1
|
Bucci P, Martínez-Navarrete M, Marti-Quijal FJ, José Guillot A, Barba FJ, Ferrer E, Cantero D, Muñoz R, Melero A. In vivo reduction of skin inflammation using ferulic acid-loaded lipid vesicles derived from Brewer's spent grain. Int J Pharm 2024; 666:124764. [PMID: 39332462 DOI: 10.1016/j.ijpharm.2024.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Breweŕs spent grain (BSG) is the main by-product of the brewing industry, and due to its rapid decomposition, it generates serious environmental problems such as malodors and greenhouse gases emissions. On the other hand, this lignocellulosic compound contains a large number of antioxidants, being ferulic acid (FA) the most abundant. FA is a powerful antioxidant molecule that has demonstrated significant protective effects on key components of the skin, including keratinocytes, fibroblasts, collagen, and elastin. FA inhibits melanogenesis, promotes angiogenesis and accelerates the wound healing although its use is limited by its rapid oxidation. In this study, different hydrolysis treatments (chemical, enzymatic and hydrothermal) were performed on BSG to obtain FA. Herein FA-loaded ultradeformable liposomes (ULs) were designed to improve their stability and in vivo performance. These nanosystems allow FA permeability through human skin, as proven by an ex vivo skin permeability assay using Franz diffusion cells. The toxicity and anti-inflammatory activity of the formulation has been investigated. The free form and 100 nm FA_ULs were evaluated. Cell viability was dose-dependent and provided optimal results for the treatment of inflammatory skin conditions in an in vivo Oxazolone-induced Delayed Type Hypersensitivity model using Swiss CD1 mice, demonstrated by the reduction of the inflammatory cytokines expression, ear thickness, bioluminescence and histological evaluation. These results pave the way for FA-based treatments of skin and inflammatory conditions.
Collapse
Affiliation(s)
- Paula Bucci
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Marti-Quijal
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Francisco J Barba
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Emilia Ferrer
- Research group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Avenida Vicent Andrés Estellés s/n, Burjassot, València 46100, Spain
| | - Danilo Cantero
- The Institute of Bioeconomy. Calle Dr Mergelina S/N, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Ćorović M, Veljković M, Milivojević A, Ivanković AP, Blagojević S, Pjanović R, Bezbradica D. In vitro assessment of skin permeation properties of enzymatically derived oil-based fatty acid esters of vitamin C. Arch Pharm (Weinheim) 2024; 357:e2400538. [PMID: 39268798 DOI: 10.1002/ardp.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Current topical formulations containing vitamin C face limitations in therapeutic effectiveness due to the skin's selective properties that impede drug deposition. Consequently, the widespread use of toxic and irritating chemical permeation enhancers is common. Hereby, we investigated enzymatically derived fatty acid ascorbyl esters (FAAEs) obtained using natural oils for their skin permeation properties using the Strat-M® skin model in a Franz cell diffusion study. By evaluating various cosmetic formulations without added enhancers, we found that emulgel is most suitable for enhancing the cutaneous and transdermal delivery of FAAEs. Furthermore, medium-chain coconut oil-derived FAAEs exhibited faster diffusion rates compared to sunflower oil-based FAAEs with long-side acyl residues, including the commonly applied ascorbyl palmitate. Experimental data were successfully fitted using the Peppas and Sahlin model, which accounted for a lag phase and the combined effect of Fickian diffusion and polymer relaxation. In the case of long-chain esters, the lag phase was prolonged, and the calculated effective diffusion coefficients (Deff) were lower compared to medium-chain FAAEs. Accordingly, the highest Deff value was observed for ascorbyl caprylate, being even 60 times higher than for ascorbyl palmitate. These results suggest the emerging potential of emulgel with incorporated coconut oil-derived FAAEs for efficiently delivering vitamin C into the skin.
Collapse
Affiliation(s)
- Marija Ćorović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Milica Veljković
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Ana Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Anja P Ivanković
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | | | - Rada Pjanović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Dejan Bezbradica
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
4
|
Pierce JS, Cheatham D, Campbell DA, Lazcano RF, Busch CE, Miller EW, Beckett EM. Evaluation of dermal exposure to phthalates and parabens resulting from the use of hair relaxers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-20. [PMID: 39300872 DOI: 10.1080/09603123.2024.2402836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hair relaxers have been suggested as a source of exposure to parabens and phthalates. However, dermally absorbed doses of these chemicals resulting from consumer use of hair relaxers have yet to be quantified, and results from epidemiological studies have consistently demonstrated that there is no increased risk for hormone-sensitive, reproductive cancers associated with use of hair relaxers among Black women. Therefore, dermal absorption of parabens and phthalates associated with hair relaxer use for several commercially available hair relaxer kits was modeled using IH SkinPerm™. The chemicals detected in the hair relaxer kits included methylparaben (MP), ethylparaben (EP), butylparaben (BP), diethyl phthalate (DEP), bis(2-ethylhexyl) phthalate (DEHP), and the phthalate substitute bis(2-ethylhexyl) adipate (DEHA). The daily absorbed dose ranges (mg/kg/day), standardized over a year of product use, were as follows: 8.64 × 10-5-0.00116 MP, 2.30 × 10-8-3.07 × 10-6 EP, 3.24 × 10-8-4.33 × 10-6 BP, 8.65 × 10-9-1.15 × 10-6 DEP, and 8.94 × 10-7-0.000119 DEHP for Kit #1; 8.44 × 10-5-0.00113 MP and 7.91 × 10-5-0.00106 DEP for Kit #2; and 2.49 × 10-6-3.33 × 10-5 MP, 1.52 × 10-8-2.03 × 10-6 EP, 3.29 × 10-9-4.39 × 10-7 DEP, and 3.11 × 10-6-4.14 × 10-5 DEHA for Kit #3. These absorbed doses were well below applicable health-based guidance values, indicating consumer exposure from product use is not expected to pose a health risk. These results provide valuable information for health risk evaluations for hair relaxer use.
Collapse
|
5
|
Yamamoto S, Sugita N, Tomioka K, Shinshi T. A compact and low-frequency drive ultrasound transducer for facilitating cavitation-assisted drug permeation via skin. Biomed Phys Eng Express 2024; 10:065018. [PMID: 39214118 DOI: 10.1088/2057-1976/ad7596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Low-frequency sonophoresis has emerged as a promising minimally invasive transdermal drug delivery method. However, effectively inducing cavitation on the skin surface with a compact, low-frequency ultrasound transducer poses a significant challenge. This paper presents a modified design of a low-frequency ultrasound transducer capable of generating ultrasound cavitation on the skin surfaces. The transducer comprises a piezoelectric ceramic disk and a bowl-shaped acoustic resonator. A conical slit structure was incorporated into the modified transducer design to amplify vibration displacement and enhance the maximum sound pressure. The FEM-based simulation results confirmed that the maximum sound pressure at the resonance frequency of 78 kHz was increased by 1.9 times that of the previous design. Ultrasound cavitation could be experimentally observed on the gel surface. Moreover, 3 min of ultrasound treatment significantly improved the caffeine permeability across an artificial membrane. These results demonstrated that this transducer holds promise for enhancing drug permeation by generating ultrasound cavitation on the skin surface.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Mechanical Engineer, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Naohiro Sugita
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Keita Tomioka
- Department of Mechanical Engineer, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tadahiko Shinshi
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
6
|
Petrov Ivanković A, Ćorović M, Milivojević A, Blagojević S, Radulović A, Pjanović R, Bezbradica D. Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient-Antioxidant Properties Determination and In Vitro Diffusion Study. Pharmaceutics 2024; 16:1209. [PMID: 39339245 PMCID: PMC11435148 DOI: 10.3390/pharmaceutics16091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms of anthocyanin composition, incorporated into three different cosmetic formulations and subjected to Franz cell diffusion study. Experimental values obtained using cellulose acetate membrane for all four dominant anthocyanins (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and cyanidin 3-rutinoside) were successfully fitted with the Korsmeyer-Peppas diffusion model. Calculated effective diffusion coefficients were higher for hydrogel compared to oil-in-water cream gel and oil-in-water emulsion, whereas the highest value was determined for cyanidin 3-rutinoside. On the other hand, after a 72 h long experiment with transdermal skin diffusion model (Strat-M® membrane), no anthocyanins were detected in the receptor fluid, and only 0.5% of the initial quantity from the donor compartment was extracted from the membrane itself after experiment with hydrogel. Present study revealed that hydrogel is a suitable carrier system for the topical delivery of blackcurrant anthocyanins, while dermal and transdermal delivery of these molecules is very limited, which implies its applicability for treatments targeting skin surface (i.e., prebiotic, photoprotective).
