1
|
Ruiz V, Encinas-Basurto D, Ortega-Alarcon N, Eedara BB, Fineman JR, Black SM, Mansour HM. Inhalable Advanced Co-Spray Dried Microparticles/Nanoparticles of a Novel RhoA/Rho Kinase Inhibitor with Lung Surfactant Biomimetic Phospholipids for Targeted Lung Delivery. ACS Pharmacol Transl Sci 2024; 7:3241-3254. [PMID: 39416970 PMCID: PMC11475283 DOI: 10.1021/acsptsci.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Co-spray dried inhalable powder formulations of fasudil monohydrochloride salt (FMCS) and inhalable lung surfactant-based nanocarriers composed of synthetic phospholipids, zwitterionic DPPC (1,2-palmitoyl-sn-glycero-3-phosphocholine) and anionic DPPG (1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]) sodium salt, were designed and optimized using organic solution advanced spray drying. FMCS can potentially be used for the treatment of various complex pulmonary diseases with this current work focusing on pulmonary arterial hypertension. Comprehensive physicochemical characterization, electron and optical microscopy imaging, thermal analysis, molecular fingerprinting spectroscopy, in vitro aerosol dispersion performance with human dry powder inhaler (DPI) devices, in vitro membrane permeation and drug release, and in vitro human cellular studies were conducted. Well-defined, small, and smooth nanoparticles/microparticles in the solid state were engineered at different molar ratios of FMCS/DPPC/DPPG (25:75, 50:50, and 75:25) and successfully produced as inhalable powders having the properties necessary for targeted pulmonary delivery as dry powder inhalers. In vitro aerosol performance demonstrated excellent aerosol dispersion with different DPI devices. The phospholipid bilayer biophysical properties were confirmed and retained following cospray drying. Sustained release of fasudil drug and in vitro biocompatibility were demonstrated on human lung cells from different airway regions.
Collapse
Affiliation(s)
- Victor
H. Ruiz
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona85721, United States
| | - David Encinas-Basurto
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona85721, United States
- University
of Sonora, Sonora, Mexico. 83304, United States
| | - Neftali Ortega-Alarcon
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona85721, United States
| | - Basanth Babu Eedara
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona85721, United States
- Center
for Translational Science, Florida International
University, Port St.
Lucie, Florida 34987, United States
| | - Jeffrey R. Fineman
- Department
of Pediatrics, University of California
San Francisco School of Medicine, San Francisco, California 94143, United States
| | - Stephen M. Black
- Center
for Translational Science, Florida International
University, Port St.
Lucie, Florida 34987, United States
- Department
of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson Arizona 85721, United States
| | - Heidi M. Mansour
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences Center, Tucson, Arizona85721, United States
- Center
for Translational Science, Florida International
University, Port St.
Lucie, Florida 34987, United States
- Department
of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson Arizona 85721, United States
- BIO5
Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Fan C, Eedara BB, Sinha S, Uddin MKM, Doyle C, Banu S, Das SC. Triple combination dry powder formulation of pretomanid, moxifloxacin, and pyrazinamide for treatment of multidrug-resistant tuberculosis. Int J Pharm 2024; 654:123984. [PMID: 38461874 DOI: 10.1016/j.ijpharm.2024.123984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Both latent and multidrug-resistant tuberculosis (TB) have been causing significant concern worldwide. A novel drug, pretomanid (PA-824), has shown a potent bactericidal effect against both active and latent forms of Mycobacterium tuberculosis (MTb) and a synergistic effect when combined with pyrazinamide and moxifloxacin. This study aimed to develop triple combination spray dried inhalable formulations composed of antitubercular drugs, pretomanid, moxifloxacin, and pyrazinamide (1:2:8 w/w/w), alone (PaMP) and in combination with an aerosolization enhancer, L-leucine (20 % w/w, PaMPL). The formulation PaMPL consisted of hollow, spherical, dimpled particles (<5 μm) and showed good aerosolization behaviour with a fine particle fraction of 70 %. Solid-state characterization of formulations with and without L-leucine confirmed the amorphous nature of moxifloxacin and pretomanid and the crystalline nature of pyrazinamide with polymorphic transformation after the spray drying process. Further, the X-ray photoelectron spectroscopic analysis revealed the predominant surface composition of L-leucine on PaMPL dry powder particles. The dose-response cytotoxicity results showed pyrazinamide and moxifloxacin were non-toxic in both A549 and Calu-3 cell lines up to 150 µg/mL. However, the cell viability gradually decreased to 50 % when the pretomanid concentration increased to 150 µg/mL. The in vitro efficacy studies demonstrated that the triple combination formulation had more prominent antibacterial activity with a minimum inhibitory concentration (MIC) of 1 µg/mL against the MTb H37Rv strain as compared to individual drugs. In conclusion, the triple combination of pretomanid, moxifloxacin, and pyrazinamide as an inhalable dry powder formulation will potentially improve treatment efficacy with fewer systemic side effects in patients suffering from latent and multidrug-resistant TB.
