to the condition without water. Nevertheless, plasma concentration-time profiles did not demonstrate any significant differences in AUC0-8h, Cmax and tmax. Application of freshly aspirated intestinal fluids on Caco-2 cells clearly confirmed that higher intestinal itraconazole concentrations after intake of Sporanox® without water do not generate a substantially increased itraconazole uptake. A two-stage in vitro dilution test was combined with a permeation compartment to capture this solubility-permeability interplay. In conclusion, this work demonstrates that variations in intraluminal dilution may have a drastic impact on the gastrointestinal behavior of lipophilic drugs in the presence of cyclodextrins. In the case of an AP-type interaction with cyclodextrins, the trade-off between solubility and permeability may be affected.
Collapse
Affiliation(s)
- Philippe Berben
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, Gasthuisberg O&N II, Herestraat 49 - Box 921, 3000 Leuven, Belgium.
| |
Collapse
|
35
|
Dereymaker A, Pelgrims J, Engelen F, Adriaensens P, Van den Mooter G. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release. Mol Pharm 2017; 14:974-983. [PMID: 28207272 DOI: 10.1021/acs.molpharmaceut.6b01024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.
Collapse
Affiliation(s)
- Aswin Dereymaker
- Drug Delivery and Disposition, KU Leuven , Campus Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Jirka Pelgrims
- Drug Delivery and Disposition, KU Leuven , Campus Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Frederik Engelen
- Drug Delivery and Disposition, KU Leuven , Campus Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University , Campus Diepenbeek, Agoralaan 1- Building D, 3590 Diepenbeek, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven , Campus Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Maniruzzaman M, Ross SA, Islam MT, Scoutaris N, Nair A, Douroumis D. Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients. Drug Dev Ind Pharm 2017; 43:947-957. [DOI: 10.1080/03639045.2017.1287716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohammed Maniruzzaman
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Steven A. Ross
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Muhammad Tariqul Islam
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Nikolaos Scoutaris
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Arun Nair
- Fuji Chemical Industry Co, Ltd, International Business Division, Minato-Ward, Tokyo, Japan
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| |
Collapse
|
37
|
Characterization, Molecular Docking, and In Vitro Dissolution Studies of Solid Dispersions of 20(S)-Protopanaxadiol. Molecules 2017; 22:molecules22020274. [PMID: 28208662 PMCID: PMC6155859 DOI: 10.3390/molecules22020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, we prepared solid dispersions (SDs) of 20(S)-protopanaxadiol (PPD) using a melting-solvent method with different polymers, in order to improve the solubility and dissolution performance of drugs with poor water solubility. The SDs were characterized via differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and molecular docking and dynamics study. DSC and PXRD results indicated that PPD crystallinity in SDs was significantly reduced, and that the majority of PPD is amorphous. No interaction was observed between PPD and polymers on FTIR and NMR spectra. Molecular docking and dynamic calculations indicated that the PPD molecule localized to the interpolated charged surface, rather than within the amorphous polymer chain network, which might help prevent PPD crystallization, consequently enhancing the PPD dispersion in polymers. An in vitro dissolution study revealed that the SDs considerably improved the PPD dissolution performance in distilled water containing 0.35% Tween-80 (T-80). Furthermore, among three PPD-SDs formulations, Poloxamer188 (F68) was the most effective in improving the PPD solubility and was even superior to the mixed polymers. Therefore, the SD prepared with F68 as a hydrophilic polymer carrier might be a promising strategy for improving solubility and in vitro dissolution performance. F68-based SD, containing PPD with a melting-solvent preparation method, can be used as a promising, nontoxic, quick-release, and effective intermediate for other pharmaceutical formulations, in order to achieve a more effective drug delivery.
