1
|
Bintalib HM, Grigoriadou S, Patel SY, Mutlu L, Sooriyakumar K, Vaitla P, McDermott E, Drewe E, Steele C, Ahuja M, Garcez T, Gompels M, Grammatikos A, Herwadkar A, Ayub R, Halliday N, Burns SO, Hurst JR, Goddard S. Investigating pulmonary and non-infectious complications in common variable immunodeficiency disorders: a UK national multi-centre study. Front Immunol 2024; 15:1451813. [PMID: 39318627 PMCID: PMC11420000 DOI: 10.3389/fimmu.2024.1451813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Background Common Variable Immunodeficiency Disorders (CVID) encompass a spectrum of immunodeficiency characterised by recurrent infections and diverse non-infectious complications (NICs). This study aimed to describe the clinical features and variation in NICs in CVID with and without interstitial lung disease (ILD) from a large UK national registry population. Methods Retrospective, cross-sectional data from a UK multicentre database (previously known as UKPIN), categorising patients into those with CVID-ILD and those with NICs related to CVID but without pulmonary involvement (CVID-EP; EP= extra-pulmonary involvement only). Results 129 patients were included. Chronic lung diseases, especially CVID-ILD, are prominent complications in complex CVID, occurring in 62% of the cohort. Bronchiectasis was common (64% of the cohort) and associated with greater pulmonary function impairment in patients with CVID-ILD compared to those without bronchiectasis. Lymphadenopathy and the absence of gastrointestinal diseases were significant predictors of ILD in complex CVID. Although the presence of liver disease did not differ significantly between the groups, nearly half of the CVID-ILD patients were found to have liver disease. Patients with CVID-ILD were more likely to receive immunosuppressive treatments such as rituximab and mycophenolate mofetil than the CVID-EP group, indicating greater need for treatment and risk of complications. Conclusion This study highlights the significant burden of CVID-ILD within the CVID population with NICs only. The lungs emerged as the most frequently affected organ, with ILD and bronchiectasis both highly prevalent. These findings emphasise the necessity of a comprehensive and multidisciplinary approach in managing CVID patients, considering their susceptibility to various comorbidities and complications.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Sofia Grigoriadou
- Department of Immunology, Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Smita Y. Patel
- Clinical Immunology, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Leman Mutlu
- Clinical Immunology and Allergy, Department of Pathology, East Kent Hospitals University NHS Foundation Trust, Canterbury, United Kingdom
| | - Kavitha Sooriyakumar
- Department of Allergy and Immunology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Prashantha Vaitla
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth Drewe
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Cathal Steele
- Regional Immunology Service of Northern Ireland, The Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Manisha Ahuja
- Clinical Research Fellow, Newcastle University; Specialist Registrar Newcastle upon Tyne Hospitals NHSFT, Newcastle, United Kingdom
| | - Tomaz Garcez
- Department of Immunology, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Mark Gompels
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Alexandros Grammatikos
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Archana Herwadkar
- Immunology Department, Division of Surgery and Tertiary Medicine, Salford Royal National Health Service (NHS) Foundation Trust, Salford, United Kingdom
| | - Rehana Ayub
- Clinical Immunology, Leeds Teaching Hospitals National Health Service (NHS) Trust, Leeds, United Kingdom
| | - Neil Halliday
- University College London (UCL) Institute for Liver and Digestive Health, University College London, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| | - Sarah Goddard
- Department of Immunology, University Hospitals North Midlands, Royal Stoke Hospital, Stoke-on-Trent, United Kingdom
| |
Collapse
|
2
|
