1
|
Van Nguyen TH, Tsapis N, Benrabah L, Gouilleux B, Baltaze JP, Domenichini S, Fattal E, Moine L. Poly(malic acid) Nanoconjugates of Pyrazinoic Acid for Lung Delivery in the Treatment of Tuberculosis. Bioconjug Chem 2024. [PMID: 39327983 DOI: 10.1021/acs.bioconjchem.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Tuberculosis (TB) remains a major global infection, and TB treatments could be improved by site-specific targeting with delivery systems that allow tissue and cell uptake. To increase the drug concentration at the target sites following lung delivery, polymeric nanoconjugates based on biodegradable poly(malic acid) were designed. Pyrazinoic acid (POA), the active moiety of pyrazinamide─a first-line antituberculosis drug─was covalently bound to poly(malic acid) using a hydrophobic linker at mole ratios of 25%, 50%, and 75%. Three linkers, hexanediol, octanediol, and decanediol, were considered. Independently of the linker or ratio, all the conjugates were able to self-assemble, forming nanoconjugates (NCs) in water with 130-190 nm in diameter. Pyrazinoic acid could be released in a controlled manner without any burst release effect. Its kinetics can be adjusted by modifying the grafting ratio and linker length. No cytotoxicity was observed on RAW 264.7 macrophages up to ∼14 μg/mL of POA. In addition, the nanoconjugates were efficiently taken up by these cells over 5 h. Thanks to their high loading capacity and modulable release profiles, these nanoconjugates hold great promise for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Lynda Benrabah
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Boris Gouilleux
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Jean-Pierre Baltaze
- RMN en Milieu Orienté, Institut de Chimie moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182, UFR des Sciences d'Orsay, Université Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Séverine Domenichini
- UMS IPSIT Université Paris-Saclay - US 31 INSERM - UAR 3679 CNRS, 17-19, Avenue des Sciences, Orsay, F-91400, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| | - Laurence Moine
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17-19, Avenue des Sciences, Orsay F-91400, France
| |
Collapse
|
2
|
Wang R, Wang C, Lu L, Yuan F, He F. Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives. Pharmacol Res 2024; 199:107032. [PMID: 38061594 DOI: 10.1016/j.phrs.2023.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyan Wang
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianheng Lu
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Feng He
- The Center for Cancer Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
4
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Zoe LH, David SR, Rajabalaya R. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol Rep 2023; 11:83-106. [PMID: 38187113 PMCID: PMC10767636 DOI: 10.1016/j.toxrep.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 01/09/2024] Open
Abstract
Topic definition This literature review aims to update the current knowledge on toxicity of chitosan nanoparticles, compare the recent findings and identify the gaps with knowledge that is present for the chitosan nanoparticles. Methods The publications between 2010 and 2020 were searched in Science Direct, Pubmed.gov, Google Scholar, Research Gate, and ClinicalTrials.gov, according to the inclusion and exclusion criteria. 30 primary research studies were obtained from the literature review to compare the in vitro in vivo toxicity profiles among the chitosan nanoparticles. Major highlights Chitosan nanoparticles and other types of nanoparticles show cytotoxic effects on cancer cells while having minimal toxicity on normal cells. This apparent effect poses some considerations for use in incorporating cancer therapeutics into chitosan nanoparticles as an administration form. The concentration, duration of exposure, and pH of the solution can influence nanoparticle cytotoxicity, particularly in zebrafish. Different cell lines exhibit varying degrees of toxicity when exposed to nanoparticles, and of note are liver cells that show toxicity under exposure as indicated by increased alanine transaminase (ALT) levels. Aside from ALT, platelet aggregation can be considered a toxicity induced by chitosan nanoparticles. In addition, zebrafish cells experience the most toxicity, including organ damage, neurobehavioral impairment, and developmental abnormalities, when exposed to nanoparticles. However, nanoparticles may exhibit different toxicity profiles in different organisms, with brain toxicity and liver toxicity being present in zebrafish but not rats. Different organs exhibit varying degrees of toxicity, with the eye and mouth apparently having the lowest toxicity, while the brain, intestine, muscles and lung showing mixed results. Cardiotoxicity induced by chitosan nanoparticles was not observed in zebrafish embryos, and nanoparticles may reduce cardiotoxicity when delivering drug. Toxicity found in an organ may not necessarily mean that it is toxic towards all the cells found in that organ, as muscle toxicity was present when tested in zebrafish but not in C2C12 myoblast cells. Some of the studies conducted may have limitations that need to be reconsidered to account for differing results, with some examples being two experiments done on HeLa cells where one study concluded chitosan nanoparticles were toxic to the cells while the other seems to have no toxicity present. With regards to LD50, one study has stated the concentration of 64.21 mg/ml was found. Finally, smaller nanoparticles generally exhibit higher toxicity in cells compared to larger nanoparticles. Scope for future work This literature review did not uncover any published clinical trials with available results. Subsequent research endeavors should prioritize conducting clinical trials involving human volunteers to directly assess toxicity, rather than relying on cell or animal models.