Collapse
Affiliation(s)
| | - Marija Ćorović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Ana Milivojević
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Aleksandra Radulović
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (S.B.); (A.R.)
| | - Rada Pjanović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| | - Dejan Bezbradica
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (R.P.); (D.B.)
| |
Collapse
|
7
|
Lundborg M, Wennberg C, Lindahl E, Norlén L. Simulating the Skin Permeation Process of Ionizable Molecules. J Chem Inf Model 2024; 64:5295-5302. [PMID: 38917349 PMCID: PMC11234375 DOI: 10.1021/acs.jcim.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
It is commonly assumed that ionizable molecules, such as drugs, permeate through the skin barrier in their neutral form. By using molecular dynamics simulations of the charged and neutral states separately, we can study the dynamic protonation behavior during the permeation process. We have studied three weak acids and three weak bases and conclude that the acids are ionized to a larger extent than the bases, when passing through the headgroup region of the lipid barrier structure, at pH values close to their pKa. It can also be observed that even if these dynamic protonation simulations are informative, in the cases studied herein they are not necessary for the calculation of permeability coefficients. It is sufficient to base the calculations only on the neutral form, as is commonly done.
Collapse
Affiliation(s)
- Magnus Lundborg
- SciLifeLab, ERCO Pharma AB, 171 65 Solna, Sweden
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Christian Wennberg
- SciLifeLab, ERCO Pharma AB, 171 65 Solna, Sweden
- UC AB, 111 64 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biophysics and Biochemistry, SciLifeLab, Stockholm University, 106 91 Stockholm, Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Lars Norlén
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, 171 77 Solna, Sweden
- Dermatology Clinic, Karolinska University Hospital, 171 77 Solna, Sweden
| |
Collapse
|
8
|
Chu PC, Liao MH, Liu MG, Li CZ, Lai PS. Key Transdermal Patch Using Cannabidiol-Loaded Nanocarriers with Better Pharmacokinetics in vivo. Int J Nanomedicine 2024; 19:4321-4337. [PMID: 38770103 PMCID: PMC11104392 DOI: 10.2147/ijn.s455032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Cannabidiol (CBD) is a promising therapeutic drug with low addictive potential and a favorable safety profile. However, CBD did face certain challenges, including poor solubility in water and low oral bioavailability. To harness the potential of CBD by combining it with a transdermal drug delivery system (TDDS). This innovative approach sought to develop a transdermal patch dosage form with micellar vesicular nanocarriers to enhance the bioavailability of CBD, leading to improved therapeutic outcomes. Methods A skin-penetrating micellar vesicular nanocarriers, prepared using nano emulsion method, cannabidiol loaded transdermal nanocarriers-12 (CTD-12) was presented with a small particle size, high encapsulation efficiency, and a drug-loaded ratio for CBD. The skin permeation ability used Strat-M™ membrane with a transdermal diffusion system to evaluate the CTD and patch of CTD-12 (PCTD-12) within 24 hrs. PCTD-12 was used in a preliminary pharmacokinetic study in rats to demonstrate the potential of the developed transdermal nanocarrier drug patch for future applications. Results In the transdermal application of CTD-12, the relative bioavailability of the formulation was 3.68 ± 0.17-fold greater than in the free CBD application. Moreover, PCTD-12 indicated 2.46 ± 0.18-fold higher relative bioavailability comparing with free CBD patch in the ex vivo evaluation. Most importantly, in the pharmacokinetics of PCTD-12, the relative bioavailability of PCTD-12 was 9.47 ± 0.88-fold higher than in the oral application. Conclusion CTD-12, a transdermal nanocarrier, represents a promising approach for CBD delivery, suggesting its potential as an effective transdermal dosage form.
Collapse
Affiliation(s)
- Po-Cheng Chu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Mao-Gu Liu
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Cun-Zhao Li
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Chedik L, Baybekov S, Cosnier F, Marcou G, Varnek A, Champmartin C. An update of skin permeability data based on a systematic review of recent research. Sci Data 2024; 11:224. [PMID: 38383523 PMCID: PMC10881585 DOI: 10.1038/s41597-024-03026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The cutaneous absorption parameters of xenobiotics are crucial for the development of drugs and cosmetics, as well as for assessing environmental and occupational chemical risks. Despite the great variability in the design of experimental conditions due to uncertain international guidelines, datasets like HuskinDB have been created to report skin absorption endpoints. This review updates available skin permeability data by rigorously compiling research published between 2012 and 2021. Inclusion and exclusion criteria have been selected to build the most harmonized and reusable dataset possible. The Generative Topographic Mapping method was applied to the present dataset and compared to HuskinDB to monitor the progress in skin permeability research and locate chemotypes of particular concern. The open-source dataset (SkinPiX) includes steady-state flux, maximum flux, lag time and permeability coefficient results for the substances tested, as well as relevant information on experimental parameters that can impact the data. It can be used to extract subsets of data for comparisons and to build predictive models.
Collapse
Affiliation(s)
- Lisa Chedik
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France.
| | - Shamkhal Baybekov
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Frédéric Cosnier
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| | - Gilles Marcou
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique UMR 7140 CNRS, Institut Le Bel, University of Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - Catherine Champmartin
- Institut national de recherche et de sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), Dept Toxicologie et Biométrologie, 1 rue du Morvan, 54519, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
10
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Picco A, Segale L, Miletto I, Pollastro F, Aprile S, Locatelli M, Bari E, Torre ML, Giovannelli L. Spray-Dried Powder Containing Cannabigerol: A New Extemporaneous Emulgel for Topical Administration. Pharmaceutics 2023; 15:2747. [PMID: 38140088 PMCID: PMC10747370 DOI: 10.3390/pharmaceutics15122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cannabigerol (CBG), a cannabinoid from Cannabis sativa L., recently attracted noteworthy attention for its dermatological applications, mainly due to its anti-inflammatory, antioxidant, and antimicrobial effectiveness similar to those of cannabidiol (CBD). In this work, based on results from studies of in vitro permeation through biomimetic membranes performed with CBG and CBD in the presence and in the absence of a randomly substituted methyl-β-cyclodextrin (MβCD), a new CBG extemporaneous emulgel (oil-in-gel emulsion) formulation was developed by spray-drying. The powder (SDE) can be easily reconstituted with purified water, leading to a product with chemical-physical and technological characteristics that are comparable to those of the starting emulgels (E). Thermogravimetric analysis (TGA), attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR), x-ray powder diffraction (XRPD), and high-performance liquid chromatography (HPLC) analyses demonstrated that the spray-drying treatment did not alter the chemical properties of CBG. This product can represent a metered-dosage form for the localized treatment of cutaneous afflictions such as acne and psoriasis.
Collapse
Affiliation(s)
- Alice Picco
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
- APTSol S.R.L., Largo Donegani 2, 28100 Novara, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
| | - Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (A.P.); (L.S.); (I.M.); (F.P.); (S.A.); (M.L.); (E.B.); (M.L.T.)
- APTSol S.R.L., Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
12
|
Uchiyama H, Hanamoto Y, Hatanaka Y, Kadota K, Tozuka Y. The Enhanced Skin Permeation of Flavonoids Via the Application of a Coamorphous in a Microemulsion Formulation. J Pharm Sci 2023; 112:3067-3074. [PMID: 37364773 DOI: 10.1016/j.xphs.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Improving the permeability and solubility of poorly water-soluble compounds is a major difficulty in skin permeation. In this study, we investigated whether using a pharmaceutical technique such as applying coamorphous to a microemulsion enhances the skin permeation of polyphenolic compounds. The melt-quenching technique created the coamorphous system between naringenin (NRG) and hesperetin (HPT), two polyphenolic compounds with poor water solubility. By creating a supersaturated state, the aqueous solution of coamorphous NRG/HPT demonstrated improved NRG and HPT skin permeation. However, as both compounds precipitated, the supersaturation ratio decreased. In contrast to crystal compounds, incorporating coamorphous material into microemulsions enabled the preparation of microemulsions in a wider formulation range. Additionally, compared to microemulsions with crystal compounds and an aqueous suspension of coamorphous, microemulsions with coamorphous NRG/HPT increased skin permeation of both compounds by more than four times. These results suggested that interactions between NRG and HPT are maintained in the microemulsion and enhance both compounds' skin permeation. An approach for improving the skin permeation of poorly water-soluble chemicals would be to apply a coamorphous system to a microemulsion.
Collapse
Affiliation(s)
- Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuka Hanamoto
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuta Hatanaka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
13
|
Waen-Ngoen T, Wunnoo S, Nwabor OF, Bilhman S, Dumjun K, Ongarj J, Pinpathomrat N, Lethongkam S, Voravuthikunchai SP, Paosen S. Effectiveness of plant-based hand sanitizer incorporating Quercus infectoria gall extract. J Appl Microbiol 2023; 134:lxad295. [PMID: 38049377 DOI: 10.1093/jambio/lxad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 12/06/2023]
Abstract
AIMS Quercus infectoria (Qi), a traditional herbal plant with a broad spectrum of activities on multidrug-resistant bacteria, has been developed for hand sanitizer applications. METHODS AND RESULTS Antimicrobial activity was evaluated using agar-well diffusion and broth microdilution method. Bactericidal activity was determined following the European Standard 1276 antibacterial suspension test. Neutralization assay was performed to assess antirespiratory syncytial virus. Safety, stability, and skin permeation of Qi hand gel was investigated. Qi hand sanitizer gel inhibited microorganisms ranging from 99.9% to 99.999% against Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant Staph. aureus, Staph. epidermidis, Staph. pseudintermedius, Staph. saprophyticus, Streptococcus pyogenes, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. A significant reduction in main human dermatophytes including Microsporum canis, M. gypseum, and Talaromyces marneffei of ∼50% was observed (P < .05). Qi hand sanitizer gel inactivated >99% viral particles entering human laryngeal epidermoid carcinoma cells in a dose-dependent manner. Scanning electron micrographs further illustrated that Qi hand sanitizer gel disrupted microbial cell membrane after 1-min contact time resulting in cell death. Qi hand sanitizer gel delivered emollient compounds through simulated human skin layers and showed no cytotoxicity on fibroblast cells. Moreover, Qi hand sanitizer gel demonstrated stability under extreme conditions. CONCLUSIONS Qi hand sanitizer gel was able to inhibit various microorganisms including bacteria, dermatophytes, and virus.
Collapse
Affiliation(s)
- Tassanai Waen-Ngoen
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Suttiwan Wunnoo
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ozioma Forstinus Nwabor
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Siwaporn Bilhman
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krittima Dumjun
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sakkarin Lethongkam
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supakit Paosen
- Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
14
|
Kichou H, Bonnier F, Dancik Y, Bakar J, Michael-Jubeli R, Caritá AC, Perse X, Soucé M, Rapetti L, Tfayli A, Chourpa I, Munnier E. Strat-M® positioning for skin permeation studies: A comparative study including EpiSkin® RHE, and human skin. Int J Pharm 2023; 647:123488. [PMID: 37805151 DOI: 10.1016/j.ijpharm.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the development and optimization of dermatological products, In Vitro Permeation Testing (IVPT) is pivotal for controlled study of skin penetration. To enhance standardization and replicate human skin properties reconstructed human skin and synthetic membranes are explored as alternatives. Strat-M® is a membrane designed to mimic the multi-layered structure of human skin for IVPT. For instance, in Strat-M®, the steady-state fluxes (JSS) of resorcinol in formulations free of permeation enhancers were found to be 41 ± 5 µg/cm2·h for the aqueous solution, 42 ± 6 µg/cm2·h for the hydrogel, and 40 ± 6 µg/cm2·h for the oil-in-water emulsion. These results were closer to excised human skin (5 ± 3, 9 ± 2, 13 ± 6 µg/cm2·h) and surpassed the performance of EpiSkin® RHE (138 ± 5, 142 ± 6, and 162 ± 11 µg/cm2·h). While mass spectrometry and Raman microscopy demonstrated the qualitative molecular similarity of EpiSkin® RHE to human skin, it was the porous and hydrophobic polymer nature of Strat-M® that more faithfully reproduced the skin's diffusion-limiting barrier. Further validation through similarity factor analysis (∼80-85%) underscored Strat-M®'s significance as a reliable substitute for human skin, offering a promising approach to enhance realism and reproducibility in dermatological product development.
Collapse
Affiliation(s)
- Hichem Kichou
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- LVMH Recherche, 185 Av. de Verdun, 45800 Saint-Jean-de-Braye, France
| | - Yuri Dancik
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2B1, UK
| | - Joudi Bakar
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Rime Michael-Jubeli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Amanda C Caritá
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Xavier Perse
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Martin Soucé
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Laetitia Rapetti
- Alphenyx, 430 avenue du Maréchal Lattre de Tassigny, 13009 Marseille, France
| | - Ali Tfayli
- Université Paris-Saclay, Faculté de Pharmacie, Lip(sys)(2) « Lipides, Systèmes Analytiques et Biologiques », 17 avenue des sciences, 91400 Orsay, France
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Emilie Munnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours, France.
| |
Collapse
|
15
|
Wang GH, Huang CT, Huang HJ, Tang CH, Chung YC. Biological Activities of Citrus aurantium Leaf Extract by Optimized Ultrasound-Assisted Extraction. Molecules 2023; 28:7251. [PMID: 37959671 PMCID: PMC10649195 DOI: 10.3390/molecules28217251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Several studies have explored the biological activities of Citrus aurantium flowers, fruits, and seeds, but the bioactivity of C. aurantium leaves, which are treated as waste, remains unclear. Thus, this study developed a pilot-scale ultrasonic-assisted extraction process using the Box-Behnken design (BBD) for the optimized extraction of active compounds from C. aurantium leaves, and their antityrosinase, antioxidant, antiaging, and antimicrobial activities were evaluated. Under optimal conditions in a 150× scaleup configuration (a 30 L ultrasonic machine) of a pilot plant, the total phenolic content was 69.09 mg gallic acid equivalent/g dry weight, which was slightly lower (3.17%) than the theoretical value. The half maximal inhibitory concentration of C. aurantium leaf extract (CALE) for 2,2-diphenyl-1-picrylhydrazyl-scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-scavenging, antityrosinase, anticollagenase, antielastase and anti-matrix metalloprotein-1 activities were 123.5, 58.5, 181.3, 196.4, 216.3, and 326.4 mg/L, respectively. Moreover, the minimal inhibitory concentrations for bacteria and fungi were 150-350 and 500 mg/L, respectively. In total, 17 active compounds were detected in CALE-with linalool, linalyl acetate, limonene, and α-terpineol having the highest concentrations. Finally, the overall transdermal absorption and permeation efficiency of CALE was 95.9%. In conclusion, our CALE demonstrated potential whitening, antioxidant, antiaging, and antimicrobial activities; it was also nontoxic and easily absorbed into the skin as well as inexpensive to produce. Therefore, it has potential applications in various industries.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen 361008, China
| | - Chun-Ta Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Hsiu-Ju Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Chi-Hsiang Tang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| |
Collapse
|
16
|
Bernasqué A, Cario M, Krisa S, Lecomte S, Faure C. Prediction of the penetration depth of multi-lamellar liposomes in artificial skin. Application to the vectorization of corticosteroid in human skin. Eur J Pharm Biopharm 2023; 191:303-314. [PMID: 37708944 DOI: 10.1016/j.ejpb.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Our previous work showed that the size, elasticity and charge of multi-lamellar liposomes (MLLs) could not be considered separately to predict the fate of MLLs in the skin [1]. Based on this study, we developed several MLLs formulations containing a corticosteroid, betamethasone 17-valerate (B17) to transport the drug into the stratum corneum, living epidermis, dermis or through the skin. MLLs encapsulation efficiency was found to exceed 74 ± 3 % in all cases. In addition, we showed that MLLs protected the corticosteroid from thermal degradation. Comparing the penetration depth of all MLLs within artificial skin measured by Raman imaging, we established an equation for its determination, given the MLLs elasticity and size. This equation was verified experimentally on human explants: quantification of B17 in each skin layer, as well as its transdermal passage by ultra-high performance liquid chromatography, confirmed that B17 was predominantly and significantly transported in the desired layer. Eventually, we showed the benefits in using B17-loaded MLLs instead of a B17-containing pharmaceutical cream in terms of B17 penetration and thermal degradation.
Collapse
Affiliation(s)
- Antoine Bernasqué
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France; U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Muriel Cario
- U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Stéphanie Krisa
- INRAE, Bordeaux INP, UR œnologie, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Sophie Lecomte
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France
| | - Chrystel Faure
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
17
|
Ostróżka-Cieślik A, Wilczyński S, Dolińska B. Hydrogel Formulations for Topical Insulin Application: Preparation, Characterization and In Vitro Permeation across the Strat-M ® Membrane. Polymers (Basel) 2023; 15:3639. [PMID: 37688265 PMCID: PMC10489751 DOI: 10.3390/polym15173639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Insulin has shown efficacy in the treatment of hard-to-heal wounds, which is mainly due to its role in regulating oxidative stress and inflammatory reactions. The aim of this study was to develop an insulin-hydrogel carrier based on Sepineo™ P 600 and Sepineo™ PHD 100 for application to lesional skin. Preformulation studies of the developed formulations were performed in terms of analysis of the pharmaceutical availability of insulin from the hydrogels through the Strat-M® membrane, and rheological and texture measurements. Insulin is released in a prolonged manner; after a time of 6.5 h, 4.01 IU/cm2 (53.36%) and 3.69 IU/cm2 (47.4%) of the hormone were released from the hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100, respectively. Rheological analysis showed that the hydrogels tested belong to non-Newtonian, shear-thinning systems with yield stress. The insulin-hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100 shows optimal application properties. The results obtained provide a basis for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
18
|
Salminen AT, Davis KJ, Felton RP, Nischal N, VonTungeln LS, Beland FA, Derr K, Brown PC, Ferrer M, Katz LM, Kleinstreuer NC, Leshin J, Manga P, Sadrieh N, Xia M, Fitzpatrick SC, Camacho L. Parallel evaluation of alternative skin barrier models and excised human skin for dermal absorption studies in vitro. Toxicol In Vitro 2023; 91:105630. [PMID: 37315744 PMCID: PMC10527924 DOI: 10.1016/j.tiv.2023.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.