Collapse
|
38
|
Li J, Patel D, Wang G. Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges. AAPS JOURNAL 2016; 19:321-333. [PMID: 27896684 DOI: 10.1208/s12248-016-0017-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 11/30/2022]
Abstract
Spray-dried dispersions (SDDs) have become an important formulation technology for the pharmaceutical product development of poorly water-soluble (PWS) compounds. Although this technology is now widely used in the industry, especially in the early-phase development, the lack of mechanistic understanding still causes difficulty in selecting excipients and predicting stability of SDD-based drug products. In this review, the authors aim to discuss several principles of polymer science pertaining to the development of SDDs, in terms of selecting polymers and solvents, optimizing drug loading, as well as assessing physical stability on storage and supersaturation maintenance after dissolution, from both thermodynamic and kinetic considerations. In order to choose compatible solvents with both polymers and active pharmaceutical ingredients (APIs), a symmetric Flory-Huggins interaction (Δχ ∼0) approach was introduced. Regarding spray drying of polymer-API solutions, low critical solution temperature (LCST) was discussed for setting the inlet temperature for drying. In addition, after being exposed to moisture, SDDs are practically converted to ternary systems with asymmetric Flory-Huggins interactions, which are thermodynamically not favored. In this case, the kinetics of phase separation plays a significant role during the storage and dissolution of SDD-based drug products. The impact of polymers on the supersaturation maintenance of APIs in dissolution media was also discussed. Moreover, the nature of SDDs, with reference to solid solution and the notion of solid solubility, was examined in the context of pharmaceutical application. Finally, the importance of robust analytical techniques to characterize the SDD-based drug products was emphasized, considering their complexity.
Collapse
Affiliation(s)
- Jinjiang Li
- Drug Product Science and Technology, Bristol-Myers Squibb Co., New Brunswick, New Jersey, 08903, USA.
| | - Dhaval Patel
- Drug Product Science and Technology, Bristol-Myers Squibb Co., New Brunswick, New Jersey, 08903, USA
| | - George Wang
- Department of Chemical and Synthetic Development, Bristol-Myers Squibb Co., New Brunswick, New Jersey, 08903, USA
| |
Collapse
|
39
|
Han YR, Lee PI. Effect of Extent of Supersaturation on the Evolution of Kinetic Solubility Profiles. Mol Pharm 2016; 14:206-220. [DOI: 10.1021/acs.molpharmaceut.6b00788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Rang Han
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Ping I. Lee
- Department of Pharmaceutical
Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
40
|
Biopharmaceutic Profiling of Salts to Improve Absorption of Poorly Soluble Basic Drugs. J Pharm Sci 2016; 105:3314-3323. [DOI: 10.1016/j.xphs.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
|
41
|
Maincent JP, Najvar LK, Kirkpatrick WR, Huang S, Patterson TF, Wiederhold NP, Peters JI, Williams RO. Modified release itraconazole amorphous solid dispersion to treat Aspergillus fumigatus: importance of the animal model selection. Drug Dev Ind Pharm 2016; 43:264-274. [PMID: 27645428 DOI: 10.1080/03639045.2016.1236811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previously, modified release itraconazole in the form of a melt-extruded amorphous solid dispersion based on a pH dependent enteric polymer combined with hydrophilic additives (HME-ITZ), exhibited improved in vitro dissolution properties. These properties agreed with pharmacokinetic results in rats showing high and sustained itraconazole (ITZ) systemic levels. The objective of the present study was to better understand the best choice of rodent model for evaluating the pharmacokinetic and efficacy of this orally administered modified release ITZ dosage form against invasive Aspergillus fumigatus. A mouse model and a guinea pig model were investigated and compared to results previously published. In the mouse model, despite similar levels as previously reported values, plasma and lung levels were variable and fungal burden was not statistically different for placebo controls, HME-ITZ and Sporanox® (ITZ oral solution). This study demonstrated that the mouse model is a poor choice for studying modified release ITZ dosage forms based on pH dependent enteric polymers due to low fluid volume available for dissolution and low intestinal pH. To the contrary, guinea pig was a suitable model to evaluate modified release ITZ dosage forms. Indeed, a significant decrease in lung fungal burden as a result of high and sustained ITZ tissue levels was measured. Sufficiently high intestinal pH and fluids available for dissolution likely facilitated the dissolution process. Despite high ITZ tissue level, the primary therapeutic agent voriconazole exhibited an even more pronounced decrease in fungal burden due to its reported higher clinical efficacy specifically against Aspergillus fumigatus.