Collapse
Affiliation(s)
- Liaw Hui Zoe
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| | - Sheba R. David
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA
| | - Rajan Rajabalaya
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Bandar Seri Begawan, Brunei Darussalam
| |
Collapse
|
6
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
7
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Maloney SE, Stewart IE, Podell BK, Gary HE, Mecham JB, Berube BJ, Baldwin SL, Coler RN, Hickey AJ. Preparation Strategies of the Anti-Mycobacterial Drug Bedaquiline for Intrapulmonary Routes of Administration. Pharmaceuticals (Basel) 2023; 16:729. [PMID: 37242512 PMCID: PMC10220837 DOI: 10.3390/ph16050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) has infected one-quarter of the world's population and led to the deaths of 1.6 million individuals in 2021 according to estimates from the World Health Organization. The rise in prevalence of multidrug-resistant and extensively drug-resistant M.tb strains coupled with insufficient therapies to treat such strains has motivated the development of more effective treatments and/or delivery modalities. Bedaquiline, a diarylquinoline antimycobacterial agent, effectively targets mycobacterial ATP synthase but may lead to systemic complications upon oral delivery. Targeted delivery of bedaquiline to the lungs represents an alternative strategy to harness the sterilizing benefits of the drug against M.tb while mitigating off-target side effects. Two pulmonary delivery modalities were developed herein, including dry powder inhalation and liquid instillation. Despite bedaquiline's poor water solubility, spray drying was performed in predominantly aqueous conditions (≥80%) to avoid a closed-loop, inert system. Aerosols of spray-dried bedaquiline with L-leucine excipient outperformed spray-dried bedaquiline alone, demonstrating superior fine particle fraction metrics (~89% of the emitted dose below <5 µm), suitable for inhalation therapies. Furthermore, the use of a 2-hydroxypropyl-β-cyclodextrin excipient allowed a molecular dispersion of bedaquiline in an aqueous solution for liquid instillation. Both delivery modalities were successfully administered to Hartley guinea pigs for pharmacokinetic analysis and were well-tolerated by the animals. Intrapulmonary liquid delivery of bedaquiline led to adequate serum absorption and appropriate peak serum concentrations of the drug. The liquid formulation was superior in systemic uptake compared to the powder formulation. The predominant route via which M.tb bacilli enter the body is aerosol droplets that are deposited onto airway surfaces. For this reason, we believe that further studies should focus on inhalation or intrapulmonary therapies that target the site of entry and primary site of infection for M.tb.
Collapse
Affiliation(s)
- Sara E. Maloney
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, NC 27709, USA
| | - Ian E. Stewart
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, NC 27709, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Hadley E. Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey B. Mecham
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, NC 27709, USA
| | - Bryan J. Berube
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA 98109, USA
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Anthony J. Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Marzaman ANF, Roska TP, Sartini S, Utami RN, Sulistiawati S, Enggi CK, Manggau MA, Rahman L, Shastri VP, Permana AD. Recent Advances in Pharmaceutical Approaches of Antimicrobial Agents for Selective Delivery in Various Administration Routes. Antibiotics (Basel) 2023; 12:822. [PMID: 37237725 PMCID: PMC10215767 DOI: 10.3390/antibiotics12050822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems. AMR-related infectious diseases are also discussed, as is the efficiency of various delivery systems. Future considerations in developing highly effective antimicrobial delivery devices to address antibiotic resistance are also presented here, especially on the smart delivery system of antibiotics.