Collapse
Affiliation(s)
- Alec T Salminen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly J Davis
- Toxicologic Pathology Associates, Jefferson, AR, USA
| | - Robert P Felton
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nathania Nischal
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Linda S VonTungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Paul C Brown
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Linda M Katz
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jonathan Leshin
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Prashiela Manga
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Nakissa Sadrieh
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Suzanne C Fitzpatrick
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
19
|
Wennberg C, Lundborg M, Lindahl E, Norlén L. Understanding Drug Skin Permeation Enhancers Using Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:4900-4911. [PMID: 37462219 PMCID: PMC10428223 DOI: 10.1021/acs.jcim.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/15/2023]
Abstract
Our skin constitutes an effective permeability barrier that protects the body from exogenous substances but concomitantly severely limits the number of pharmaceutical drugs that can be delivered transdermally. In topical formulation design, chemical permeation enhancers (PEs) are used to increase drug skin permeability. In vitro skin permeability experiments can measure net effects of PEs on transdermal drug transport, but they cannot explain the molecular mechanisms of interactions between drugs, permeation enhancers, and skin structure, which limits the possibility to rationally design better new drug formulations. Here we investigate the effect of the PEs water, lauric acid, geraniol, stearic acid, thymol, ethanol, oleic acid, and eucalyptol on the transdermal transport of metronidazole, caffeine, and naproxen. We use atomistic molecular dynamics (MD) simulations in combination with developed molecular models to calculate the free energy difference between 11 PE-containing formulations and the skin's barrier structure. We then utilize the results to calculate the final concentration of PEs in skin. We obtain an RMSE of 0.58 log units for calculated partition coefficients from water into the barrier structure. We then use the modified PE-containing barrier structure to calculate the PEs' permeability enhancement ratios (ERs) on transdermal metronidazole, caffeine, and naproxen transport and compare with the results obtained from in vitro experiments. We show that MD simulations are able to reproduce rankings based on ERs. However, strict quantitative correlation with experimental data needs further refinement, which is complicated by significant deviations between different measurements. Finally, we propose a model for how to use calculations of the potential of mean force of drugs across the skin's barrier structure in a topical formulation design.
Collapse
Affiliation(s)
| | - Magnus Lundborg
- Science
for Life Laboratory, ERCO Pharma AB, 171 65 Solna, Sweden
| | - Erik Lindahl
- Department
of Biophysics and Biochemistry, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Lars Norlén
- Department
of Cell and Molecular Biology (CMB), Karolinska
Institutet, 171 77 Solna, Sweden
- Dermatology
Clinic. Karolinska University Hospital, 171 77 Solna, Sweden
| |
Collapse
|
20
|
Marin Villegas CA, Zagury GJ. Metal(loid) speciation in dermal bioaccessibility extracts from contaminated soils and permeation through synthetic skin. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131523. [PMID: 37150097 DOI: 10.1016/j.jhazmat.2023.131523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Dermal exposure to metal(loid)s from contaminated soils can contribute to health risk. Metal(loid) speciation will influence their bioaccessibility in sweat and subsequent permeation across the skin. Therefore, the speciation of the bioaccessible fraction of metal(loid)s in two synthetic sweat formulations (sweat A (pH 6.5) and B (pH 4.7)) was assessed using chemical equilibrium modelling (Visual MINTEQ). Permeation through synthetic skin and the influence of sebum in the permeation of As, Cr, Cu, Ni, Pb, and Zn were also investigated using Franz cells. Following dermal bioaccessibility tests for five Chromated Copper Arsenate (CCA)-contaminated soils and one certified soil (SQC001), mean metal(loid) bioaccessibility (%) was higher in sweat B (2.33-18.8) compared to sweat A (0.12-7.53). Arsenic was almost entirely found as As(V) in both sweats. In sweat A, comparable concentrations of Cr(III) and Cr(VI) were found whereas in sweat B, Cr was primarily present as Cr(III). Copper was primarily found as Cu2+. Bioaccessible Cr extracted from nearly all soils permeated through the Strat-M membrane when it was coated with sebum. The Cr permeation coefficient (Kp) ranged between 0.004 and 0.13 cm/h and the Kp for Cu was higher (0.024-0.52 cm/h). As, Ni, Pb, and Zn did not permeate the synthetic skin.
Collapse
Affiliation(s)
- Carlos A Marin Villegas
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
21
|
Bolko Seljak K, Sterle Zorec B, Gosenca Matjaž M. Nanocellulose-Based Film-Forming Hydrogels for Improved Outcomes in Atopic Skin. Pharmaceutics 2023; 15:1918. [PMID: 37514104 PMCID: PMC10384567 DOI: 10.3390/pharmaceutics15071918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by impaired skin barrier function. Amongst the various dermal formulations that are being used and/or investigated for AD treatment, one of the advanced approaches is the use of hydrogels as film-forming systems that are applied directly to the skin and have the added value of providing a physical barrier, which is lacking in atopic skin. Novel film-forming hydrogels based on two different nanocrystalline celluloses (NCCs) in combination with one of two natural polymers (alginate or pectin) were developed for incorporation of betamethasone dipropionate (BDP). Initially, the low water solubility of BDP was resolved by prior dissolution in a self-microemulsifying drug delivery system (SMEDDS). The mixture of Kolliphor® EL/Capryol® 90 in a ratio of 8/2 was chosen on the merit of its high BDP-saturated solubility and no BDP precipitation upon water dilution, enabling BDP to remain dissolved after incorporation into hydrogels. The solvent evaporation method was used to prepare the films, and their high water retention capacity was confirmed in vitro on artificial membranes and pig ear skin. The presented results thus confirm NCC-based film-forming hydrogels as a very promising drug delivery system for AD treatment.
Collapse
Affiliation(s)
- Katarina Bolko Seljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Sterle Zorec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mirjam Gosenca Matjaž
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Londhe VY, Bhadale RS. Zein-maltodextrin nanocomplex based dissolving microneedle: A promising approach for Paliperidone palmitate delivery. Int J Biol Macromol 2023:125418. [PMID: 37330092 DOI: 10.1016/j.ijbiomac.2023.125418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Researchers are looking at microneedle devices as a possible solution to the problems with poor patient compliance and severe gastrointestinal side effects associated with conventional oral or injectable techniques for treating schizophrenia. Microneedles (MNs) may be an effective approach for transdermal drug delivery of antipsychotic drugs. We fabricated polyvinyl alcohol (PVA) microneedles loaded with paliperidone palmitate (PLDN) nanocomplex and studied their therapeutic potency for schizophrenia. We demonstrated that PLDN nanocomplex-loaded MNs had a pyramidal shape with high mechanical strength, which allowed us to successfully deliver PLDN into the skin and improve permeation behavior ex-vivo. Microneedling enhanced the concentration of PLDN in plasma and brain tissue as compared with the plain drug as observed. In addition, the therapeutic effectiveness was significantly improved by MNs with the capability of extended release. According to the findings of our study, the nanocomplex-loaded microneedle-mediated transdermal delivery of PLDN has the potential to be a novel treatment for schizophrenia.
Collapse
Affiliation(s)
- Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai 400056, Maharashtra, India.
| | - Rupali S Bhadale
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai 400056, Maharashtra, India
| |
Collapse
|
23
|
Ruiz VH, Encinas-Basurto D, Sun B, Eedara BB, Roh E, Alarcon NO, Curiel-Lewandrowski C, Bode AM, Mansour HM. Innovative Rocuronium Bromide Topical Formulation for Targeted Skin Drug Delivery: Design, Comprehensive Characterization, In Vitro 2D/3D Human Cell Culture and Permeation. Int J Mol Sci 2023; 24:ijms24108776. [PMID: 37240122 DOI: 10.3390/ijms24108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second-most common type of non-melanoma skin cancer and is linked to long-term exposure to ultraviolet (UV) radiation from the sun. Rocuronium bromide (RocBr) is an FDA-approved drug that targets p53-related protein kinase (PRPK) that inhibits the development of UV-induced cSCC. This study aimed to investigate the physicochemical properties and in vitro behavior of RocBr. Techniques such as thermal analysis, electron microscopy, spectroscopy and in vitro assays were used to characterize RocBr. A topical oil/water emulsion lotion formulation of RocBr was successfully developed and evaluated. The in vitro permeation behavior of RocBr from its lotion formulation was quantified with Strat-M® synthetic biomimetic membrane and EpiDerm™ 3D human skin tissue. Significant membrane retention of RocBr drug was evident and more retention was obtained with the lotion formulation compared with the solution. This is the first systematic and comprehensive study to report these findings.