Collapse
Affiliation(s)
- Julien P Maincent
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | - Laura K Najvar
- b University of Texas Health Science Center , San Antonio , TX , USA
| | | | - Siyuan Huang
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | | | | | - Jay I Peters
- b University of Texas Health Science Center , San Antonio , TX , USA
| | - Robert O Williams
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
42
|
The Evaluation of In Vitro Drug Dissolution of Commercially Available Oral Dosage Forms for Itraconazole in Gastrointestinal Simulator With Biorelevant Media. J Pharm Sci 2016; 105:2804-2814. [DOI: 10.1016/j.xphs.2016.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 02/18/2016] [Indexed: 01/24/2023]
|
43
|
Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption. J Pharm Sci 2016; 105:2498-2508. [DOI: 10.1016/j.xphs.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Démuth B, Farkas A, Balogh A, Bartosiewicz K, Kállai-Szabó B, Bertels J, Vigh T, Mensch J, Verreck G, Van Assche I, Marosi G, Nagy ZK. Lubricant-Induced Crystallization of Itraconazole From Tablets Made of Electrospun Amorphous Solid Dispersion. J Pharm Sci 2016; 105:2982-2988. [DOI: 10.1016/j.xphs.2016.04.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/28/2016] [Indexed: 11/26/2022]
|
45
|
Kourentas A, Vertzoni M, Symillides M, Goumas K, Gibbon R, Butler J, Reppas C. Effectiveness of supersaturation promoting excipients on albendazole concentrations in upper gastrointestinal lumen of fasted healthy adults. Eur J Pharm Sci 2016; 91:11-9. [DOI: 10.1016/j.ejps.2016.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022]
|
46
|
Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin Drug Deliv 2016; 13:1681-1694. [DOI: 10.1080/17425247.2016.1198769] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tu Van Duong
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Pharmaceutics, Hanoi University of Pharmacy, Ha Noi, Vietnam
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven – University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, Moldenaers P, Van Humbeeck J, Van den Mooter G. Effect of Compression on the Molecular Arrangement of Itraconazole-Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation? Mol Pharm 2016; 13:1879-93. [PMID: 27092396 DOI: 10.1021/acs.molpharmaceut.6b00046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Collapse
Affiliation(s)
- Abhishek Singh
- Drug Delivery and Disposition, KU Leuven , Leuven, Belgium
| | - Avanish Bharati
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium
| | | | - Olivier Verkinderen
- Polymer Chemistry and Materials, Department of Chemistry, KU Leuven , Leuven, Belgium
| | - Bart Goderis
- Polymer Chemistry and Materials, Department of Chemistry, KU Leuven , Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium.,Polymer Technology, Department of Mechanical Engineering, TU Eindhoven , Eindhoven, The Netherlands
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven , Leuven, Belgium
| | - Jan Van Humbeeck
- Department of Metallurgy and Materials Engineering, KU Leuven , Leuven, Belgium
| | | |
Collapse
|
48
|
Rençber S, Karavana SY, Şenyiğit ZA, Eraç B, Limoncu MH, Baloğlu E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Dev Technol 2016; 22:551-561. [PMID: 27055376 DOI: 10.3109/10837450.2016.1163385] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to develop a suitable mucoadhesive in situ gel formulation of clotrimazole (CLO) for the treatment of vaginal candidiasis. For this aim, the mixture of poloxamer (PLX) 407 and 188 were used to prepare in situ gels. Hydroxypropyl methylcellulose (HPMC) K100M or E50 was added to in situ gels in 0.5% ratio to improve the mucoadhesive and mechanical properties of formulations and to prolong the residence time in vaginal cavity. After the preparation of mucoadhesive in situ gels; gelation temperature/time, viscosity, mechanical, mucoadhesive, syringeability, spreadibility and rheological properties, in vitro release behavior, and anticandidal activities were determined. Moreover vaginal retention of mucoadhesive in situ gels was investigated with in vivo distribution studies in rats. Based on the obtained results, it was found that gels prepared with 20% PLX 407, 10% PLX 188 and 0.5% HPMC K100M/E50 might be suitable for vaginal administration of CLO. In addition, the results of in vivo distribution studies showed that gel formulations remained on the vaginal mucosa even 24 h after application. In conclusion, the mucoadhesive in situ gels of CLO would be alternative candidate for treatment of vaginal candidiasis since it has suitable gel properties with good vaginal retention.