Collapse
Affiliation(s)
- Ardiyah Nurul Fitri Marzaman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Tri Puspita Roska
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Sulistiawati Sulistiawati
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Cindy Kristina Enggi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Marianti A. Manggau
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| | - Venkatram Prasad Shastri
- Institute for Macromolecular Chemistry, Albert Ludwigs Universitat Freiburg, 79085 Freiburg, Germany;
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (A.N.F.M.); (T.P.R.); (S.S.); (R.N.U.); (S.S.); (C.K.E.); (M.A.M.); (L.R.)
| |
Collapse
|
10
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
11
|
Kia P, Ruman U, Pratiwi AR, Hussein MZ. Innovative Therapeutic Approaches Based on Nanotechnology for the Treatment and Management of Tuberculosis. Int J Nanomedicine 2023; 18:1159-1191. [PMID: 36919095 PMCID: PMC10008450 DOI: 10.2147/ijn.s364634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These "theranostic" NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.
Collapse
Affiliation(s)
- Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Umme Ruman
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ariyati Retno Pratiwi
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Indonesia
| | - Mohd Zobir Hussein
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Singh B, Singh C. Bedaquiline in Drug-Resistant Tuberculosis: A Mini-Review. Curr Mol Pharmacol 2023; 16:243-253. [PMID: 36919348 DOI: 10.2174/1874467215666220421130707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis causes a contagious pulmonary disease with a high mortality rate in developing countries. However, the recommendation of DOTS (approved by WHO) was effective in treating tuberculosis, but nowadays, resistance from the first line (MDR-TB) and the second line (XDR-TB) drugs is highly common. Whereas, the resistance is a result of factors like poor patient constancy due to the long duration of therapy and co-infection with HIV. The approval of bedaquiline under an accelerated program for the treatment of MDR-TB has revealed its effectiveness in clinical trials as a therapeutic novel molecule. BDQ selectively inhibits the ATP synthase of bacterium and reduces ATP production. Additionally, the poor pharmacokinetic properties raised provocations in the MDR therapy, but the use of targeted drug delivery can solve the hurdles. While the preclinical and clinical studies included in this review are strongly suggesting the usefulness of BDQ in MDR-TB and XDR-TB, the repurposing of different drug classes in resistant TB is opening new opportunities to manage the disease conditions. In this review, we have summarized the examples of pipeline drugs and repurposed molecules with preclinical formulation developments.
Collapse
Affiliation(s)
- Baljinder Singh
- Department of Pharmaceutics, UIPS, Punjab University, Chandigarh 160014, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| |
Collapse
|
13
|
Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel Fraguas-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm 2022; 180:149-160. [DOI: 10.1016/j.ejpb.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/04/2022]
|
14
|
Balde A, Kim SK, Benjakul S, Nazeer RA. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int J Biol Macromol 2022; 220:1464-1479. [PMID: 36116588 DOI: 10.1016/j.ijbiomac.2022.09.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Respiratory distress syndrome and pneumothorax are the foremost causes of death as a result of the changing lifestyle and increasing air pollution. Numerous approaches have been studied for the pulmonary delivery of drugs, proteins as well as peptides using meso/nanoparticles, nanocrystals, and liposomes. These nano/microcarrier systems (NMCs) loaded with drug provide better systemic as well as local action. Furthermore, natural polysaccharide-based polymers such as chitosan (CS), alginate (AG), hyaluronic acid, dextran, and cellulose are highly used for the preparation of nanoparticles and delivery of the drug into the pulmonary tract due to their advantageous properties such as low toxicity, high hydrophobicity, supplementary mucociliary clearance, mucoadhesivity, and biological efficacy. These properties ease the delivery of drugs onto the targeted site. Herein, recent advances in the natural polymer-derived NMCs have been reviewed for their transport and mechanism of action into the bronchiolar region as well as the respiratory region. Various physicochemical properties such as surface charge, size of nanocarrier system, surface modifications, and toxicological effects of these nanocarriers in vitro and in vivo are elucidated as well. Furthermore, challenges faced for the preparation of a model NMCs for pulmonary drug delivery are also discoursed.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan-si, Gyeonggi-do 11558, South Korea
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
15
|