Collapse
Affiliation(s)
- Claire Fan
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Basanth Babu Eedara
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand; Transpire Bio Inc., 2945 W Corporate Lakes Blvd Suite A, Weston, FL 33331, USA
| | - Shubhra Sinha
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Mohammad Khaja Mafij Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Colin Doyle
- The University of Auckland, 20 Symonds Street, Auckland, New Zealand
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand.
| |
Collapse
|
4
|
Eedara BB, Fan C, Sinha S, Khadka P, Das SC. Inhalable Combination Powder Formulations for Treating Latent and Multidrug-Resistant Tuberculosis: Formulation and In Vitro Characterization. Pharmaceutics 2023; 15:2354. [PMID: 37765321 PMCID: PMC10536221 DOI: 10.3390/pharmaceutics15092354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease resulting in millions of deaths annually worldwide. TB treatment is challenging due to a huge number of global latent infections and due to multidrug-resistant forms of TB. Inhaled administration of anti-TB drugs using dry powder inhalers has various advantages over oral administration due to its direct drug delivery and minimization of systemic side effects. Pretomanid (PA-824, PA) is a relatively new drug with potent activity against both active and latent forms of Mycobacterium tuberculosis (Mtb). It is also known for its synergistic effects in combination with pyrazinamide (PYR) and moxifloxacin (MOX). Fixed-dose combination powder formulations of either PYR and PA or PYR and MOX were prepared for inhaled delivery to the deep lung regions where the Mtb habitats were located. Powder formulations were prepared by spray drying using L-leucine as the aerosolization enhancer and were characterized by their particle size, morphology and solid-state properties. In vitro aerosolization behaviour was studied using a Next Generation Impactor, and stability was assessed after storage at room temperature and 30% relative humidity for three months. Spray drying with L-leucine resulted in spherical dimpled particles, 1.9 and 2.4 µm in size for PYR-PA and PYR-MOX combinations, respectively. The powder formulations had an emitted dose of >83% and a fine particle fraction of >65%. PA and MOX showed better stability in the combination powders compared to PYR. Combination powder formulations with high aerosolization efficiency for direct delivery to the lungs were developed in this study for use in the treatment of latent and multidrug-resistant TB infections.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Transpire Bio Inc., 2945 W Corporate Lakes Blvd Suite A, Weston, FL 33331, USA
| | - Claire Fan
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Shubhra Sinha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, Heart Otago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Shyamal C. Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Ruiz VH, Encinas-Basurto D, Sun B, Eedara BB, Roh E, Alarcon NO, Curiel-Lewandrowski C, Bode AM, Mansour HM. Innovative Rocuronium Bromide Topical Formulation for Targeted Skin Drug Delivery: Design, Comprehensive Characterization, In Vitro 2D/3D Human Cell Culture and Permeation. Int J Mol Sci 2023; 24:ijms24108776. [PMID: 37240122 DOI: 10.3390/ijms24108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second-most common type of non-melanoma skin cancer and is linked to long-term exposure to ultraviolet (UV) radiation from the sun. Rocuronium bromide (RocBr) is an FDA-approved drug that targets p53-related protein kinase (PRPK) that inhibits the development of UV-induced cSCC. This study aimed to investigate the physicochemical properties and in vitro behavior of RocBr. Techniques such as thermal analysis, electron microscopy, spectroscopy and in vitro assays were used to characterize RocBr. A topical oil/water emulsion lotion formulation of RocBr was successfully developed and evaluated. The in vitro permeation behavior of RocBr from its lotion formulation was quantified with Strat-M® synthetic biomimetic membrane and EpiDerm™ 3D human skin tissue. Significant membrane retention of RocBr drug was evident and more retention was obtained with the lotion formulation compared with the solution. This is the first systematic and comprehensive study to report these findings.
Collapse
Affiliation(s)
- Victor H Ruiz
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, Mathematics and Engineering, Campus Navojoa, Universidad de Sonora, Sonora 85880, Mexico
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
| | - Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Cosmetic Science, Kwangju Women's University, Gwangju 62396, Republic of Korea
| | - Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Skin Cancer Institute, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Medicine, Division of Dermatology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
- Department of Medicine, Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
7
|
Khadka P, Dummer J, Hill PC, Katare R, Das SC. A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Deliv Transl Res 2022; 13:1246-1271. [PMID: 36131190 PMCID: PMC9491662 DOI: 10.1007/s13346-022-01238-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
Inhaled drug delivery is a promising approach to achieving high lung drug concentrations to facilitate efficient treatment of tuberculosis (TB) and to reduce the overall duration of treatment. Rifampicin is a good candidate for delivery via the pulmonary route. There have been no clinical studies yet at relevant inhaled doses despite the numerous studies investigating its formulation and preclinical properties for pulmonary delivery. This review discusses the clinical implications of pulmonary drug delivery in TB treatment, the drug delivery systems reported for pulmonary delivery of rifampicin, animal models, and the animal studies on inhaled rifampicin formulations, and the research gaps hindering the transition from preclinical development to clinical investigation. A review of reports in the literature suggested there have been minimal attempts to test inhaled formulations of rifampicin in laboratory animals at relevant high doses and there is a lack of appropriate studies in animal models. Published studies have reported testing only low doses (≤ 20 mg/kg) of rifampicin, and none of the studies has investigated the safety of inhaled rifampicin after repeated administration. Preclinical evaluations of inhaled anti-TB drugs, such as rifampicin, should include high-dose formulations in preclinical models, determined based on allometric conversions, for relevant high-dose anti-TB therapy in humans.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Philip C Hill
- Centre for International Health, Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
8
|
Bahrainian S, Mirmoeini MS, Gilani Z, Gilani K. Engineering of levodopa inhalable microparticles in combination with leucine and dipalmitoylphosphatidylcholine by spray drying technique. Eur J Pharm Sci 2021; 167:106008. [PMID: 34530077 DOI: 10.1016/j.ejps.2021.106008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/05/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
The aim of this work was to study the effect of concomitant use of leucine and dipalmitoylphosphatidylcholine, in different ratios, on aerosolization performance of levodopa. Three-component formulations were selected based on a central composite design using percentages of leucine and dipalmitoylphosphatidylcholine as the independent variables. Particle size, surface roughness index, surface phosphorus and fine particle fraction were considered as dependent variables in the model. The spray dried samples were also characterized to determine their particle shape and solid state nature. levodopa was spray dried with 10-40% w/w of the excipients to prepare two- or three-component formulations. A crystalline nature was determined for levodopa in all samples spray dried from water:ethanol (30:70 v/v). Roughness in surface of the processed particles increased with increasing total concentration of the excipients, specially above 25% w/w. Analysis of phosphorus on the surface demonstrated that three-component formulations prepared with combination of 12.5% w/w leucine had the highest amount of dipalmitoylphosphatidylcholine in the surface, regardless of its percentage used in the initial feed. A combination of 12.43% w/w of leucine and 9.80% w/w of dipalmitoylphosphatidylcholine used in formulation exhibited the highest fine particle fraction (72.63%). It can be concluded that spray drying of levodopa with a suitable combination of both excipients leads to production of a three-component formulation of crystalline levodopa, with an aerosolization performance which is significantly higher than two-component formulations composed of the drug with either leucine or dipalmitoylphosphatidylcholine.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Mirmoeini
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medicinal Plants Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021; 13:1077. [PMID: 34371768 PMCID: PMC8308954 DOI: 10.3390/pharmaceutics13071077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Julie G. Ledford
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Rossi I, Bettini R, Buttini F. Resistant Tuberculosis: the Latest Advancements of Second-line Antibiotic Inhalation Products. Curr Pharm Des 2021; 27:1436-1452. [PMID: 33480336 DOI: 10.2174/1381612827666210122143214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
Drug-resistant tuberculosis (TB) can be considered the man-made result of interrupted, erratic or inadequate TB therapy. As reported in WHO data, resistant Mycobacterium tuberculosis (Mtb) strains continue to constitute a public health crisis. Mtb is naturally able to survive host defence mechanisms and to resist most antibiotics currently available. Prolonged treatment regimens using the available first-line drugs give rise to poor patient compliance and a rapid evolution of strains resistant to rifampicin only or to both rifampicin and isoniazid (multi drug-resistant, MDR-TB). The accumulation of mutations may give rise to extensively drug-resistant strains (XDR-TB), i.e. strains with resistance also to fluoroquinolones and to the injectable aminoglycoside, which represent the second-line drugs. Direct lung delivery of anti-tubercular drugs, as an adjunct to conventional routes, provides high concentrations within the lungs, which are the intended target site of drug delivery, representing an interesting strategy to prevent or reduce the development of drug-resistant strains. The purpose of this paper is to describe and critically analyse the most recent and advanced results in the formulation development of WHO second-line drug inhalation products, with particular focus on dry powder formulation. Although some of these formulations have been developed for other lung infectious diseases (Pseudomonas aeruginosa, nontuberculous mycobacteria), they could be valuable to treat MDR-TB and XDR-TB.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
11
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. Spray-Dried Inhalable Powder Formulations of Therapeutic Proteins and Peptides. AAPS PharmSciTech 2021; 22:185. [PMID: 34143327 DOI: 10.1208/s12249-021-02043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.,Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA.,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA. .,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA. .,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
12
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Yaqoubi S, Chan HK, Nokhodchi A, Dastmalchi S, Alizadeh AA, Barzegar-Jalali M, Adibkia K, Hamishehkar H. A quantitative approach to predicting lung deposition profiles of pharmaceutical powder aerosols. Int J Pharm 2021; 602:120568. [PMID: 33812969 DOI: 10.1016/j.ijpharm.2021.120568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Dry powder inhalers (DPI) are widely used systems for pulmonary delivery of therapeutics. The inhalation performance of DPIs is influenced by formulation features, inhaler device and inhalation pattern. The current review presents the affecting factors with great focus on powder characteristics which include particle size, shape, surface, density, hygroscopicity and crystallinity. The properties of a formulation are greatly influenced by a number of physicochemical factors of drug and added excipients. Since available particle engineering techniques result in particles with a set of modifications, it is difficult to distinguish the effect of an individual feature on powder deposition behavior. This necessitates developing a predictive model capable of describing all influential factors on dry powder inhaler delivery. Therefore, in the current study, a model was constructed to correlate the inhaler device properties, inhalation flow rate, particle characteristics and drug/excipient physicochemical properties with the resultant fine particle fraction. The r2 value of established correlation was 0.74 indicating 86% variability in FPF values is explained by the model with the mean absolute errors of 0.22 for the predicted values. The authors believe that this model is capable of predicting the lung deposition pattern of a formulation with an acceptable precision when the type of inhaler device, inhalation flow rate, physicochemical behavior of active and inactive ingredients and the particle characteristics of DPI formulations are considered.
Collapse
Affiliation(s)
- Shadi Yaqoubi
- Faculty of Pharmacy and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Brunaugh AD, Sharma S, Smyth H. Inhaled fixed-dose combination powders for the treatment of respiratory infections. Expert Opin Drug Deliv 2021; 18:1101-1115. [PMID: 33632051 DOI: 10.1080/17425247.2021.1886074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Respiratory infections are a major cause of morbidity and mortality. As an alternative to systemic drug administration, inhaled drug delivery can produce high drug concentrations in the lung tissue to overcome resistant bacteria. The development of inhaled fixed-dose combination powders (I-FDCs) is promising next step in this field, as it would enable simultaneous drug-drug or drug-adjuvant delivery at the site of infection, thereby promoting synergistic activity and improving patient compliance. AREAS COVERED This review covers the clinical and pharmaceutical rationales for the development of I-FDCs for the treatment of respiratory infections, relevant technologies for particle and powder generation, and obstacles which must be addressed to achieve regulatory approval. EXPERT OPINION I-FDCs have been widely successful in the treatment of asthma and chronic obstructive pulmonary disease; however, application of I-FDCs towards the treatment of respiratory infections carries additional challenges related to the high dose requirements and physicochemical characteristics of anti-infective drugs. At present, co-spray drying is an especially promising approach for the development of composite fixed-dose anti-infective particles for inhalation. Though the majority of fixed-dose research has thus far focused on the combination of multiple antibiotics, future work may shift to the additional inclusion of immunomodulatory agents or repurposed non-antibiotics.
Collapse
Affiliation(s)
| | - Shivam Sharma
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Hugh Smyth
- College of Pharmacy, University of Texas at Austin, Austin, USA
| |
Collapse
|
15
|
Optimal Design, Characterization and Preliminary Safety Evaluation of an Edible Orodispersible Formulation for Pediatric Tuberculosis Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21165714. [PMID: 32784947 PMCID: PMC7460872 DOI: 10.3390/ijms21165714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The severity of tuberculosis (TB) in children is considered a global crisis compounded by the scarcity of pharmaceutical formulations suitable for pediatric use. The purpose of this study was to optimally develop and evaluate a pyrazinamide containing edible orodispersible film formulation potentially suitable for use in pediatrics actively infected with TB. The formulation was prepared employing aqueous-particulate blending and solvent casting methods facilitated by a high performance Box Behnken experimental design template. The optimized orodispersible formulation was mechanically robust, flexible, easy to handle, exhibited rapid disintegration with initial matrix collapse occurring under 60 s (0.58 ± 0.05 min ≡ 34.98 ± 3.00 s) and pyrazinamide release was controlled by anomalous diffusion coupled with matrix disintegration and erosion mechanisms. It was microporous in nature, light weight (57.5 ± 0.5 mg) with an average diameter of 10.5 mm and uniformly distributed pyrazinamide load of 101.13 ± 2.03 %w/w. The formulation was physicochemically stable with no evidence of destructive drug–excipient interactions founded on outcomes of characterization and environmental stability investigations. Preliminary inquiries revealed that the orodispersible formulation was cytobiocompatible, palatable and remained intact under specific storage conditions. Summarily, an edible pyrazinamide containing orodispersible film formulation was optimally designed to potentially improve TB pharmacotherapy in children, particularly the under 5 year olds.
Collapse
|
16
|
Roces CB, Hussain MT, Schmidt ST, Christensen D, Perrie Y. Investigating Prime-Pull Vaccination through a Combination of Parenteral Vaccination and Intranasal Boosting. Vaccines (Basel) 2019; 8:vaccines8010010. [PMID: 31906072 PMCID: PMC7157738 DOI: 10.3390/vaccines8010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Formulation of inhalable delivery systems containing tuberculosis (TB) antigens to target the site of infection (lungs) have been considered for the development of subunit vaccines. Inert delivery systems such as poly (lactic-co-glycolic acid) (PLGA) are an interesting approach due to its approval for human use. However, PLGA suffers hydrolytic degradation when stored in a liquid environment for prolonged time. Therefore, in this study, nano- and microparticles composed of different PLGA copolymers (50:50, 75:25 and 85:15), sucrose (10% w/v) and L-leucine (1% w/v) encapsulating H56 TB vaccine candidate were produced as dried powders. In vitro studies in three macrophage cell lines (MH-S, RAW264.7 and THP-1) showed the ability of these cells to take up the formulated PLGA:H56 particles and process the antigen. An in vivo prime-pull immunisation approach consisting of priming with CAF01:H56 (2 × subcutaneous (s.c.) injection) followed by a mucosal boost with PLGA:H56 (intranasal (i.n.) administration) demonstrated the retention of the immunogenicity of the antigen encapsulated within the lyophilised PLGA delivery system, although no enhancing effect could be observed compared to the administration of antigen alone as a boost. The work here could provide the foundations for the scale independent manufacture of polymer delivery systems encapsulating antigens for inhalation/aerolisation to the lungs.
Collapse
Affiliation(s)
- Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Maryam T. Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Signe T. Schmidt
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
- Correspondence:
| |
Collapse
|
17
|
|
18
|
Rangnekar B, Momin MA, Eedara BB, Sinha S, Das SC. Bedaquiline containing triple combination powder for inhalation to treat drug-resistant tuberculosis. Int J Pharm 2019; 570:118689. [DOI: 10.1016/j.ijpharm.2019.118689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022]
|
19
|
Maretti E, Costantino L, Buttini F, Rustichelli C, Leo E, Truzzi E, Iannuccelli V. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv Transl Res 2019; 9:298-310. [PMID: 30484257 DOI: 10.1007/s13346-018-00607-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study reports about new solid lipid nanoparticle assemblies (SLNas) loaded with rifampicin (RIF) surface-decorated with novel mannose derivatives, designed for anti-tuberculosis (TB) inhaled therapy by dry powder inhaler (DPI). Mannose is considered a relevant ligand to achieve active drug targeting being mannose receptors (MR) overexpressed on membranes of infected alveolar macrophages (AM), which are the preferred site of Mycobacterium tuberculosis. Surface decoration of SLNas was obtained by means of newly synthesized functionalizing compounds used as surfactants in the preparation of carriers. SLNas were fully characterized in vitro determining size, morphology, drug loading, drug release, surface mannosylation, cytotoxicity, macrophage internalization extent and ability to bind MR, and intracellular RIF concentration. Moreover, the influence of these new surface functionalizing agents on SLNas aerodynamic performance was assessed by measuring particle respirability features using next generation impactor. SLNas exhibited suitable drug payload, in vitro release, and more efficient ability to enter macrophages (about 80%) compared to bare RIF (about 20%) and to non-functionalized SLNas (about 40%). The involvement of MR-specific binding has been demonstrated by saturating MR of J774 cells causing a decrease of RIF intracellular concentration of about 40%. Furthermore, it is noteworthy that the surface decoration of particles produced a poor cohesive powder with an adequate respirability (fine particle fraction ranging from about 30 to 50%). Therefore, the proposed SLNas may represent an encouraging opportunity in a perspective of an efficacious anti-TB inhaled therapy.
Collapse
Affiliation(s)
- Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy.
| |
Collapse
|
20
|
Eedara BB, Tucker IG, Zujovic ZD, Rades T, Price JR, Das SC. Crystalline adduct of moxifloxacin with trans-cinnamic acid to reduce the aqueous solubility and dissolution rate for improved residence time in the lungs. Eur J Pharm Sci 2019; 136:104961. [PMID: 31220546 DOI: 10.1016/j.ejps.2019.104961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
A crystalline adduct of the anti-tubercular drug, moxifloxacin and trans-cinnamic acid (1:1 molar ratio (MCA1:1)) was prepared to prolong the residence time of the drug in the lungs by reducing its solubility and dissolution rate. Whether the adduct is a salt or cocrystal has not been unequivocally determined. Equilibrium solubility and intrinsic dissolution rate measurements for the adduct (MCA1:1) in phosphate buffered saline (PBS, pH 7.4) revealed a significant decrease in the solubility of moxifloxacin (from 17.68 ± 0.85 mg mL-1 to 6.10 ± 0.05 mg mL-1) and intrinsic dissolution rate (from 0.47 ± 0.04 mg cm-2 min-1 to 0.14 ± 0.03 mg cm-2 min-1) compared to the supplied moxifloxacin. The aerosolization behaviour of the adduct from an inhaler device, Aerolizer®, using a Next Generation Impactor showed a fine particle fraction of 30.4 ± 1.2%. The dissolution behaviour of the fine particle dose of respirable particles collected was assessed in a small volume of stationary mucus fluid using a custom-made dissolution apparatus. The respirable adduct particles showed a lower dissolution (microscopic observation) and permeation compared to the supplied moxifloxacin. The crystalline adduct MCA1:1 has a lower solubility and dissolution rate than moxifloxacin and could improve the local residence time and therapeutic action of moxifloxacin in the lungs.
Collapse
Affiliation(s)
| | - Ian G Tucker
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Zoran D Zujovic
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jason R Price
- ANSTO - Australian Synchrotron, 800 Blackburn Rd, Clayton, 3168 Victoria, Australia
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
21
|
Momin MAM, Sinha S, Tucker IG, Das SC. Carrier-free combination dry powder inhaler formulation of ethionamide and moxifloxacin for treating drug-resistant tuberculosis. Drug Dev Ind Pharm 2019; 45:1321-1331. [PMID: 31014129 DOI: 10.1080/03639045.2019.1609494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study aimed to develop a combination dry powder formulation of ethionamide and moxifloxacin HCl as this combination is synergistic against drug-resistant Mycobacterium tuberculosis (Mtb). L-leucine (20% w/w) was added in the formulations to maximize the process yield. Moxifloxacin HCl and/or ethionamide powders with/without L-leucine were produced using a Buchi Mini Spray-dryer. A next generation impactor was used to determine the in vitro aerosolization efficiency. The powders were also characterized for other physicochemical properties and cytotoxicity. All the spray-dried powders were within the aerodynamic size range of <5.0 µm except ethionamide-only powder (6.0 µm). The combination powders with L-leucine aerosolized better (% fine particle fraction (FPF): 61.3 and 61.1 for ethionamide and moxifloxacin, respectively) than ethionamide-only (%FPF: 9.0) and moxifloxacin-only (%FPF: 30.8) powders. The combination powder particles were collapsed with wrinkled surfaces whereas moxifloxacin-only powders were spherical and smooth and ethionamide-only powders were angular-shaped flakes. The combination powders had low water content (<2.0%). All the powders were physically stable at 15% RH and 25 ± 2 °C during 1-month storage and tolerated by bronchial epithelial cell-lines up to 100 µg/ml. The improved aerosolization of the combination formulation may be helpful for the effective treatment of drug-resistant tuberculosis. Further studies are required to understand the mechanisms for improved aerosolization and test the synergistic activity of the combination powder.
Collapse
Affiliation(s)
| | - Shubhra Sinha
- a School of Pharmacy, University of Otago , Dunedin , New Zealand
| | - Ian G Tucker
- a School of Pharmacy, University of Otago , Dunedin , New Zealand
| | - Shyamal C Das
- a School of Pharmacy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
22
|
Rossi I, Buttini F, Sonvico F, Affaticati F, Martinelli F, Annunziato G, Machado D, Viveiros M, Pieroni M, Bettini R. Sodium Hyaluronate Nanocomposite Respirable Microparticles to Tackle Antibiotic Resistance with Potential Application in Treatment of Mycobacterial Pulmonary Infections. Pharmaceutics 2019; 11:pharmaceutics11050203. [PMID: 31052403 PMCID: PMC6571635 DOI: 10.3390/pharmaceutics11050203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis resistant cases have been estimated to grow every year. Besides Mycobacterium tuberculosis, other mycobacterial species are responsible for an increasing number of difficult-to-treat infections. To increase efficacy of pulmonary treatment of mycobacterial infections an inhalable antibiotic powder targeting infected alveolar macrophages (AMs) and including an efflux pump inhibitor was developed. Low molecular weight sodium hyaluronate sub-micron particles were efficiently loaded with rifampicin, isoniazid and verapamil, and transformed in highly respirable microparticles (mean volume diameter: 1 μm) by spray drying. These particles were able to regenerate their original size upon contact with aqueous environment with mechanical stirring or sonication. The in vitro drugs release profile from the powder was characterized by a slow release rate, favorable to maintain a high drug level inside AMs. In vitro antimicrobial activity and ex vivo macrophage infection assays employing susceptible and drug resistant strains were carried out. No significant differences were observed when the powder, which did not compromise the AMs viability after a five-day exposure, was compared to the same formulation without verapamil. However, both preparations achieved more than 80% reduction in bacterial viability irrespective of the drug resistance profile. This approach can be considered appropriate to treat mycobacterial respiratory infections, regardless the level of drug resistance.
Collapse
Affiliation(s)
- Irene Rossi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Filippo Affaticati
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Martinelli
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Giannamaria Annunziato
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, 1349-008 Lisbon, Portugal.
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, 1349-008 Lisbon, Portugal.
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
- Interdipartmental Center for Innovation in Health Products, BIOPHARMANET TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
23
|
Eedara BB, Tucker IG, Das SC. In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus. Int J Pharm 2019; 559:235-244. [PMID: 30684598 DOI: 10.1016/j.ijpharm.2019.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022]
Abstract
A dissolution apparatus that uses a small volume of stationary medium (25 μL) has been developed for in vitro dissolution testing of respirable drug particles and used to evaluate the dissolution of two anti-tubercular drugs, moxifloxacin and ethionamide. Solubilities of moxifloxacin and ethionamide in phosphate buffered saline (PBS, pH 7.4) were 17.68 ± 0.85 mg mL-1 and 0.46 ± 0.02 mg mL-1 whereas in the presence of lung surfactant (0.4% w/v Curosurf® in PBS) solubilities were 20.76 ± 0.35 mg mL-1 and 0.56 ± 0.03 mg mL-1, respectively. A fine particle dose (∼50 µg) of aerodynamically separated moxifloxacin or ethionamide particles (<6.4 µm) was collected onto a glass coverslip using a modified Twin Stage Impinger. The dissolution behaviour of the fine particle dose was evaluated at various perfusate flow rates (0.2, 0.4 and 0.8 mL min-1 of PBS), mucus simulant concentrations (1.0, 1.5 and 2.0% w/v polyethylene oxide in PBS), and in the presence of lung surfactant. The dissolution behaviour of the respirable size particles was observed under an optical microscope and the dissolved drug that diffused into the perfusate was quantified by HPLC. The moxifloxacin particles disappeared quickly and showed faster permeation (<30 min) compared to the ethionamide particles at all the dissolution conditions evaluated. This study demonstrated the differences in the dissolution rates of moxifloxacin and ethionamide particles and may be useful to estimate the residence time of the inhaled dry powder particles in the lungs.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Ian G Tucker
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand.
| |
Collapse
|
24
|
Cunha L, Rodrigues S, Rosa da Costa AM, Faleiro ML, Buttini F, Grenha A. Inhalable Fucoidan Microparticles Combining Two Antitubercular Drugs with Potential Application in Pulmonary Tuberculosis Therapy. Polymers (Basel) 2018; 10:E636. [PMID: 30966670 PMCID: PMC6403622 DOI: 10.3390/polym10060636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary delivery of antitubercular drugs is a promising approach to treat lung tuberculosis. This strategy not only allows targeting the infected organ instantly, it can also reduce the systemic adverse effects of the antibiotics. In light of that, this work aimed at producing fucoidan-based inhalable microparticles that are able to associate a combination of two first-line antitubercular drugs in a single formulation. Fucoidan is a polysaccharide composed of chemical units that have been reported to be specifically recognised by alveolar macrophages (the hosts of Mycobacterium). Inhalable fucoidan microparticles were successfully produced, effectively associating isoniazid (97%) and rifabutin (95%) simultaneously. Furthermore, the produced microparticles presented adequate aerodynamic properties for pulmonary delivery with potential to reach the respiratory zone, with a mass median aerodynamic diameter (MMAD) between 3.6⁻3.9 µm. The formulation evidenced no cytotoxic effects on lung epithelial cells (A549), although mild toxicity was observed on macrophage-differentiated THP-1 cells at the highest tested concentration (1 mg/mL). Fucoidan microparticles also exhibited a propensity to be captured by macrophages in a dose-dependent manner, as well as an ability to activate the target cells. Furthermore, drug-loaded microparticles effectively inhibited mycobacterial growth in vitro. Thus, the produced fucoidan microparticles are considered to hold potential as pulmonary delivery systems for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Ludmylla Cunha
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Susana Rodrigues
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - Ana M Rosa da Costa
- Algarve Chemistry Research Centre and Department of Chemistry and Pharmacy, University of Algarve, 8005-139 Faro, Portugal.
| | - M Leonor Faleiro
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
| | | | - Ana Grenha
- Centre for Biomedical Research, University of Algarve, 8005-139 Faro, Portugal.
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|