Collapse
Affiliation(s)
- Victor H Ruiz
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, Mathematics and Engineering, Campus Navojoa, Universidad de Sonora, Sonora 85880, Mexico
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
| | - Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Medicine, Division of Dermatology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Medicine, Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Bizley SC, Dudhia J, Smith RKW, Williams AC. Transdermal drug delivery in horses: An in vitro comparison of skin structure and permeation of two model drugs at various anatomical sites. Vet Dermatol 2023. [PMID: 37185892 DOI: 10.1111/vde.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Oral and parenteral drug delivery in horses can be difficult. Equine-specific transdermal drug formulations offer improved ease of treatment; development of such formulations requires a deeper understanding of the structural and chemical tissue barrier of horse skin. HYPOTHESIS/OBJECTIVES To compare the structural composition and barrier properties of equine skin. ANIMALS Six warmblood horses (two males, four females) with no skin diseases. MATERIALS AND METHODS Routine histological and microscopic analyses were carried out with image analysis for skin from six different anatomical locations. In vitro drug permeation was analysed using a standard Franz diffusion cell protocol coupled with reversed phase-high-performance liquid chromatography detailing flux, lag times and tissue partitioning ratios of two model drug compounds. RESULTS Epidermal and dermal thicknesses varied between sites. The dermal and epidermal thicknesses of the croup were 1764 ± 115 μm and 36 ± 3.6 μm, respectively, and were significantly different (p < 0.05) from the inner thigh thicknesses which were 824 ± 35 μm and 49 ± 3.6 μm. Follicular density and size also varied. The highest flux for the model hydrophilic molecule (caffeine) was for the flank (3.22 ± 0.36 μg/cm2 /h), while that for the lipophilic molecule (ibuprofen) was for the inner thigh (0.12 ± 0.02 μg/cm2 /h). CONCLUSIONS AND CLINICAL RELEVANCE Anatomical location differences in equine skin structure and small molecule permeability were demonstrated. These results can aid in the development of transdermal therapies for horses.
Collapse
Affiliation(s)
- Samuel C Bizley
- Clinical Science and Services, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Jayesh Dudhia
- Clinical Science and Services, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Roger K W Smith
- Clinical Science and Services, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | | |
Collapse
|
25
|
Rahma A, Lane ME, Sinkó B. A comparative study of the in vitro permeation of 2-phenoxyethanol in the skin PAMPA model and mammalian skin. Int J Pharm 2023; 635:122692. [PMID: 36758884 DOI: 10.1016/j.ijpharm.2023.122692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
For permeation studies that use excised skin, experimental data may show variability associated with the use of biological tissues. As a consequence, achieving reproducible results and data interpretation may be challenging. The skin parallel artificial membrane permeability assay (skin PAMPA) model has been proposed as a high-throughput tool for predicting skin permeation of chemicals. A number of skin cleansing wipe formulations for the diaper area of infants contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. However, information regarding cutaneous absorption of PE and CPC in the scientific literatures is remarkably limited. The main aim of the present study was to assess the suitability of the skin PAMPA model for prediction of skin permeation of PE. A secondary aim was to investigate the influence of CPC on the dermal absorption of PE. PE (1 % w/w) was prepared in two vehicles, namely propylene glycol (PG) and water-PG (WP). Permeability of PE was investigated in vitro using the skin PAMPA membrane, porcine skin and human skin under finite dose conditions. The highest permeation of PE was observed for the water-PG preparation with 0.2 % w/w of CPC. This finding was consistently observed in the skin PAMPA model and in Franz cell studies using porcine skin and human skin. Permeation of CPC was not detected in the three permeation models. However, permeation of PE increased significantly (p < 0.05) in the presence of CPC compared with formulations without CPC. When comparing the skin PAMPA data and the mammalian skin data for the cumulative amount of PE permeated, the r2 values for PAMPA-porcine skin and PAMPA-human skin were 0.84 and 0.89, respectively. The findings in this study demonstrate the capability of the skin PAMPA model to differentiate between various doses and formulations and are encouraging for further applications of this model as a high throughput screening tool in topical formulation development.
Collapse
Affiliation(s)
- Annisa Rahma
- School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia; School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Majella E Lane
- School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, MA 01821, United States.
| |
Collapse
|
26
|
Delivery of Active Peptides by Self-Healing, Biocompatible and Supramolecular Hydrogels. Molecules 2023; 28:molecules28062528. [PMID: 36985499 PMCID: PMC10057174 DOI: 10.3390/molecules28062528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Supramolecular and biocompatible hydrogels with a tunable pH ranging from 5.5 to 7.6 lead to a wide variety of formulations useful for many different topical applications compatible with the skin pH. An in vitro viability/cytotoxicity test of the gel components demonstrated that they are non-toxic, as the cells continue to proliferate after 48 h. An analysis of the mechanical properties demonstrates that the hydrogels have moderate strength and an excellent linear viscoelastic range with the absence of a proper breaking point, confirmed with thixotropy experiments. Two cosmetic active peptides (Trifluoroacetyl tripeptide-2 and Palmitoyl tripeptide-5) were successfully added to the hydrogels and their transdermal permeation was analysed with Franz diffusion cells. The liquid chromatography-mass spectrometry (HPLC-MS) analyses of the withdrawn samples from the receiving solutions showed that Trifluoroacetyl tripeptide-2 permeated in a considerable amount while almost no transdermal permeation of Palmitoyl tripeptide-5 was observed.
Collapse
|
27
|
Bernasqué A, Cario M, Krisa S, Lecomte S, Faure C. Transport of hydrocortisone in targeted layers of the skin by multi-lamellar liposomes. J Liposome Res 2023:1-14. [PMID: 36779686 DOI: 10.1080/08982104.2023.2177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Hydrocortisone (HyC), a hydrophobic pharmaceutical active, was encapsulated in multi-lamellar liposomes (MLLs) composed of P100, a mixture of phospholipids, and Tween®80. Three different HyC-loaded formulations were designed to target the stratum corneum, the living epidermis and the hypodermis. The impact of encapsulation on their size, elasticity and zeta potential, the three key factors controlling MLLs skin penetration, was studied. Raman mapping of phospholipids and HyC allowed the localisation of both components inside an artificial skin, Strat-M®, demonstrating the efficiency of the targeting. Percutaneous permeation profiles through excised human skin were performed over 48 h, supporting results on artificial skin. Their modelling revealed that HyC encapsulated in MLLs, designed to target the stratum corneum and living epidermis, exhibited a non-Fickian diffusion process. In contrast, a Fickian diffusion was found for HyC administered in solution, in a pharmaceutical cream and in transdermal MLLs. These results allowed us to propose a mechanism of interaction between HyC-containing MLLs and the skin.
Collapse
Affiliation(s)
- Antoine Bernasqué
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France.,U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Muriel Cario
- U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Stéphanie Krisa
- INRAE, Bordeaux INP, UR oenologie, Université de Bordeaux, Villenave d'Ornon, France
| | - Sophie Lecomte
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | - Chrystel Faure
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, Pessac, France
| |
Collapse
|
28
|
Cannabidiol-Loaded Nanostructured Lipid Carriers (NLCs) for Dermal Delivery: Enhancement of Photostability, Cell Viability, and Anti-Inflammatory Activity. Pharmaceutics 2023; 15:pharmaceutics15020537. [PMID: 36839859 PMCID: PMC9964291 DOI: 10.3390/pharmaceutics15020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to encapsulate cannabidiol (CBD) extract in nanostructured lipid carriers (NLCs) to improve the chemical stability and anti-inflammatory activity of CBD for dermal delivery. CBD-loaded NLCs (CBD-NLCs) were prepared using cetyl palmitate (CP) as a solid lipid and stabilized with Tego® Care 450 (TG450) or poloxamer 188 (P188) by high-pressure homogenization (HPH). The CBD extract was loaded at 1% w/w. Three different oils were employed to produce CBD-NLCs, including Transcutol® P, medium-chain triglycerides (MCT), and oleic acid (OA). CBD-NLCs were successfully prepared with an entrapment efficiency (E.E.) of 100%. All formulations showed particle sizes between 160 and 200 nm with PDIs less than 0.10. The type of surfactant and oil used affected the particle sizes, zeta potential, and crystallinity of the CBD-NLCs. CBD-NLCs stabilized with TG450 showed higher crystallinity after production and storage at 30 °C for 30 days as compared to those with P188. Encapsulation of the CBD extract in NLCs enhanced its chemical stability after exposure to simulated sunlight (1000 kJ/m2) compared to that of the CBD extract in ethanolic solution. The CBD-NLCs prepared from MCT and OA showed slower CBD release compared with that from Transcutol® P, and the kinetic data for release of CBD from CBD-NLCs followed Higuchi's release model with a high coefficient of determination (>0.95). The extent of CBD permeation through Strat-M® depended on the oil type. The cytotoxicity of the CBD extract on HaCaT and HDF cells was reduced by encapsulation in the NLCs. The anti-inflammatory activity of the CBD extract in RAW264.7 cell macrophages was enhanced by encapsulation in CBD-NLCs prepared from MCT and OA.
Collapse
|
29
|
Araújo D, Rodrigues T, Roma-Rodrigues C, Alves VD, Fernandes AR, Freitas F. Chitin-Glucan Complex Hydrogels: Physical-Chemical Characterization, Stability, In Vitro Drug Permeation, and Biological Assessment in Primary Cells. Polymers (Basel) 2023; 15:polym15040791. [PMID: 36850075 PMCID: PMC9963717 DOI: 10.3390/polym15040791] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated by coagulation of the biopolymer from an aqueous alkaline solution, and their morphology, swelling behavior, mechanical, rheological, and biological properties were studied. In addition, their in vitro drug loading/release ability and permeation through mimic-skin artificial membranes (Strat-M) were assessed. The CGC hydrogels prepared from 4 and 6 wt% CGC suspensions (Na51*4 and Na51*6 hydrogels, respectively) had polymer contents of 2.40 ± 0.15 and 3.09 ± 0.22 wt%, respectively, and displayed a highly porous microstructure, characterized by compressive moduli of 39.36 and 47.30 kPa and storage moduli of 523.20 and 7012.25 Pa, respectively. Both hydrogels had a spontaneous and almost immediate swelling in aqueous media, and a high-water retention capacity (>80%), after 30 min incubation at 37 °C. Nevertheless, the Na51*4 hydrogels had higher fatigue resistance and slightly higher-water retention capacity. These hydrogels were loaded with caffeine, ibuprofen, diclofenac, or salicylic acid, reaching entrapment efficiency values ranging between 13.11 ± 0.49% for caffeine, and 15.15 ± 1.54% for salicylic acid. Similar release profiles in PBS were observed for all tested APIs, comprising an initial fast release followed by a steady slower release. In vitro permeation experiments through Strat-M membranes using Franz diffusion cells showed considerably higher permeation fluxes for caffeine (33.09 µg/cm2/h) and salicylic acid (19.53 µg/cm2/h), compared to ibuprofen sodium and diclofenac sodium (4.26 and 0.44 µg/cm2/h, respectively). Analysis in normal human dermal fibroblasts revealed that CGC hydrogels have no major effects on the viability, migration ability, and morphology of the cells. Given their demonstrated features, CGC hydrogels are very promising structures, displaying tunable physical properties, which support their future development into novel transdermal drug delivery platforms.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| |
Collapse
|
30
|
Preparation and Evaluation of Vitamin D3 Supplementation as Transdermal Film-Forming Solution. Pharmaceutics 2022; 15:pharmaceutics15010039. [PMID: 36678668 PMCID: PMC9863400 DOI: 10.3390/pharmaceutics15010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D3 is available in oral and injectable dosage forms. Interest in the transdermal route as an alternative to the oral and parenteral routes has grown recently. In this study, several film-forming solutions for the transdermal delivery of vitamin D3 were prepared. They contained 6000 IU/mL of vitamin D3 that formed a dry and acceptable film in less than 5 min after application. The formulations consisted of ethanol and acetone 80:20, and one or more of the following ingredients: Eudragit L100-55, PVP, PG, limonene, oleic acid, camphor, and menthol. Vitamin D3 release was studied from both the film-forming solution and pre-dried films using a Franz diffusion cell. The film-forming solution released a significant amount of vitamin D3 compared to the dry film, which is attributed mostly to the saturation driving force due to the evaporation of volatile solvents. In vitro permeation studies through artificial skin Strat M® membrane revealed that the cumulative amount of vitamin D3 permeated after 24 h under the experimental conditions was around 800 IU across 3.14 cm2. The cumulative permeation curve showed faster permeation in earlier stages. Young's modulus, viscosity, and pH of the formulations were determined. Most of the formulations were stable for 3 weeks.
Collapse
|
31
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
32
|
Yu L, Madsen FB, Eriksen SH, Andersen AJC, Skov AL. A reliable quantitative method for determining CBD content and release from transdermal patches in Franz cells. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1257-1265. [PMID: 36372393 PMCID: PMC10100468 DOI: 10.1002/pca.3188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION There are several cannabidiol (CBD) transdermal patches available on the market. However, none are FDA-approved. Furthermore, not much evidence has been published about CBD release and skin permeation from such patches, so the effectiveness and reliability remain unclear. OBJECTIVES We aimed to develop a method to determine the in vitro release and skin permeation of CBD from transdermal patches using Franz cell diffusion in combination with quantitative 1 H-NMR (qNMR). MATERIALS AND METHODS The study was conducted on CBD patches with known CBD content and six different commercially available or market-ready CBD patches using a Franz cell with a Strat-M™ membrane and with samples taken directly from the transdermal patch for qNMR analysis. RESULTS The use of qNMR yielded an average recovery of 100% ± 7% when samples with known CBD content were tested. Results from the testing of six commercially available patches indicated that five out of six patches did not contain the CBD amount stated by the manufacturer according to a ± 10% variance margin, of which four patches were under-labeled and one was over-labeled. The release rate of patches was determined, and significant differences between the patches were shown. Maximum release of CBD was calculated to occur after 39 to 70 h. CONCLUSION The established method was proven to be a reliable means of determining the quantity and release of CBD from transdermal patches and can be used to verify CBD content and release rate in transdermal patches.
Collapse
Affiliation(s)
- Liyun Yu
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Frederikke Bahrt Madsen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| | - Sofie Helvig Eriksen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
| | - Aaron J. C. Andersen
- Department of Biotechnology and Biomedicine, Building 221Technical University of DenmarkKgs. LyngbyDenmark
| | - Anne Ladegaard Skov
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Building 227Technical University of DenmarkKgs. LyngbyDenmark
- GlysiousHolteDenmark
| |
Collapse
|
33
|
Viola M, Migliorini C, Matricardi P, Di Meo C. Synthesis and characterization of a novel amphiphilic polyacrylate-cholesterol derivative as promising material for pharmaceutical and cosmetic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Suzuki T, Sato K, Seki T, Seki T. Study of Polymer Nanofilms Using for High-Throughput Screening in the Development of Transdermal Therapeutic System. Chem Pharm Bull (Tokyo) 2022; 70:868-875. [PMID: 36450585 DOI: 10.1248/cpb.c22-00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We investigated polymer nanofilm (PNF) for use in high-throughput screening (HTS) to promote the development of transdermal therapeutic systems (TTS). The drug permeability of PNF with a 1 : 1 weight mix ratio of poly(L-lactic acid) (PLLA) and poly(methylhydrosiloxane) (PMHS) (PLLA/PMHS (1/1) PNF) and Strat-M® of the transdermal diffusion test membrane, was evaluated using 12 kinds of drugs with the logarithmic value of n-octanol/water partition coefficients of -4.70 to 3.86. The lag time of PLLA/PMHS (1/1) PNF made via polymer alloying was significantly shorter than that of Strat-M® for 10 drug types, and the formation of a highly diffusible PMHS-rich phase accompanying the formation of a sea-island structure was suggested as a contributing factor. Additionally, a high correlation was confirmed between the measured value for the logarithm of the apparent permeability coefficient of PLLA/PMHS (1/1) PNF and the literature values for the logarithm of the apparent permeability coefficient of human skin (r = 0.929). This study shows that PLLA/PMHS (1/1) PNF can reliably predict drug permeability in human skin and can potentially be used in HTS for developing TTS.