Pardhi VP, Suthar T, Sharma A, Jain K. Bedaquiline fumarate microemulsion: formulation optimization, rheological characterization and in vitro studies. Nanomedicine (Lond) 2022; 17:1529-1546. [PMID: 36416115 DOI: 10.2217/nnm-2022-0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aim: Bedaquiline fumarate (BQF), an antitubercular drug, shows limited bioavailability due to solubility-limited intestinal absorption. In this research, the authors formulated a BQF-loaded microemulsion to improve BQF's oral bioavailability. Methods: Microemulsion was prepared by a spontaneous emulsification method and evaluated for thermodynamic stability, size, dispersibility, transmittance, rheology, microrheology, drug release, cytotoxicity and cellular uptake. Results: Microemulsion showed an average globule size of 26.50 ± 6.29 nm with spherical geometry and revealed gel-sol-gel behavior in microrheological studies. Cytotoxicity and cell uptake studies in Caco-2 cells showed that BQF microemulsion was cytocompatible at the highest concentration of 500 μg/ml with significantly higher cellular uptake than control. Conclusion: The present study indicates that BQF microemulsion could be explored further for effective treatment of multidrug-resistant tuberculosis.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Teeja Suthar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| |
Collapse
|
16
|
Mori D, Jaroli T, Dudhat K, Vaishnav D, Parmar R, Kotadiya N, Bhalodiya M, Pashavan C. Preparation and characterization of slow dissolving linezolid salts for direct pulmonary delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022; 229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-Based Approaches for the Efficient Delivery of Anti-Tubercular Drugs and Vaccines for Management of Tuberculosis. Front Pharmacol 2021; 12:749945. [PMID: 34992530 PMCID: PMC8724553 DOI: 10.3389/fphar.2021.749945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis's current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.
Collapse
Affiliation(s)
| | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
20
|
Vázquez R, Caro-León FJ, Nakal A, Ruiz S, Doñoro C, García-Fernández L, Vázquez-Lasa B, San Román J, Sanz J, García P, Aguilar MR. DEAE-chitosan nanoparticles as a pneumococcus-biomimetic material for the development of antipneumococcal therapeutics. Carbohydr Polym 2021; 273:118605. [PMID: 34561005 DOI: 10.1016/j.carbpol.2021.118605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.
Collapse
Affiliation(s)
- Roberto Vázquez
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Francisco J Caro-León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Mexico.
| | - Alberto Nakal
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain.
| | - Susana Ruiz
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Carmen Doñoro
- Animal Cell Culture Facility, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| | | | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy (SUSPLAST), Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain.
| | - Jesús Sanz
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Pedro García
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales, y Nanomedicina (CIBER-BBN), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy (SUSPLAST), Madrid, Spain.
| |
Collapse
|
21
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. Int J Biol Macromol 2021; 190:801-809. [PMID: 34508723 DOI: 10.1016/j.ijbiomac.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
We developed a new hydrophobic polymer based on angico gum (AG), and we produced new nanoparticles to expand the applications of natural polysaccharides in nanomedicine. Phthalate angico gum (PAG) was characterized by 1H NMR, FTIR, elementary analysis, solubility, XRD, and TG. PAG was a hydrophobic and semi-crystalline material, a relevant characteristic for drug delivery system applications. As a proof of concept, nevirapine (NVP) was selected for nanoparticles development. Plackett-Burman's experimental design was used to understand the influence of several factors in nanoparticles production. PAG proved to be a versatile material for producing nanoparticles with different characteristics. Optimized nanoparticles were produced using desirability parameters. NVP-loaded PAG nanoparticles formulation showed 202.1 nm of particle size, 0.23 of PDI, -17.1 of zeta potential, 69.8 of encapsulation efficiency, and promoted modified drug release for 8 h. Here we show that PAG presents as a promising biopolymer for drug delivery systems.
Collapse
|
23
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
24
|
Cavalcanti IDL, de Fátima Ramos Dos Santos Medeiros SM, Dos Santos Macêdo DC, Ferro Cavalcanti IM, de Britto Lira Nogueira MC. Nanocarriers in the Delivery of Hydroxychloroquine to the Respiratory System: An Alternative to COVID-19. Curr Drug Deliv 2021; 18:583-595. [PMID: 32860358 DOI: 10.2174/1567201817666200827110445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
In response to the global outbreak caused by SARS-CoV-2, this article aims to propose the development of nanosystems for the delivery of hydroxychloroquine in the respiratory system to the treatment of COVID-19. A descriptive literature review was conducted, using the descriptors "COVID-19", "Nanotechnology", "Respiratory Syndrome" and "Hydroxychloroquine", in the PubMed, ScienceDirect and SciElo databases. After analyzing the articles according to the inclusion and exclusion criteria, they were divided into 3 sessions: Coronavirus: definitions, classifications and epidemiology, pharmacological aspects of hydroxychloroquine and pharmaceutical nanotechnology in targeting of drugs. We used 131 articles published until July 18, 2020. Hydroxychloroquine seems to promote a reduction in viral load, in vivo studies, preventing the entry of SARS-CoV-2 into lung cells, and the safety of its administration is questioned due to the toxic effects that it can develop, such as retinopathy, hypoglycemia and even cardiotoxicity. Nanosystems for the delivery of drugs in the respiratory system may be a viable alternative for the administration of hydroxychloroquine, which may enhance the therapeutic effect of the drug with a consequent decrease in its toxicity, providing greater safety for implementation in the clinic in the treatment of COVID-19.