Collapse
Affiliation(s)
- Seda Rençber
- a Department of Pharmaceutical Technology , Ege University , Bornova , Izmir , Turkey
| | - Sinem Yaprak Karavana
- a Department of Pharmaceutical Technology , Ege University , Bornova , Izmir , Turkey
| | - Zeynep Ay Şenyiğit
- a Department of Pharmaceutical Technology , Ege University , Bornova , Izmir , Turkey
| | - Bayri Eraç
- b Department of Pharmaceutical Microbiology, Faculty of Pharmacy , Ege University , Bornova , Izmir , Turkey
| | - Mine Hoşgör Limoncu
- b Department of Pharmaceutical Microbiology, Faculty of Pharmacy , Ege University , Bornova , Izmir , Turkey
| | - Esra Baloğlu
- a Department of Pharmaceutical Technology , Ege University , Bornova , Izmir , Turkey
| |
Collapse
|
49
|
Piccinni P, Tian Y, McNaughton A, Fraser J, Brown S, Jones DS, Li S, Andrews GP. Solubility parameter-based screening methods for early-stage formulation development of itraconazole amorphous solid dispersions. J Pharm Pharmacol 2016; 68:705-20. [PMID: 26864155 DOI: 10.1111/jphp.12491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/20/2015] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
This article uses conventional and newly extended solubility parameter (δ) methods to identify polymeric materials capable of forming amorphous dispersions with itraconazole (itz).
Methods
Combinations of itz and Soluplus, Eudragit E PO (EPO), Kollidon 17PF (17PF) or Kollidon VA64 (VA64) were prepared as amorphous solid dispersions using quench cooling and hot melt extrusion. Storage stability was evaluated under a range of conditions using differential scanning calorimetry and powder X-ray diffraction.
Key findings
The rank order of itz miscibility with polymers using both conventional and novel δ-based approaches was 17PF > VA64 > Soluplus > EPO, and the application of the Flory–Huggins lattice model to itz–excipient binary systems corroborated the findings. The solid-state characterisation analyses of the formulations manufactured by melt extrusion correlated well with pre-formulation screening. Long-term storage studies showed that the physical stability of 17PF/vitamin E TPGS–itz was poor compared with Soluplus and VA64 formulations, and for EPO/itz systems variation in stability may be observed depending on the preparation method.
Conclusion
Results have demonstrated that although δ-based screening may be useful in predicting the initial state of amorphous solid dispersions, assessment of the physical behaviour of the formulations at relevant temperatures may be more appropriate for the successful development of commercially acceptable amorphous drug products.
Collapse
Affiliation(s)
- Piero Piccinni
- Pharmaceutical Engineering Group, Queen's University, Belfast, UK
- Encap Drug Delivery, West Lothian, UK
| | - Yiwei Tian
- Pharmaceutical Engineering Group, Queen's University, Belfast, UK
| | | | | | | | - David S Jones
- Pharmaceutical Engineering Group, Queen's University, Belfast, UK
| | - Shu Li
- Pharmaceutical Engineering Group, Queen's University, Belfast, UK
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, Queen's University, Belfast, UK
| |
Collapse
|
50
|
Brough C, Miller DA, Ellenberger D, Lubda D, Williams RO. Use of Polyvinyl Alcohol as a Solubility Enhancing Polymer for Poorly Water-Soluble Drug Delivery (Part 2). AAPS PharmSciTech 2016; 17:180-90. [PMID: 26863889 DOI: 10.1208/s12249-016-0490-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/28/2016] [Indexed: 11/30/2022] Open
Abstract
The KinetiSol® Dispersing (KSD) technology has enabled the investigation into the use of polyvinyl alcohol (PVAL) as a concentration enhancing polymer for amorphous solid dispersions. Our previous study revealed that the 88% hydrolyzed grade of PVAL was optimal for itraconazole (ITZ) amorphous compositions with regard to solid-state properties, non-sink dissolution performance, and bioavailability enhancement. The current study investigates the influence of molecular weight for the 88% hydrolyzed grades of PVAL on the properties of KSD processed ITZ:PVAL amorphous dispersions. Specifically, molecular weights in the processable range of 4 to 18 mPa · s were evaluated and the 4-88 grade provided the highest AUC dissolution profile. Amorphous dispersions at 10, 20, 30, 40, and 50% ITZ drug loads in PVAL 4-88 were also compared by dissolution performance. Analytical tools of diffusion-ordered spectroscopy and Fourier transform infrared spectroscopy were employed to understand the interaction between drug and polymer. Finally, results from a 30-month stability test of a 30% drug loaded ITZ:PVAL 4-88 composition shows that stable amorphous dispersions can be achieved. Thus, this newly enabled polymer carrier can be considered a viable option for pharmaceutical formulation development for solubility enhancement.
Collapse
|