Collapse
Affiliation(s)
| | - Kanae Sato
- Faculty of Pharmaceutical Sciences, Josai University
| | - Tomohiro Seki
- Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
35
|
Sugibayashi K. Transdermal Drug Delivery Systems: From the Dawn and Early Stage to the Development and Maturity Stage, and the Future. YAKUGAKU ZASSHI 2022; 142:1227-1253. [DOI: 10.1248/yakushi.22-00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Validation and testing of a new artificial biomimetic barrier for estimation of transdermal drug absorption. Int J Pharm 2022; 628:122266. [DOI: 10.1016/j.ijpharm.2022.122266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/22/2022]
|
37
|
Transdermal diffusion of resveratrol by multilamellar liposomes: Effect of encapsulation on its stability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Kuznetsov DM, Kuznetsova DA, Zakharova LY. Liposomes modified with borneol-containing surfactants for transdermal delivery of hydrophilic substrates. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3606-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Holmbäck J, Rinwa V, Johansson J, Håkansson J, Rinwa P, Carlsson A, Herslöf B. Preclinical development of sodium fusidate antibiotic cutaneous spray based on water-free lipid formulation system. Eur J Pharm Sci 2022; 176:106250. [PMID: 35779822 DOI: 10.1016/j.ejps.2022.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Topical antibiotics are a key component in the management of mild to moderate skin and soft tissue infections. There are, however, concerns about the emerging bacterial resistance against topical antibacterial agents such as fusidic acid, due to the prolonged treatment period of its marketed dosage forms. Improving the efficacy of topical formulations could potentially shorten the treatment period and avoid the resistance growth. To provide a more effective drug delivery, a water-free lipid-based formulation system (AKVANO®) which can be applied by spraying, has been developed. In the current paper, different formulations containing sodium fusidate were evaluated for their in vitro skin permeability using artificial skin mimicking membranes and antibacterial properties using ex vivo and in vivo skin wound infection models. The novel formulations containing sodium fusidate showed a much higher skin permeation (up to 60% of nominal amount) than the commercially available Fucidin® cream (3%). These formulations also gave a significantly stronger antibacterial effect than Fucidin cream showing a clear dose-response relationship for the sodium fusidate content. A spray product based on the described formulation technology would therefore require a shorter treatment time and thereby lower the risk for the development of bacterial resistance. Spray administration of these formulations provides an even layer on the skin surface from which the solvent quickly evaporates and thereby facilitates a non-touch application where no rubbing is required.
Collapse
Affiliation(s)
- Jan Holmbäck
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden; Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden.
| | - Vibhu Rinwa
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden; Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden
| | - Jenny Johansson
- RISE Research Institutes of Sweden AB, Brinellgatan 4, Borås SE-504 62, Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden AB, Brinellgatan 4, Borås SE-504 62, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg SE- 405 30, Sweden
| | - Puneet Rinwa
- Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden
| | - Anders Carlsson
- MediGelium AB, Hornsbergs strand 49, Stockholm SE-112 16, Sweden
| | - Bengt Herslöf
- Lipidea AB, Brunbärsvägen 2, Stockholm SE-114 21, Sweden
| |
Collapse
|
40
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Pjanović R, Bezbradica D. Evaluation of in vitro Skin Permeation of Enzymatically Synthesized Phloridzin Acetates from Emulsions and Liposomes Dispersed in Gel. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Milivojević
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Milica Simović
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Katarina Banjanac
- Innovation Center of Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia
| | - Rada Pjanović
- Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 Belgrade 11000
| |
Collapse
|
41
|
Assaf SM, Ghanem AM, Alhaj SA, Khalil EA, Sallam AA. Formulation and Evaluation of Eudragit® RL Polymeric Double Layer Films for Prolonged-Release Transdermal Delivery of Tamsulosin Hydrochloride. AAPS PharmSciTech 2022; 23:210. [PMID: 35902492 DOI: 10.1208/s12249-022-02358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Transdermal drug delivery systems (TDDSs) were developed for prolonged tamsulosin (TMS) delivery. Double layer (DL) TDDSs were prepared using Eudragit® RL by conventional film-forming. Ethylene-vinyl acetate was used as the backing layer, triethylcitrate as plasticizer, and Capmul® PG-8-70 NF and Captex 170 EP as penetration enhancers (PEs). An increase in either drug or PE concentration caused a significant increase in drug permeation flux. Modulation of drug permeation across Strat-M® membrane was examined using a single layer (SL) having the same thickness and drug content as the DLs, while the DLs were formulated to have variable drug spatial distribution across each layer (DL 4:6 and DL 6:4). SL/TDDS showed significantly higher daily drug permeation than DL/TDDSs for the first 4 days which could be related to the presence of high TMS concentration located on the upper surface of SL/TDDS as a result of solute migration of TMS during the drying process. However, this increase was followed by a progressive linear decrease after 5 days. Deflection points that were characterized by lower drug flux had been shown by SL/TDDS at more than one-point times. In contrast, DL 4:6 and DL 6:4 TDDSs demonstrated an ability to sustain TMS delivery for up to 2 weeks.
Collapse
Affiliation(s)
- Shereen M Assaf
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan.
| | - Aya M Ghanem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Shayma'a A Alhaj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Enam A Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
42
|
Kuznetsova DA, Vasilieva EA, Kuznetsov DM, Lenina OA, Filippov SK, Petrov KA, Zakharova LY, Sinyashin OG. Enhancement of the Transdermal Delivery of Nonsteroidal Anti-inflammatory Drugs Using Liposomes Containing Cationic Surfactants. ACS OMEGA 2022; 7:25741-25750. [PMID: 35910111 PMCID: PMC9330268 DOI: 10.1021/acsomega.2c03039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
New hybrid liposomes based on cationic amphiphiles with different structures of the head group (cetyltrimethylammonium bromide (CTAB), 3-hexadecyl-1-hydroxyethylimidazolium bromide (IA-16(OH)), 1-(butylcarbamoyl)oxyethyl-3-hexadecylimidazolium bromide (IAC 16(Bu)), and hexadecylmethylpyrrolidinium bromide (PR-16)) were developed for transdermal administration of nonsteroidal anti-inflammatory drugs. The different surfactant/lipid compositions were studied to obtain stable liposomes with high functionality. The hydrodynamic diameter of cationic liposomes was ∼110 nm. An admixture of cationic surfactants and PC liposomes improves the physicochemical properties of vesicles and transdermal diffusion rate and prolongs the release of drugs. Liposomal diclofenac sodium (DS) and ketoprofen (KP) were tested (using Franz cells) for transdermal penetration. Drug diffusion monitoring for 48 h demonstrated that the maximum DS and KP penetration through the synthetic membranes (Strat-M) is characterized by values of 255 ± 2 and 186 ± 3 μg/cm2, respectively. The influence of the surfactant head group on the properties (stability, release profile, permeability) of cationic liposomes was shown for the first time. While the drug specificity is evident for the rate of release, the permeability increases as follows: conventional liposomes < CTAB/PC < PR-16/PC < IAC-16(Bu)/PC < IA-16(OH)/PC for both medicines. The rat paw edema model was used to assess the anti-inflammatory effect of the IA-16(OH)/PC leader formulation in vivo. It was found that liposomal DS and KP are effective for relieving rat paw edema. It should be noted that DS-loaded hybrid liposomes demonstrated the highest therapeutic efficacy compared to conventional vesicles.
Collapse
Affiliation(s)
- Darya A. Kuznetsova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Elmira A. Vasilieva
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Denis M. Kuznetsov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Oksana A. Lenina
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Sergey K. Filippov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin A. Petrov
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
- Kazan
(Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russian Federation
| | - Lucia Ya. Zakharova
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Oleg G. Sinyashin
- Arbuzov
Institute of Organic and Physical Chemistry, FRC Kazan Scientific
Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
43
|
Preparation and Optimization of an Ultraflexible Liposomal Gel for Lidocaine Transdermal Delivery. MATERIALS 2022; 15:ma15144895. [PMID: 35888361 PMCID: PMC9325174 DOI: 10.3390/ma15144895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The pain caused by lidocaine injections into the face prior to facial plastic surgeries intended to remove growths or tumorous lesions has been reported by many patients to be the worst part of these procedures. However, the lidocaine gels and creams currently on the market do not deliver an equal or better local anesthetic effect to replace these injections. To develop an alternative to the painful local anesthetic injection, we prepared ultraflexible liposomes using soy phosphatidylcholine, lidocaine, and different amounts of sodium cholate, a surfactant. The prepared ultraflexible liposomes (UFLs) were examined for particle size, zeta potential, cytotoxicity, and in vitro release. By using a carbomer as a gelling agent, the prepared UFL lidocaine gels were evaluated for their penetration ability in a Franz diffusion cell, using Strat-M membranes. The formulation achieving the highest amount of penetrated lidocaine was chosen for further pH, viscosity, and stability tests. The local anesthetic efficacy of the formulation was investigated by an in vivo tail-flick test in rats. Our findings suggested that this topical gel formulated with ultraflexible liposomal lidocaine has enhanced skin permeation ability, as well as an improved local analgesic effect from the lidocaine.
Collapse
|
44
|
A Mathematical Approach Using Strat-M ® to Predict the Percutaneous Absorption of Chemicals under Finite Dose Conditions. Pharmaceutics 2022; 14:pharmaceutics14071370. [PMID: 35890266 PMCID: PMC9318111 DOI: 10.3390/pharmaceutics14071370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Estimation of the percutaneous absorption is essential for the safety assessment of cosmetic and dermopharmaceutical products. Currently, an artificial membrane, Strat-M®, has been focused on as the tool which could obtain the permeation parameters close to the skin-derived values. Nevertheless, few practical methodologies using the permeation parameters for assessing percutaneous absorption under in-use conditions are available. In the present study, based on Fick's first law of diffusion, a novel mathematical model incorporating the permeation parameters as well as considering the water evaporation (Teva) was constructed. Then, to evaluate the applicability domain of our model in the case where Strat-M®-derived parameters were used, the permeation parameters were compared between the skin from edible porcine and Strat-M®. Regarding chemicals (-0.2 ≤ Log Kow ≤ 2.0), their permeation profiles were equivalent between Strat-M® and porcine skin. Therefore, for these chemicals, the percutaneous absorption was calculated using our model with the permeation parameters obtained using Strat-M® and the Teva determined by measuring the solution weight. The calculated values revealed a good correlation to the values obtained using porcine skin in finite dose experiments, suggesting that our mathematical approach with Strat-M® would be useful for the future safety assessment of cosmetic and dermopharmaceutical products.
Collapse
|
45
|
Calderon-Jacinto R, Matricardi P, Gueguen V, Pavon-Djavid G, Pauthe E, Rodriguez-Ruiz V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022; 12:biom12060780. [PMID: 35740905 PMCID: PMC9221280 DOI: 10.3390/biom12060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
This work focuses on the development and evaluation of a dual nanostructured lipid carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Curcumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin (CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibroblasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 μM and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate for adjuvant treatment in topical dermal applications.
Collapse
Affiliation(s)
- Rosa Calderon-Jacinto
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Emmanuel Pauthe
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
- Correspondence: ; Tel.: +33-01-3425-2830
| |
Collapse
|
46
|
Pulsoni I, Lubda M, Aiello M, Fedi A, Marzagalli M, von Hagen J, Scaglione S. Comparison Between Franz Diffusion Cell and a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models. SLAS Technol 2022; 27:161-171. [PMID: 35058208 DOI: 10.1016/j.slast.2021.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In vitro diffusive models are an important tool to screen the penetration ability of active ingredients in various formulations. A reliable assessment of skin penetration enhancing properties, mechanism of action of carrier systems, and an estimation of a bioavailability are essential for transdermal delivery. Given the importance of testing the penetration kinetics of different compounds across the skin barrier, several in vitro models have been developedThe aim of this study was to compare the Franz Diffusion Cell (FDC) with a novel fluid-dynamic platform (MIVO) by evaluating penetration ability of caffeine, a widely used reference substance, and LIP1, a testing molecule having the same molecular weight but a different lipophilicity in the two diffusion chamber systems. A 0.7% caffeine or LIP1 formulation in either water or propylene glycol (PG) containing oleic acid (OA) was topically applied on the Strat-M® membrane or pig ear skin, according to the infinite-dose experimental condition (780 ul/cm2). The profile of the penetration kinetics was determined by quantify the amount of molecule absorbed at different time-points (1, 2, 4, 6, 8 hours), by means of HPLC analysis. Both diffusive systems show a similar trend for caffeine and LIP1 penetration kinetics. The Strat-M® skin model shows a lower barrier function than the pig skin biopsies, whereby the PGOA vehicle exhibits a higher penetration, enhancing the effect for both diffusive chambers and skin surrogates. Most interestingly, MIVO diffusive system better predicts the lipophilic molecules (i.e. LIP1) permeation through highly physiological fluid flows resembled below the skin models.
Collapse
Affiliation(s)
| | | | - Maurizio Aiello
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy
| | - Arianna Fedi
- CNR -National Research Council of Italy, Genova, Italy
| | | | | | - Silvia Scaglione
- React4life Srl, Genoa, Italy; CNR -National Research Council of Italy, Genova, Italy.
| |
Collapse
|
47
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
48
|
Olkowska E, Gržinić G. Skin models for dermal exposure assessment of phthalates. CHEMOSPHERE 2022; 295:133909. [PMID: 35143861 DOI: 10.1016/j.chemosphere.2022.133909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are a class of compounds that have found widespread use in industrial applications, in particular in the polymer, cosmetics and pharmaceutical industries. While ingestion, and to a lesser degree inhalation, have been considered as the major exposure routes, especially for higher molecular weight phthalates, dermal exposure is an important route for lower weight phthalates such as diethyl phthalate (DEP). Assessing the dermal permeability of such compounds is of great importance for evaluating the impact and toxicity of such compounds in humans. While human skin is still the best model for studying dermal permeation, availability, cost and ethical concerns may preclude or restrict its use. A range of alternative models has been developed over time to substitute for human skin, especially in the early phases of research. These include ex vivo animal skin, human reconstructed skin and artificial skin models. While the results obtained using such alternative models correlate to a lesser or greater degree with those from in vivo human studies, the use of such models is nevertheless vital in dermal permeation research. This review discusses the alternative skin models that are available, their use in phthalate permeation studies and possible new avenues of phthalate research using skin models that have not been used so far.
Collapse
Affiliation(s)
- Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland.
| | - Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdansk, Poland
| |
Collapse
|
49
|
Using Chitosan-Coated Polymeric Nanoparticles-Thermosensitive Hydrogels in association with Limonene as Skin Drug Delivery Strategy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9165443. [PMID: 35434138 PMCID: PMC9010220 DOI: 10.1155/2022/9165443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Topical delivery of local anesthetics (LAs) is commonly used to decrease painful sensations, block pain throughout procedures, and alleviate pain after surgery. Dermal and/or transdermal delivery of LAs has other advantages, such as sustained drug delivery and decreased systemic adverse effects. This study reports the development of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles coated with chitosan for the sustained release and topicality of benzocaine (BZC) and topical delivery. BZC PLGA nanoparticles or nonencapsulated drugs were further incorporated into Poloxamer hydrogels (Pluronic™ F-127). The nanoparticles showed a mean diameter of 380 ± 4 nm, positive zeta potential after coating with chitosan (23.3 ± 1.7 mV), and high encapsulation efficiency (96.7 ± 0.02%). Cellular viability greater than 70% for both fibroblasts and keratinocytes was observed after treatment with nanoparticles, which is in accordance with the preconized guidelines for biomedical devices and delivery systems. Both the nanoparticles and hydrogels were able to modulate BZC delivery and increase drug permeation when compared to the nonencapsulated drug. Furthermore, the incorporation of limonene into hydrogels containing BZC-loaded nanoparticles increased the BZC permeation rates. Non-Newtonian and pseudoplastic behaviors were observed for all hydrogel nanoformulations with or without nanoparticles. These results demonstrate that the hydrogel-nanoparticle hybrids could be a promising delivery system for prolonged local anesthetic therapy.
Collapse
|
50
|
Holmbäck J, Rinwa V, Halthur T, Rinwa P, Carlsson A, Herslöf B. AKVANO ®: A Novel Lipid Formulation System for Topical Drug Delivery-In Vitro Studies. Pharmaceutics 2022; 14:pharmaceutics14040794. [PMID: 35456628 PMCID: PMC9030418 DOI: 10.3390/pharmaceutics14040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
A novel formulation technology called AKVANO® has been developed with the aim to provide a tuneable and versatile drug delivery system for topical administration. The vehicle is based on a water-free lipid formulation where selected lipids, mainly phospholipids rich in phosphatidylcholine, are dissolved in a volatile solvent, such as ethanol. With the aim of describing the basic properties of the system, the following physicochemical methods were used: viscometry, dynamic light scattering, NMR diffusometry, and atomic force microscopy. AKVANO formulations are non-viscous, with virtually no or very minute aggregates formed, and when applied to the skin, e.g., by spraying, a thin film consisting of lipid bilayer structures is formed. Standardized in vitro microbiological and irritation tests show that AKVANO formulations meet criteria for antibacterial, antifungal, and antiviral activities and, at the same time, are being investigated as a non-irritant to the skin and eye. The ethanol content in AKVANO facilitates incorporation of many active pharmaceutical ingredients (>80 successfully tested) and the phospholipids seem to act as a solubilizer in the formulation. In vitro skin permeation experiments using Strat-M® membranes have shown that AKVANO formulations can be designed to alter the penetration of active ingredients by changing the lipid composition.
Collapse
Affiliation(s)
- Jan Holmbäck
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
- Correspondence: ; Tel.: +46-707-192-200
| | - Vibhu Rinwa
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden
| | - Tobias Halthur
- CR Competence AB, Naturvetarvägen 14, SE-223 62 Lund, Sweden;
- Biofilms—Research Center for Biointerfaces, Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons väg 35, SE-214 32 Malmö, Sweden
| | - Puneet Rinwa
- Lipidor AB, Svärdvägen 13, SE-182 33 Danderyd, Sweden; (V.R.); (P.R.)
| | - Anders Carlsson
- MediGelium AB, Hornsbergs strand 49, SE-112 16 Stockholm, Sweden;
| | - Bengt Herslöf
- Lipidea AB, Brunbärsvägen 2, SE-114 21 Stockholm, Sweden;
| |
Collapse
|