Collapse
|
25
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
26
|
Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 2021; 185:20-30. [PMID: 34116092 DOI: 10.1016/j.ijbiomac.2021.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 01/23/2023]
Abstract
Chitosan-loaded nanomedicines provide a greater opportunity for the treatment of respiratory diseases. Natural biopolymer chitosan and its derivatives have a large number of proven pharmacological actions like antioxidant, wound healing, immuno-stimulant, hypocholesterolemic, antimicrobial, obesity treatment, anti-inflammatory, anticancer, bone tissue engineering, antifungal, regenerative medicine, anti-diabetic and mucosal adjuvant, etc. which attracted its use in the pharmaceutical industry. As compared to other polysaccharides, chitosan has excellent mucoadhesive characteristics, less viscous, easily modified into the chemical and biological molecule and gel-forming property due to which the drugs retain in the respiratory tract for a longer period of time providing enhanced therapeutic action of the drug. Chitosan-based nanomedicines would have the greatest effect when used to transport poor water soluble drugs, macromolecules like proteins, and peptides through the lungs. In this review, we highlight and discuss the role of chitosan and its nanomedicines in the treatment of chronic respiratory diseases such as pneumonia, asthma, COPD, lung cancer, tuberculosis, and COVID-19.
Collapse
Affiliation(s)
- Nisha Gulati
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
27
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
28
|
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13040587. [PMID: 33924046 PMCID: PMC8073149 DOI: 10.3390/pharmaceutics13040587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.
Collapse
|
29
|
Elbrink K, Van Hees S, Chamanza R, Roelant D, Loomans T, Holm R, Kiekens F. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2021; 163:158-170. [PMID: 33848628 DOI: 10.1016/j.ejpb.2021.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/30/2023]
Abstract
The purpose of this work was to evaluate solid lipid nanoparticles (SLNs) as a long acting injectable drug delivery platform for intramuscular and subcutaneous administration. SLNs were developed with a low (unsaturated) and high (supersaturated) drug concentration at equivalent lipid doses. The impact of the drug loading as well as the administration route for the SLNs using two model compounds with different physicochemical properties were explored for their in vitro and in vivo performance. Results revealed that drug concentration had an influence on the particle size and entrapment efficiency of the SLNs and, therefore, indirectly an influence on the Cmax/dose and AUC/dose after administration to rats. Furthermore, the in vitro drug release was compound specific, and linked to the affinity of the drug compounds towards the lipid matrix and release medium. The pharmacokinetic parameters resulted in an increased tmax, t1/2 and mean residence time (MRT) for all formulations after intramuscular and subcutaneous dosing, when compared to intravenous administration. Whereas, the subcutaneous injections performed better for those parameters than the intramuscular injections, because of the higher blood perfusion in the muscles compared with the subcutaneous tissues. In conclusion, SLNs extend drug release, need to be optimized for each drug, and are appropriate carriers for the delivery of drugs that require a short-term sustained release in a timely manner.
Collapse
Affiliation(s)
- Kimberley Elbrink
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Sofie Van Hees
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ronnie Chamanza
- Janssen Pharmaceutica, Nonclinical Safety, Pathology/Toxicology, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Dirk Roelant
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Tine Loomans
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - René Holm
- Janssen Pharmaceutica, Drug Product and Development, Parenterals and Liquids, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
30
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Jhaveri J, Raichura Z, Khan T, Momin M, Omri A. Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules 2021; 26:E272. [PMID: 33430478 PMCID: PMC7827344 DOI: 10.3390/molecules26020272] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology-based development of drug delivery systems is an attractive area of research in formulation driven R&D laboratories that makes administration of new and complex drugs feasible. It plays a significant role in the design of novel dosage forms by attributing target specific drug delivery, controlled drug release, improved, patient friendly drug regimen and lower side effects. Polysaccharides, especially chitosan, occupy an important place and are widely used in nano drug delivery systems owing to their biocompatibility and biodegradability. This review focuses on chitosan nanoparticles and envisages to provide an insight into the chemistry, properties, drug release mechanisms, preparation techniques and the vast evolving landscape of diverse applications across disease categories leading to development of better therapeutics and superior clinical outcomes. It summarizes recent advancement in the development and utility of functionalized chitosan in anticancer therapeutics, cancer immunotherapy, theranostics and multistage delivery systems.
Collapse
Affiliation(s)
- Jhanvi Jhaveri
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India; (J.J.); (Z.R.)
| | - Zarna Raichura
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India; (J.J.); (Z.R.)
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
32
|
Thubelihle Ndebele R, Yao Q, Shi YN, Zhai YY, Xu HL, Lu CT, Zhao YZ. Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.
Collapse
Affiliation(s)
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Nan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
33
|
Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2020; 169:103-121. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
One of the most promising pharmaceutical research areas is developing advanced delivery systems for controlled and sustained drug release. The drug delivery system (DDS) can be designed to strengthen the pharmacological and therapeutic characteristics of different medicines. Natural polymers have resolved numerous commencing hurdles, which hindered the clinical implementation of traditional DDS. The naturally derived polymers furnish various advantages such as biodegradability, biocompatibility, inexpensiveness, easy availability, and biologically identifiable moieties, which endorse cellular activity in contrast to synthetic polymers. Among them, chitosan has recently been in the spotlight for devising safe and efficient DDSs due to its superior properties such as minimal toxicity, bio-adhesion, stability, biodegradability, and biocompatibility. The primary amino group in chitosan shows exceptional qualities such as the rate of drug release, anti-microbial properties, the ability to cross-link with various polymers, and macrophage activation. This review intends to provide a glimpse into different practical utilization of chitosan as a drug carrier. The first segment of the review will give cognizance into the source of extraction and chitosan's remarkable properties. Further, we have endeavored to provide recent literature pertaining to chitosan applications in various drug delivery systems via different administration routes along with current patented chitosan formulations.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India; Department of Polymeric Medical Devices, Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala 695011, India.
| | - Vaishnavi Sali
- C.U. Shah College of Pharmacy, SNDT Women's University, Sir Vithaldas Thakersay, Santacruz West, Juhu, Mumbai, Maharashtra 400049, India
| |
Collapse
|
34
|
Changsan N, Sinsuebpol C. Dry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamide. Pharm Dev Technol 2020; 26:181-192. [PMID: 33213232 DOI: 10.1080/10837450.2020.1852570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Co-loaded isoniazid and pyrazinamide chitosan nanoparticles were formulated using the ionic gelation method. The formulations were adjusted to five mass ratios of tripolyphosphate (TPP) and chitosan at three TPP concentrations. Particle size, polydispersity index, zeta potential, and encapsulation efficiency were used to evaluate all formulations. The results revealed that the ratio of TPP to chitosan had the highest impact in generating chitosan nanoparticles. The selected nanoparticle formulations were freeze-dried, and the obtained dry powders were characterized using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy to confirm the interaction of loaded drug and formulation excipients. The aerosolized performance of dry powders was also evaluated using the Andersen cascade impactor. A mass median aerodynamic diameter of 3.3-3.5 µm, % fine particle fraction of 30-44%, and 92-95% emitted dose were obtained from all formulations. The dry powder formulations were not toxic to the respiratory tract cell lines. Furthermore, they did not provoke alveolar macrophages into producing inflammatory cytokines or nitric oxides, indicating that the formulations are safe and could potentially be used to deliver to respiratory tract for tuberculosis treatment.