Yoneyama M, Matsuo Y, Kishi N, Itotani R, Oguma T, Ozasa H, Tanizawa K, Handa T, Hirai T, Mizowaki T. Quantitative analysis of interstitial lung abnormalities on computed tomography to predict symptomatic radiation pneumonitis after lung stereotactic body radiotherapy. Radiother Oncol 2024; 198:110408. [PMID: 38917885 DOI: 10.1016/j.radonc.2024.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE Symptomatic radiation pneumonitis (SRP) is a complication of thoracic stereotactic body radiotherapy (SBRT). As visual assessments pose limitations, artificial intelligence-based quantitative computed tomography image analysis software (AIQCT) may help predict SRP risk. We aimed to evaluate high-resolution computed tomography (HRCT) images with AIQCT to develop a predictive model for SRP. MATERIALS AND METHODS AIQCT automatically labelled HRCT images of patients treated with SBRT for stage I lung cancer according to lung parenchymal pattern. Quantitative data including the volume and mean dose (Dmean) were obtained for reticulation + honeycombing (Ret + HC), consolidation + ground-glass opacities, bronchi (Br), and normal lungs (NL). After associations between AIQCT's quantified metrics and SRP were investigated, we developed a predictive model using recursive partitioning analysis (RPA) for the training cohort and assessed its reproducibility with the testing cohort. RESULTS Overall, 26 of 207 patients developed SRP. There were significant between-group differences in the Ret + HC, Br-volume, and NL-Dmean in patients with and without SRP. RPA identified the following risk groups: NL-Dmean ≥ 6.6 Gy (high-risk, n = 8), NL-Dmean < 6.6 Gy and Br-volume ≥ 2.5 % (intermediate-risk, n = 13), and NL-Dmean < 6.6 Gy and Br-volume < 2.5 % (low-risk, n = 133). The incidences of SRP in these groups within the training cohort were 62.5, 38.4, and 7.5 %; and in the testing cohort 50.0, 27.3, and 5.0 %, respectively. CONCLUSION AIQCT identified CT features associated with SRP. A predictive model for SRP was proposed based on AI-detected Br-volume and the NL-Dmean.
Collapse
Affiliation(s)
- Masahiro Yoneyama
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka, Japan.
| | - Noriko Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Itotani
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Paik SH, Jin GY. [Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:714-726. [PMID: 39130780 PMCID: PMC11310433 DOI: 10.3348/jksr.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.
Collapse
|
4
|
Bhattacharyya P, Karmakar S, Sengupta S, Paul M, Kar A, Dey D, Ghosh S, Sen S. Covert airflow obstruction dominates the overt ones in interstitial lung disease: An appraisal. Indian J Med Res 2024; 160:70-77. [PMID: 39382508 PMCID: PMC11463853 DOI: 10.25259/ijmr_114_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 10/10/2024] Open
Abstract
Background & objectives The co-presence of non-emphysematous airflow obstruction in interstitial Lung disease (ILD) is not elaborated. The present study aims the job with spirometry. Methods ILD affected individuals with or without airflow obstruction (FEV1/FVC<0.7 or >0.7) on spirometry were compared in terms of FEV1 and FEF25-75 derived variables [FEF25-75 (%-predicted), FEV1-FEF25-75 distance, reversibility of FEV1 and FEF25-75 to salbutamol and change in FEV1 and FEF25-75 in %-predicted values]. Those showing significant difference (P=0.0001) suggesting obstruction were selected to draw respective receiver operating curve (ROC) curves to identify the best cut-off value for individual parameters. The efficacy of each surrogate was tested to identify airflow obstruction in both the initial 'overlap' as well as the 'unmixed' ILD affected individual for the presence of airflow obstruction. Results FEV1/FVC identified 30 overlap from 235 ILDs. The FEF25-75 (%-predicted), FEV1-FEF25-75 distance, FEF25-75 reversibility (in ml) and FEV1 (%-predicted) were significantly (P<0.0001) different between the two groups. Of these, the FEF25-75 (%-predicted) had high specificity and sensitivity (93.33 and 79.47%) to identify airflow limitation in the initial unmixed ILD-group. The surrogates with their cut off values identified 92 extra individuals making it 122/235 (51.91%) of ILD having airflow obstruction. The 'unmixed' group showed higher frequency and degree of FEV1 reversibility. Interpretation & conclusions The findings of this study suggest that the airflow obstruction in ILD involves both the intrathoracic large and small airways. Although seemingly parallel, their relative status (qualitative and quantitative) needs research especially in light of the a etio pathology and the extent of involvement of ILD.
Collapse
Affiliation(s)
| | - Sayanti Karmakar
- Department of Pleuro-Parenchymal Diseases, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Sayoni Sengupta
- Department of Pulmonary Circulation, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Mintu Paul
- Department of Pulmonary Medicine, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Avishek Kar
- Department of Pulmonary Medicine, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Debkanya Dey
- Department of Airway Diseases, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Shuvam Ghosh
- Department of Airway Diseases, Institute of Pulmocare & Research (IPCR), Kolkata, India
| | - Srijita Sen
- Department of Airway Diseases, Institute of Pulmocare & Research (IPCR), Kolkata, India
| |
Collapse
|
5
|
Wada N, Hunninghake GM, Hatabu H. Interstitial Lung Abnormalities: Current Understanding. Clin Chest Med 2024; 45:433-444. [PMID: 38816098 DOI: 10.1016/j.ccm.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Interstitial lung abnormalities (ILAs) are incidental findings on computed tomography scans, characterized by nondependent abnormalities affecting more than 5% of any lung zone. They are associated with factors such as age, smoking, genetic variants, worsened clinical outcomes, and increased mortality. Risk stratification based on clinical and radiological features of ILAs is crucial in clinical practice, particularly for identifying cases at high risk of progression to pulmonary fibrosis. Traction bronchiectasis/bronchiolectasis index has emerged as a promising imaging biomarker for prognostic risk stratification in ILAs. These findings suggest a spectrum of fibrosing interstitial lung diseases, encompassing from ILAs to pulmonary fibrosis.
Collapse
Affiliation(s)
- Noriaki Wada
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Gary M Hunninghake
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
6
|
García Mullor MM, Arenas-Jiménez JJ, Ureña Vacas A, Gayá García-Manso I, Pérez Pérez JL, Serra Serra N, García Sevila R. Prevalence and prognostic meaning of interstitial lung abnormalities in remote CT scans of patients with interstitial lung disease treated with antifibrotic therapy. RADIOLOGIA 2024; 66 Suppl 1:S10-S23. [PMID: 38642956 DOI: 10.1016/j.rxeng.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2024]
Abstract
OBJECTIVES To describe the prevalence and characteristics of interstitial lung abnormalities (ILA) in CT scans performed prior to the initiation of antifibrotics in a series of patients with interstitial lung disease (ILD), and to identify characteristics apparent on early CT scans that could help to predict outcomes. METHODS We conducted a retrospective observational study. The original cohort consisted of 101 patients diagnosed with ILD and treated with antifibrotics in a tertiary hospital. Patients were included if they had a thoracic CT scan performed at least one year before initiation of therapy. They were classified radiologically in three groups: without ILA, with radiological ILA and extensive abnormalities. ILA were classified as subpleural fibrotic, subpleural non-fibrotic and non-subpleural. The initial scan and the latest CT scan performed before treatment were read for assessing progression. The relationship between CT findings of fibrosis and the radiological progression rate and mortality were analyzed. RESULTS We included 50 patients. Only 1 (2%) had a normal CT scan, 25 (50%) had extensive alterations and 24 (48%) had radiological criteria for ILA, a median of 98.2 months before initiation of antifibrotics, of them 18 (75%) had a subpleural fibrotic pattern. Significant bronchiectasis and obvious honeycombing in the lower zones were associated with shorter survival (p = 0.04). Obvious honeycombing in the lower zones was also significantly (p < 0.05) associated with a faster progression rate. CONCLUSIONS Fibrotic ILAs are frequent in remote scans of patients with clinically relevant ILD, long before they require antifibrotics. Findings of traction bronchiectasis and honeycombing in the earliest scans, even in asymptomatic patients, are related to mortality and progression later on.
Collapse
Affiliation(s)
- M M García Mullor
- Servicio de Neumología, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - J J Arenas-Jiménez
- Servicio de Radiodiagnóstico, Hospital General Universitario Dr. Balmis, Alicante, Spain; Departamento de Patología y Cirugía, Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - A Ureña Vacas
- Servicio de Radiodiagnóstico, Hospital General Universitario Dr. Balmis, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - I Gayá García-Manso
- Servicio de Neumología, Hospital General Universitario Dr. Balmis, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - J L Pérez Pérez
- Servicio de Neumología, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - N Serra Serra
- Servicio de Radiodiagnóstico, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - R García Sevila
- Servicio de Neumología, Hospital General Universitario Dr. Balmis, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
7
|
Gayá García-Manso I, Arenas Jiménez J, Hernández Blasco L, García Garrigós E, Nofuentes Pérez E, Sirera Matilla M, Ruiz Alcaraz S, García Sevila R. Radiological usual interstitial pneumonia pattern is associated with two-year mortality in patients with idiopathic pulmonary fibrosis. Heliyon 2024; 10:e26623. [PMID: 38434331 PMCID: PMC10906386 DOI: 10.1016/j.heliyon.2024.e26623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The new diagnostic guidelines for idiopathic pulmonary fibrosis (IPF) did not rule out the possibility of combining the radiological patterns of usual interstitial pneumonia (UIP) and probable UIP, given the similar management and diagnostic capacity. However, the prognostic implications of these patterns have not been fully elucidated, with different studies showing heterogeneous results. We applied the new criteria to a retrospective series of patients with IPF, assessing survival based on radiological patterns, findings, and their extension. Methods Two thoracic radiologists reviewed high-resolution computed tomography images taken at diagnosis in 146 patients with IPF, describing the radiological findings and patterns. The association of each radiological finding and radiological patterns with two-year mortality was analysed. Results The two-year mortality rate was 40.2% in IPF patients with an UIP radiological pattern versus 7.1% in those with probable UIP. Compared to the UIP pattern, probable UIP was protective against mortality, even after adjusting for age, sex, pulmonary function, and extent of fibrosis (hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.06-0.99). Receiving antifibrotic treatment was also a protective factor (HR 0.51, 95%CI 0.27-0.98). Honeycombing (HR 3.62, 95%CI 1.27-10.32), an acute exacerbation pattern (HR 4.07, 95%CI 1.84-8.96), and the overall extent of fibrosis (HR 1.04, 95%CI 1.02-1.06) were predictors of mortality. Conclusions In our series, two-year mortality was higher in patients with IPF who presented a radiological pattern of UIP versus probable UIP on the initial scan. Honeycombing, an acute exacerbation pattern, and a greater overall extent of fibrosis were also predictors of increased mortality. The prognostic differences between the radiological pattern of UIP and probable UIP in our series would support maintaining them as two differentiated patterns.
Collapse
Affiliation(s)
| | - Juan Arenas Jiménez
- Department of Radiology, Dr. Balmis General University Hospital, ISABIAL, Alicante, Spain
| | - Luis Hernández Blasco
- Department of Pulmonology, Dr. Balmis General University Hospital, ISABIAL, Alicante, Spain
- Department of Clinical Medicine. UMH. Alicante, Spain
| | - Elena García Garrigós
- Department of Radiology, Dr. Balmis General University Hospital, ISABIAL, Alicante, Spain
| | - Ester Nofuentes Pérez
- Department of Pulmonology, Vinalopó University Hospital, Elche, ISABIAL, Alicante, Spain
| | - Marina Sirera Matilla
- Department of Radiology, Dr. Balmis General University Hospital, ISABIAL, Alicante, Spain
| | - Sandra Ruiz Alcaraz
- Department of Pulmonology, Elche General University Hospital, Elche, ISABIAL, Alicante, Spain
| | - Raquel García Sevila
- Department of Pulmonology, Dr. Balmis General University Hospital, ISABIAL, Alicante, Spain
| |
Collapse
|
8
|
Lee KS, Han J, Wada N, Hata A, Lee HY, Yi C, Hino T, Doyle TJ, Franquet T, Hatabu H. Imaging of Pulmonary Fibrosis: An Update, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329119. [PMID: 37095673 DOI: 10.2214/ajr.23.29119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Pulmonary fibrosis is recognized as occurring in association with a wide and increasing array of conditions, and it presents with a spectrum of chest CT appearances. Idiopathic pulmonary fibrosis (IPF), which corresponds histologically with usual interstitial pneumonia and represents the most common idiopathic interstitial pneumonia, is a chronic progressive fibrotic interstitial lung disease (ILD) of unknown cause. Progressive pulmonary fibrosis (PPF) describes the radiologic development of pulmonary fibrosis in patients with ILD of a known or unknown cause other than IPF. The recognition of PPF impacts management of patients with ILD-for example, in guiding initiation of antifibrotic therapy. Interstitial lung abnormalities are an incidental CT finding in patients without suspected ILD and may represent an early intervenable form of pulmonary fibrosis. Traction bronchiectasis and/or bronchiolectasis, when detected in the setting of chronic fibrosis, is generally considered evidence of irreversible disease, and progression predicts worsening mortality risk. Awareness of the association between pulmonary fibrosis and connective tissue diseases, particularly rheumatoid arthritis, is increasing. This review provides an update on the imaging of pulmonary fibrosis, with attention given to recent advances in disease understanding with relevance to radiologic practice. The essential role of a multidisciplinary approach to clinical and radiologic data is highlighted.
Collapse
Affiliation(s)
- Kyung Soo Lee
- Department of Radiology, Samsung ChangWon Hospital, Sungkyunkwan University School of Medicine, ChangWon, Republic of Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Noriaki Wada
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Akinori Hata
- Department of Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - ChinA Yi
- Department of Radiology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tracy J Doyle
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Tomas Franquet
- Department of Diagnostic Radiology, Hospital de Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
9
|
Ahn Y, Lee SM, Choi S, Lee JS, Choe J, Do KH, Seo JB. Automated CT quantification of interstitial lung abnormality and interstitial lung disease according to the Fleischner Society in patients with resectable lung cancer: prognostic significance. Eur Radiol 2023; 33:8251-8262. [PMID: 37266656 DOI: 10.1007/s00330-023-09783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To assess the prognostic significance of automatically quantified interstitial lung abnormality (ILA) according to the definition by the Fleischner Society in patients with resectable non-small-cell lung cancer (NSCLC). METHODS Patients who underwent lobectomy or pneumonectomy for NSCLC between January 2015 and December 2019 were retrospectively included. Preoperative CT scans were analyzed using the commercially available deep-learning-based automated quantification software for ILA. According to quantified results and the definition by the Fleischner Society and multidisciplinary discussion, patients were divided into normal, ILA, and interstitial lung disease (ILD) groups. RESULTS Of the 1524 patients, 87 (5.7%) and 20 (1.3%) patients had ILA and ILD, respectively. Both ILA (HR, 1.81; 95% CI: 1.25-2.61; p = .002) and ILD (HR, 5.26; 95% CI: 2.99-9.24; p < .001) groups had poor recurrence-free survival (RFS). Overall survival (OS) decreased (HR 2.13 [95% CI: 1.27-3.58; p = .004] for the ILA group and 7.20 [95% CI: 3.80-13.62, p < .001] for the ILD group) as the disease severity increased. Both quantified fibrotic and non-fibrotic ILA components were associated with poor RFS (HR, 1.57; 95% CI: 1.12-2.21; p = .009; and HR, 1.11; 95% CI: 1.01-1.23; p = .03) and OS (HR, 1.59; 95% CI: 1.06-2.37; p = .02; and HR, 1.17; 95% CI: 1.03-1.33; and p = .01) in normal and ILA groups. CONCLUSIONS The automated CT quantification of ILA based on the definition by the Fleischner Society predicts outcomes of patients with resectable lung cancer based on the disease category and quantified fibrotic and non-fibrotic ILA components. CLINICAL RELEVANCE STATEMENT Quantitative CT assessment of ILA provides prognostic information for lung cancer patients after surgery, which can help in considering active surveillance for recurrence, especially in those with a larger extent of quantified ILA. KEY POINTS • Of the 1524 patients with resectable lung cancer, 1417 (93.0%) patients were categorized as normal, 87 (5.7%) as interstitial lung abnormality (ILA), and 20 (1.3%) as interstitial lung disease (ILD). • Both ILA and ILD groups were associated with poor recurrence-free survival (hazard ratio [HR], 1.81, p = .002; HR, 5.26, p < .001, respectively) and overall survival (HR, 2.13; p = .004; HR, 7.20; p < .001). • Both quantified fibrotic and non-fibrotic ILA components were associated with recurrence-free survival and overall survival in normal and ILA groups.
Collapse
Affiliation(s)
- Yura Ahn
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea.
| | - Sehoon Choi
- Department of Cardiothoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji Sung Lee
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jooae Choe
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Kyung-Hyun Do
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, Republic of Korea
| |
Collapse
|
10
|
Luo F, Zhu M, Wilson KC. Adult Interstitial Lung Abnormalities: The New Frontier of Pulmonary Fibrosis. Am J Respir Crit Care Med 2023; 208:651-652. [PMID: 37552023 PMCID: PMC10515573 DOI: 10.1164/rccm.202307-1287ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Affiliation(s)
- FengMing Luo
- Department of Pulmonary and Critical Care Medicine State Key Laboratory of Respiratory Health and Multimorbidity Laboratory of Pulmonary Immunology and Inflammation
- Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu, People's Republic of China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine State Key Laboratory of Respiratory Health and Multimorbidity Laboratory of Pulmonary Immunology and Inflammation
- Frontiers Science Center for Disease-related Molecular Network West China Hospital of Sichuan University Chengdu, People's Republic of China
| | - Kevin C Wilson
- Department of Medicine Boston University School of Medicine Boston, Massachusetts
| |
Collapse
|
11
|
Pesonen I, Johansson F, Johnsson Å, Blomberg A, Boijsen M, Brandberg J, Cederlund K, Egesten A, Emilsson ÖI, Engvall JE, Frølich A, Hagström E, Lindberg E, Malinovschi A, Stenfors N, Swahn E, Tanash H, Themudo R, Torén K, Vanfleteren LE, Wollmer P, Zaigham S, Östgren CJ, Sköld CM. High prevalence of interstitial lung abnormalities in middle-aged never-smokers. ERJ Open Res 2023; 9:00035-2023. [PMID: 37753274 PMCID: PMC10518870 DOI: 10.1183/23120541.00035-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 09/28/2023] Open
Abstract
Background Interstitial lung abnormalities (ILA) are incidental findings on chest computed tomography (CT). These patterns can present at an early stage of fibrotic lung disease. Our aim was to estimate the prevalence of ILA in the Swedish population, in particular in never-smokers, and find out its association with demographics, comorbidities and symptoms. Methods Participants were recruited to the Swedish CArdioPulmonary BioImage Study (SCAPIS), a population-based survey including men and women aged 50-64 years performed at six university hospitals in Sweden. CT scan, spirometry and questionnaires were performed. ILA were defined as cysts, ground-glass opacities, reticular abnormality, bronchiectasis and honeycombing. Findings Out of 29 521 participants, 14 487 were never-smokers and 14 380 were men. In the whole population, 2870 (9.7%) had ILA of which 134 (0.5%) were fibrotic. In never-smokers, the prevalence was 7.9% of which 0.3% were fibrotic. In the whole population, age, smoking history, chronic bronchitis, cancer, coronary artery calcium score and high-sensitive C-reactive protein were associated with ILA. Both ILA and fibrotic ILA were associated with restrictive spirometric pattern and impaired diffusing capacity of the lung for carbon monoxide. However, individuals with ILA did not report more symptoms compared with individuals without ILA. Interpretation ILA are common in a middle-aged Swedish population including never-smokers. ILA may be at risk of being underdiagnosed among never-smokers since they are not a target for screening.
Collapse
Affiliation(s)
- Ida Pesonen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Åse Johnsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Radiology, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Marianne Boijsen
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Radiology, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John Brandberg
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Radiology, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Cederlund
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Össur Ingi Emilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Jan E. Engvall
- CMIV, Centre of Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Clinical Physiology, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Andreas Frølich
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Emil Hagström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Eva Lindberg
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Sweden
| | - Nikolai Stenfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Eva Swahn
- Department of Cardiology and Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Hanan Tanash
- Department of Respiratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Raquel Themudo
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Kjell Torén
- Section of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lowie E.G.W. Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Wollmer
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Suneela Zaigham
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Sweden
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Carl Johan Östgren
- CMIV, Centre of Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Stanel SC, Callum J, Rivera-Ortega P. Genetic and environmental factors in interstitial lung diseases: current and future perspectives on early diagnosis of high-risk cohorts. Front Med (Lausanne) 2023; 10:1232655. [PMID: 37601795 PMCID: PMC10435297 DOI: 10.3389/fmed.2023.1232655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.
Collapse
Affiliation(s)
- Stefan Cristian Stanel
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jack Callum
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
13
|
Hata A, Hino T, Li Y, Johkoh T, Christiani DC, Lynch DA, Cho MH, Silverman EK, Hunninghake GM, Hatabu H. Traction Bronchiectasis/Bronchiolectasis in Interstitial Lung Abnormality: Follow-up in the COPDGene Study. Am J Respir Crit Care Med 2023; 207:1395-1398. [PMID: 36898128 PMCID: PMC10595461 DOI: 10.1164/rccm.202211-2061le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Affiliation(s)
- Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology
- Department of Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yi Li
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | | | | | - Gary M Hunninghake
- Center for Pulmonary Functional Imaging, Department of Radiology
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology
| |
Collapse
|
14
|
Verleden SE, Vanstapel A, Jacob J, Goos T, Hendriks J, Ceulemans LJ, Van Raemdonck DE, De Sadeleer L, Vos R, Kwakkel-van Erp JM, Neyrinck AP, Verleden GM, Boone MN, Janssens W, Wauters E, Weynand B, Jonigk DD, Verschakelen J, Wuyts WA. Radiologic and Histologic Correlates of Early Interstitial Lung Changes in Explanted Lungs. Radiology 2023; 307:e221145. [PMID: 36537894 PMCID: PMC7614383 DOI: 10.1148/radiol.221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Background Interstitial lung abnormalities (ILAs) reflect imaging features on lung CT scans that are compatible with (early) interstitial lung disease. Despite accumulating evidence regarding the incidence, risk factors, and prognosis of ILAs, the histopathologic correlates of ILAs remain elusive. Purpose To determine the correlation between radiologic and histopathologic findings in CT-defined ILAs in human lung explants. Materials and Methods Explanted lungs or lobes from participants with radiologically documented ILAs were prospectively collected from 2010 to 2021. These specimens were air-inflated, frozen, and scanned with CT and micro-CT (spatial resolution of 0.7 mm and 90 μm, respectively). Subsequently, the lungs were cut and sampled with core biopsies. At least five samples per lung underwent micro-CT and subsequent histopathologic assessment with semiquantitative remodeling scorings. Based on area-specific radiologic scoring, the association between radiologic and histopathologic findings was assessed. Results Eight lung explants from six donors (median age at explantation, 71 years [range, 60-83 years]; four men) were included (unused donor lungs, n = 4; pre-emptive lobectomy for oncologic indications, n = 2). Ex vivo CT demonstrated ground-glass opacification, reticulation, and bronchiectasis. Micro-CT and histopathologic examination demonstrated that lung abnormalities were frequently paraseptal and associated with fibrosis and lymphocytic inflammation. The histopathologic results showed varying degrees of fibrosis in areas that appeared normal on CT scans. Regions of reticulation on CT scans generally had greater fibrosis at histopathologic analysis. Vasculopathy and bronchiectasis were also often present at histopathologic examination of lungs with ILAs. Fully developed fibroblastic foci were rarely observed. Conclusion This study demonstrated direct histologic correlates of CT-defined interstitial lung abnormalities. © RSNA, 2022 Supplemental material is available for this article. See also the editorial by Jeudy in this issue.
Collapse
Affiliation(s)
- Stijn E. Verleden
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Arno Vanstapel
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Joseph Jacob
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Tinne Goos
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Jeroen Hendriks
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Laurens J. Ceulemans
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Dirk E. Van Raemdonck
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Laurens De Sadeleer
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Robin Vos
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Johanna M. Kwakkel-van Erp
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Arne P. Neyrinck
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Geert M. Verleden
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Matthieu N. Boone
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Wim Janssens
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Els Wauters
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Birgit Weynand
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Danny D. Jonigk
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Johny Verschakelen
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| | - Wim A. Wuyts
- From the Department of Chronic Diseases and Metabolism, BREATHE
(S.E.V., A.V., T.G., L.J.C., D.E.V.R., L.D.S., R.V., G.M.V., W.J., E.W.,
W.A.W.), Department of Cardiovascular Sciences (A.P.N.), and Department of
Imaging and Pathology (B.W., J.V.), KU Leuven, Herestraat 49, 3000 Leuven,
Belgium; Department of ASTARC, University of Antwerp, Antwerp, Belgium (S.E.V.,
J.H.); Department of Respiratory Medicine (S.E.V., J.M.K.v.E.) and Department of
Thoracic and Vascular Surgery (S.E.V., J.H.), University Hospital Antwerp,
Antwerp, Belgium; Department of Respiratory Medicine (J.J.) and Centre for
Medical Image Computing (J.J.), University College London, London, UK;
Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
(L.J.C., D.E.V.R.); Department of Physics and Astronomy, Ghent University,
Ghent, Belgium (M.N.B.); Institute of Pathology, Hannover Medical School,
Hannover, Germany (D.D.J.); and Biomedical Research in Endstage and Obstructive
Lung Disease Hannover (BREATH), Member of the German Center for Lung Research
(DZL), Hannover, Germany (D.D.J.)
| |
Collapse
|
15
|
Elhussini MSH, Mohammed AM, Eid HA, Gharib A. Bronchiectasis as co morbidity with COPD or ILD: complex interactions and severe consequences. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2023. [DOI: 10.1186/s43168-023-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
Background
Bronchiectasis is a chronic pulmonary disease characterized by widened, malformed bronchi, with profuse expectoration and impaired quality of life. COPD and ILD are common co-morbidities with bronchiectasis.
Methods
The present study evaluated the clinical, laboratory& radiological characteristics of COPD and ILD with/without bronchiectasis. A hospital-based, retrospective study was conducted for 1 year.
Results
A total of 101 patients were analyzed, 60 patients had COPD, 34 had ILD and 7 patients had bronchiectasis without COPD or ILD. It was noticed that, out of the analyzed 60 COPD patients, 10 patients developed bronchiectasis (16.7%) versus10 patients of 34 ILD patients (29.4%). In COPD and ILD accompanied by bronchiectasis, the incidence of hemoptysis was significantly higher in comparison to those without bronchiectasis. Moreover, they showed a significant increase in partial pressure of carbon dioxide (PCO2) in comparison to those without bronchiectasis, as well as in comparison to bronchiectasis only. Sputum culture revealed that COPD with bronchiectasis were significantly associated with Staphlococcus aureus (77.8%), more than ILD with Bronchiectasis (33.3%). While S. pneumoniae were more evident in cases of ILD with bronchiectasis (22.2%). The bilateral, peripheral bronchiectasis was more common than the unilateral, central bronchiectasis among cases of COPD with bronchiectasis followed by ILD with bronchiectasis more than bronchiectasis only.
Conclusion
Patients with COPD /ILD with bronchiectasis can be associated with serious clinical manifestations as hemoptysis. Their sputum cultures detected more positive organisms than negative in comparison to cases of bronchiectasis only. Screening of COPD and ILD patients using HRCT Scanning is a recommended preventive measure for early detection of bronchiectasis.
Collapse
|
16
|
Fujiwara M, Mimae T, Tsutani Y, Miyata Y, Okada M. Complications and Survival After Lung Cancer Resection in Interstitial Lung Disease. Ann Thorac Surg 2023; 115:701-708. [PMID: 35863399 DOI: 10.1016/j.athoracsur.2022.05.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis guidelines changed the high-resolution computed tomography (HRCT) pattern from 3 to 4 categories in 2018. We assessed the relationship between surgical outcomes and HRCT patterns according to the 2018 guidelines. METHODS Among 1503 patients who underwent pulmonary resection for clinical stage Ⅰ to stage Ⅲ lung cancer at our institution between April 2007 and June 2019, we retrospectively investigated 218 with interstitial lung abnormalities based on preoperative HRCT. We reclassified all interstitial lung abnormality cases with preoperative HRCT from 3 patterns-usual interstitial pneumonia (UIP), possible, and inconsistent with UIP-of the previous (2011) guidelines to 4 patterns-UIP, probable UIP, indeterminate, and alternative diagnosis-according to the new consensus guideline of idiopathic pulmonary fibrosis (2018). The occurrence of acute exacerbations and survival were analyzed, and the association with HRCT pattern was investigated. RESULTS Interstitial lung abnormality cases were reclassified as UIP (n = 55 [25.2%]), probable UIP (n = 36 [16.5%]), indeterminate UIP (n = 56 [25.7%]), and alternative diagnosis (n = 71 [32.6%]). Acute exacerbations developed in 21 patients (UIP pattern, n = 9 [16.4%]; probable UIP, n = 5 [13.9%]; indeterminate, n = 3 [5.4%]; and alternative diagnosis, n = 4 [5.6%]). