1
|
Alkhayyat SS, Al-kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GES, Simal-Gandara J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 2022; 71:1159-1167. [PMID: 35941297 PMCID: PMC9360649 DOI: 10.1007/s00011-022-01615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fenofibrate is an agonist of peroxisome proliferator activated receptor alpha (PPAR-α), that possesses anti-inflammatory, antioxidant, and anti-thrombotic properties. Fenofibrate is effective against a variety of viral infections and different inflammatory disorders. Therefore, the aim of critical review was to overview the potential role of fenofibrate in the pathogenesis of SARS-CoV-2 and related complications. RESULTS By destabilizing SARS-CoV-2 spike protein and preventing it from binding angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 entry, fenofibrate can reduce SARS-CoV-2 entry in human cells Fenofibrate also suppresses inflammatory signaling pathways, which decreases SARS-CoV-2 infection-related inflammatory alterations. In conclusion, fenofibrate anti-inflammatory, antioxidant, and antithrombotic capabilities may help to minimize the inflammatory and thrombotic consequences associated with SARSCoV-2 infection. Through attenuating the interaction between SARS-CoV-2 and ACE2, fenofibrate can directly reduce the risk of SARS-CoV-2 infection. CONCLUSIONS As a result, fenofibrate could be a potential treatment approach for COVID-19 control.
Collapse
Affiliation(s)
- Shadi Salem Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M. AboKamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty Science, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
2
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
3
|
Huang SC, Kao YH, Shih SF, Tsai MC, Lin CS, Chen LW, Chuang YP, Tsui PF, Ho LJ, Lai JH, Chen SJ. Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary T cells. Biochem Biophys Res Commun 2021; 550:70-76. [PMID: 33689882 DOI: 10.1016/j.bbrc.2021.02.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023]
Abstract
T cells secrete several inflammatory cytokines that play a critical role in the progression of atherosclerosis. Although green tea epigallocatechin-3-gallate (EGCG) exerts anti-inflammatory and anti-atherosclerotic effects in animals, few studies have identified the mechanism underlying these effects in human primary T cells. This study investigated the pathway involved in EGCG modulation of cytokine secretion in activated human primary T cells. We pre-treated human primary T cells with EGCG (0.1, 1, 5, 10, and 20 μM) for 4 h and incubated them with or without phorbol 12-myristate 13-acetate and ionomycin (P/I) for 20 h. The cytokine production, activator protein (AP)-1 binding activity, and level of mitogen-activated protein kinase (MAPK) were assessed using enzyme-linked immunosorbent assay, electrophoretic mobility shift assay, and Western blotting, respectively. At 10 and 20 μM, EGCG decreased interleukin (IL)-2 levels by 26.0% and 38.8%, IL-4 levels by 41.5% and 55.9%, INF-γ levels by 31.3% and 34.7%, and tumor-necrosis factor (TNF)-α levels by 23.0% and 37.6%, respectively. In addition, the level of phosphorylated c-Jun N-terminal (p-JNK) and extracellular signal-regulated kinase (p-ERK) was decreased, but not the level of p-p38 MAPK. EGCG did not alter any of the total protein amounts, suggesting a selective effect on specific types of MAPKs in stimulated human T cells. EGCG tended to inactivate AP-1 DNA-binding activity. The P/I-induced production of IL-2, IL-4, INF-γ, and TNF-α by human T cells was suppressed by AP-1 inhibitor in a concentration-dependent manner. In conclusion, EGCG suppressed cytokine secretion in activated human primary T cells, and this effect was likely mediated by AP-1 inactivation through the ERK and JNK, but not p38 MAPK, pathways. These results may be related to the mechanisms through which EGCG inhibits immune- or inflammation-related atherogenesis.
Collapse
Affiliation(s)
- Shih-Chung Huang
- Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Jhongli, Taoyuan, 32001, Taiwan
| | - Shao-Fu Shih
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Liv Weichien Chen
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yi-Ping Chuang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Pi-Fen Tsui
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Gueishan, Taoyuan, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Abdel-Aziz AM, Abozaid SMM, Yousef RKM, Mohammed MM, Khalaf HM. Fenofibrate ameliorates testicular damage in rats with streptozotocin-induced type 1 diabetes: role of HO-1 and p38 MAPK. Pharmacol Rep 2020; 72:1645-1656. [PMID: 32515004 DOI: 10.1007/s43440-020-00096-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since diabetes mellitus type-1 (DM-1) induces testicular oxidative and inflammatory damage with finally an ultimate male infertility, and as fenofibrate (FEN) plays an important antioxidant and anti-inflammatory role, the aim of the present study was to investigate the effects of FEN on diabetes-induced reproductive damage and clarifying the underlying related mechanisms. METHODS DM-1 was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50 mg/kg). FEN (100 mg/kg/day, orally) was administrated to diabetic rats for 4 weeks. Testicular damage was detected by estimation of both testicular and body weights, assessment of serum testosterone, testicular oxidative stress parameters (malondialdehyde and nitric oxide levels) and testicular oxidant defenses (reduced glutathione, superoxide dismutase and hemeoxygenase-1). Expressions of the inflammatory markers (inducible nitric oxide synthase, p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor alpha, interleukin-6 and apoptotic marker (caspase-3) were evaluated in testicular tissue. Our results were confirmed by histopathological examination of testicular tissues. RESULTS Diabetic testicular damage was proved by both biochemical and histopathological examinations. FEN treatment reversed diabetic testicular damage; normalized the serum testosterone level, improved anti-oxidative capacity, ameliorated the pro-inflammatory cytokine expression in testicular tissue with the down regulation of p38 MAPK mediated-testicular apoptosis. CONCLUSION FEN treatment exerted a protective effect against streptozotocin-induced diabetic reproductive dysfunction not only through its powerful antioxidant and hypoglycemic effects, but also through its anti-inflammatory and anti-apoptotic effect via down-regulation of testicular p38 MAPK expression in diabetic rats.
Collapse
Affiliation(s)
| | | | | | | | - Hanaa Mohamed Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
5
|
Pitavastatin Exerts Potent Anti-Inflammatory and Immunomodulatory Effects via the Suppression of AP-1 Signal Transduction in Human T Cells. Int J Mol Sci 2019; 20:ijms20143534. [PMID: 31330988 PMCID: PMC6678418 DOI: 10.3390/ijms20143534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
Statins inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase are the standard treatment for hypercholesterolemia in atherosclerotic cardiovascular disease (ASCVD), mediated by inflammatory reactions within vessel walls. Several studies highlighted the pleiotropic effects of statins beyond their lipid-lowering properties. However, few studies investigated the effects of statins on T cell activation. This study evaluated the immunomodulatory capacities of three common statins, pitavastatin, atorvastatin, and rosuvastatin, in activated human T cells. The enzyme-linked immunosorbent assay (ELISA) and quantitative real time polymerase chain reaction (qRT-PCR) results demonstrated stronger inhibitory effects of pitavastatin on the cytokine production of T cells activated by phorbol 12-myristate 13-acetate (PMA) plus ionomycin, including interleukin (IL)-2, interferon (IFN)-γ, IL-6, and tumor necrosis factor α (TNF-α). Molecular investigations revealed that pitavastatin reduced both activating protein-1 (AP-1) DNA binding and transcriptional activities. Further exploration showed the selectively inhibitory effect of pitavastatin on the signaling pathways of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not c-Jun N-terminal kinase (JNK). Our findings suggested that pitavastatin might provide additional benefits for treating hypercholesterolemia and ASCVD through its potent immunomodulatory effects on the suppression of ERK/p38/AP-1 signaling in human T cells.
Collapse
|
6
|
De Felice M, Melis M, Aroni S, Muntoni AL, Fanni S, Frau R, Devoto P, Pistis M. The PPARα agonist fenofibrate attenuates disruption of dopamine function in a maternal immune activation rat model of schizophrenia. CNS Neurosci Ther 2018; 25:549-561. [PMID: 30461214 PMCID: PMC6488881 DOI: 10.1111/cns.13087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Aims Prenatal maternal immune activation (MIA) is associated with a risk to develop schizophrenia and affects dopamine systems in the ventral tegmental area (VTA), key region in the neurobiology of psychoses. Considering the well‐described sex differences in schizophrenia, we investigated whether sex affects MIA impact on dopamine system and on schizophrenia‐related behavioral phenotype. Furthermore, considering peroxisome proliferator‐activated receptor‐α (PPARα) expression in the CNS as well as its anti‐inflammatory and neuroprotective properties, we tested if PPARα activation by prenatal treatment with a clinically available fibrate (fenofibrate) may mitigate MIA‐related effects. Methods We induced MIA in rat dams with polyriboinosinic‐polyribocytidylic acid (Poly I:C) and assessed prepulse inhibition and dopamine neuron activity in the VTA by means of electrophysiological recordings in male and female preweaned and adult offspring. Results Poly I:C‐treated males displayed prepulse inhibition deficits, reduced number and firing rate of VTA dopamine neurons, and paired‐pulse facilitation of inhibitory and excitatory synapses. Prenatal fenofibrate administration attenuated detrimental effects induced by MIA on both the schizophrenia‐like behavioral phenotype and dopamine transmission in male offspring. Conclusion Our study confirms previous evidence that females are less susceptible to MIA and highlights PPARα as a potential target for treatments in schizophrenia.
Collapse
Affiliation(s)
- Marta De Felice
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Sonia Aroni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Lisa Muntoni
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Monserrato, Italy
| | - Silvia Fanni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Frau
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Paola Devoto
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.,Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), Monserrato, Italy
| |
Collapse
|
7
|
Cámara-Lemarroy CR, Guzman-DE LA Garza FJ, Cordero-Perez P, Ibarra-Hernandez JM, Muñoz-Espinosa LE, Fernandez-Garza NE. Gemfibrozil attenuates the inflammatory response and protects rats from abdominal sepsis. Exp Ther Med 2015; 9:1018-1022. [PMID: 25667670 PMCID: PMC4316892 DOI: 10.3892/etm.2015.2190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/28/2014] [Indexed: 01/05/2023] Open
Abstract
Sepsis is a serious condition characterized by an infectious process that induces a severe systemic inflammatory response. In this study, the effects of gemfibrozil (GFZ) on the inflammatory response associated with abdominal sepsis were investigated using a rat model of cecal-ligation and puncture (CLP). Male Wistar rats were randomly divided into three groups: Sham-operated group (sham), where laparotomy was performed, the intestines were manipulated, and the cecum was ligated but not punctured; control group, subjected to CLP; and GFZ group, which received GFZ prior to undergoing CLP. The groups were then subdivided into three different time-points: 2, 4 and 24 h, indicating the time at which blood samples were obtained for analysis. Serum concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined. The LDH, AST and ALT values were significantly elevated following CLP compared with those in the sham group, and GFZ treatment was able to reduce these elevations. GFZ also reduced the sepsis-induced elevations of TNF-α and IL-1. In conclusion, GFZ treatment was able to attenuate the inflammatory response associated with CLP-induced sepsis, by diminishing the release of inflammatory cytokines, thereby reducing tissue injury and oxidative stress.
Collapse
Affiliation(s)
- Carlos R Cámara-Lemarroy
- Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | | | - Paula Cordero-Perez
- Liver Unit, Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Juan M Ibarra-Hernandez
- Department of Physiology, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Linda E Muñoz-Espinosa
- Liver Unit, Department of Internal Medicine, University Hospital 'José Eleuterio González', Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Nancy E Fernandez-Garza
- Department of Physiology, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
8
|
Cheng SM, Lin WH, Lin CS, Ho LJ, Tsai TN, Wu CH, Lai JH, Yang SP. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone. Exp Biol Med (Maywood) 2014; 240:99-108. [PMID: 25073960 DOI: 10.1177/1535370214544263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH(2)-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| | - Wei-Hsiang Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan 350, Taiwan, R.O.C
| | - Tsung-Neng Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan, R.O.C
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan, R.O.C
| |
Collapse
|
9
|
Downer EJ, Clifford E, Amu S, Fallon PG, Moynagh PN. The synthetic cannabinoid R(+)WIN55,212-2 augments interferon-β expression via peroxisome proliferator-activated receptor-α. J Biol Chem 2012; 287:25440-53. [PMID: 22654113 DOI: 10.1074/jbc.m112.371757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that R(+)WIN55,212-2, a synthetic cannabinoid that possesses cannabimimetic properties, acts as a novel regulator of Toll-like receptor 3 (TLR3) signaling to interferon (IFN) regulatory factor 3 (IRF3) activation and IFN-β expression, and this is critical for manifesting its protective effects in a murine multiple sclerosis model. Here we investigated the role of peroxisome proliferator-activated receptor-α (PPARα) in mediating the effects of R(+)WIN55,212-2 on this pathway. Data herein demonstrate that the TLR3 agonist poly(I:C) promotes IFN-β expression and R(+)WIN55,212-2 enhances TLR3-induced IFN-β expression in a stereoselective manner via PPARα. R(+)WIN55,212-2 promotes increased transactivation and expression of PPARα. Using the PPARα antagonist GW6471, we demonstrate that R(+)WIN55,212-2 acts via PPARα to activate JNK, activator protein-1, and positive regulatory domain IV to transcriptionally regulate the IFN-β promoter. Furthermore, GW6471 ameliorated the protective effects of R(+)WIN55,212-2 during the initial phase of experimental autoimmune encephalomyelitis. Overall, these findings define PPARα as an important mediator in manifesting the effects of R(+)WIN55,212-2 on the signaling cascade regulating IFN-β expression. The study adds to our molecular appreciation of potential therapeutic effects of R(+)WIN55,212-2 in multiple sclerosis.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|