Collapse
Affiliation(s)
- Narumon Changsan
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathumthani, Thailand
| | - Chutima Sinsuebpol
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathumthani, Thailand
| |
Collapse
|
35
|
Shah S, Ghetiya R, Soniwala M, Chavda J. Development and Optimization of Inhalable Levofloxacin Nanoparticles for The Treatment of Tuberculosis. Curr Drug Deliv 2020; 18:779-793. [PMID: 33155907 DOI: 10.2174/1567201817999201103194626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Levofloxacin has been recommended by the WHO for the treatment of pulmonary tuberculosis and inhalable delivery of levofloxacin can be advantageous over conventional delivery. OBJECTIVE This study aimed to develop and optimize inhalable levofloxacin Loaded Chitosan Nanoparticles (LCN). The objective was to achieve the mean particle size of LCN less than 300nm, sustain the drug release up to 24 h, and achieve MMAD of LCN of less than 5μm. METHODS LCN were prepared by ionic gelation of chitosan with sodium tripolyphosphate (STPP) and subsequent lyophilization. A Plackett Burman screening design, 32 full factorial design, and overlay plots were sequentially employed to optimize the formulation. The mean particle size, % entrapment efficiency, in vitro drug release, and minimum inhibitory concentration were all evaluated. RESULTS The Pareto chart from the Placket Burman screening design revealed that the concentrations of chitosan and STPP was found to be significant (p < 0.05). Further analysis by 32 full factorial design revealed that F-ratio for each model generated was found to be greater than the theoretical value (p < 0.05), confirming the significance of each model. CONCLUSION The optimized formulation showed a mean particle size of 171.5 nm, sustained the drug release up to 24 h in simulated lung fluid, and revealed MMAD of 3.18 μm, which can confirm delivery of the drug to the deep lung region. However, further in vivo studies are required to design a suitable dosage regimen and establish the fate of nanoparticles for safe and efficacious delivery of the drug.
Collapse
Affiliation(s)
- Sunny Shah
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Rohit Ghetiya
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | | | - Jayant Chavda
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| |
Collapse
|
36
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
37
|
Dong W, Ye J, Zhou J, Wang W, Wang H, Zheng X, Yang Y, Xia X, Liu Y. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm Sin B 2020; 10:1576-1585. [PMID: 32963951 PMCID: PMC7488487 DOI: 10.1016/j.apsb.2019.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient mucosal delivery remains a major challenge for the reason of the respiratory tract mucus act as a formidable barrier to nanocarriers by trapping and clearing foreign particulates. The surface property of nanoparticles determines their retention and penetration ability within the respiratory tract mucus. However, the interaction between nanoparticles and mucus, and how these interactions impact distribution has not been extensively investigated. In this study, polymeric nanoparticles loaded with a baicalein–phospholipid complex were modified with two kinds of polymers, mucoadhesive and mucus-penetrative polymer. Systematic investigations on the physicochemical property, mucus penetration, transepithelial transport, and tissue distribution were performed to evaluate the interaction of nanoparticles with the respiratory tract. Both nanoparticles had a similar particle size and good biocompatibility, exhibited a sustained-release profile, but showed a considerable difference in zeta potential. Interestingly, mucus-penetrative nanoparticles exhibited a higher diffusion rate in mucus, deeper penetration across the mucus layer, enhanced in vitro cellular uptake, increased drug distribution in airways, and superior local distribution and bioavailability as compared to mucoadhesive nanoparticles. These results indicate the potential of mucus-penetrative nanoparticles in design of a rational delivery system to improve the efficiency of inhaled therapy by promoting mucus penetration and increasing local distribution and bioavailability.
Collapse
|
38
|
Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. NANOMATERIALS 2020; 10:nano10020183. [PMID: 31973051 PMCID: PMC7074870 DOI: 10.3390/nano10020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022]
Abstract
Nanocarriers have been increasingly proposed for lung drug delivery applications. The strategy of combining the intrinsic and more general advantages of the nanostructures with specificities that improve the therapeutic outcomes of particular clinical situations is frequent. These include the surface engineering of the carriers by means of altering the material structure (i.e., chemical modifications), the addition of specific ligands so that predefined targets are reached, or even the tuning of the carrier properties to respond to specific stimuli. The devised strategies are mainly directed at three distinct areas of lung drug delivery, encompassing the delivery of proteins and protein-based materials, either for local or systemic application, the delivery of antibiotics, and the delivery of anticancer drugs-the latter two comprising local delivery approaches. This review addresses the applications of nanocarriers aimed at lung drug delivery of active biological and pharmaceutical ingredients, focusing with particular interest on nanocarriers that exhibit multifunctional properties. A final section addresses the expectations regarding the future use of nanocarriers in the area.
Collapse
Affiliation(s)
- Jorge F. Pontes
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Grenha
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-244-441; Fax: +351-289-800-066
| |
Collapse
|
39
|
Lectin coupled liposomes for pulmonary delivery of salbutamol sulphate for better management of asthma: Formulation development using QbD approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Dry powder formulation combining bedaquiline with pyrazinamide for latent and drug-resistant tuberculosis. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Momin MAM, Rangnekar B, Sinha S, Cheung CY, Cook GM, Das SC. Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics 2019; 11:pharmaceutics11100502. [PMID: 31581469 PMCID: PMC6836091 DOI: 10.3390/pharmaceutics11100502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Bedaquiline is a newly developed anti-tuberculosis drug, conditionally approved by the United States Food and Drug Administration (USFDA) for treating drug-resistant tuberculosis in adults. Oral delivery of bedaquiline causes severe side effects such as increased hepatic aminotransferase levels and cardiac arrhythmias (prolongation of QT-interval). This study aimed to develop inhalable dry powder particles of bedaquiline with high aerosolization efficiency to reduce the side-effects of oral bedaquiline. Bedaquiline (with or without l-leucine) powders were prepared using a Buchi Mini Spray-dryer. The powders were characterized for physicochemical properties and for their in vitro aerosolization efficiency using a next-generation impactor (NGI). The formulation with maximum aerosolization efficiency was investigated for physicochemical and aerosolization stability after one-month storage at 20 ± 2 °C/30 ± 2% relative humidity (RH) and 25 ± 2 °C/75% RH in an open Petri dish. The cytotoxicity of the powders on A549 and Calu-3 cell-lines was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The powders were also evaluated for antimicrobial activity against Mycobacterium tuberculosis. The aerodynamic diameter of the l-leucine-containing powder was 2.4 µm, and the powder was amorphous in nature. The aerosolization efficiency (fine-particle fraction) of l-leucine-containing powder (fine-particle fraction (FPF): 74.4%) was higher than the bedaquiline-only powder (FPF: 31.3%). l-leucine containing powder particles were plate-shaped with rough surfaces, but the bedaquiline-only powder was spherical and smooth. The optimized powder was stable at both storage conditions during one-month storage and non-toxic (up to 50 µg/mL) to the respiratory cell-lines. Bedaquiline powders were effective against Mycobacterium tuberculosis and had a minimal inhibitory concentration (MIC) value of 0.1 µg/mL. Improved aerosolization may help to combat pulmonary tuberculosis by potentially reducing the side-effects of oral bedaquiline. Further research is required to understand the safety of the optimized inhalable powder in animal models.
Collapse
Affiliation(s)
- Mohammad A M Momin
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0533, USA.
| | | | - Shubhra Sinha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
42
|
Gastric environment-stable oral nanocarriers for in situ colorectal cancer therapy. Int J Biol Macromol 2019; 139:1035-1045. [PMID: 31412265 DOI: 10.1016/j.ijbiomac.2019.08.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and fatal cancer. Oral administration provided the potential for in situ treatment of the colorectal cancer. However, drugs couldn't be well-absorbed mainly due to its degradation in the gastric area and poor intestinal permeability. In this study, we synthesized deoxycholic acid and hydroxybutyl decorated chitosan nanoparticles (DAHBC NPs) as oral curcumin (CUR) delivery system for colorectal cancer treatment. DAHBC with lower critical solution temperature (LCST) below 37 °C (27-33 °C) was obtained. DAHBC NPs were correspondingly stable in simulated gastric conditions (pH 1.2, 37 °C), due to the offset of size change between pH-responsive expansion and thermo-responsive shrinkage. In simulated intestinal tract (pH 7.0-7.4, 37 °C), DAHBC NPs exhibited burst release of CUR owing to the onefold effect of thermo-responsive shrinkage. DAHBC27 NPs showed the minimum CUR leakage (~10%) in simulated gastric conditions, because a furthest temperature-sensitive shrinkage caused by the lowest LCST offset the expansion in acid environment. DAHBC27 NPs induced ~10-fold increased (P < 0.05) CUR absorption by paracellular transport pathway, compared to the free CUR. Thus, DAHBC NPs stabilized in the gastric environment may be a promising oral drugs delivery system for effective in situ colorectal cancer therapy.
Collapse
|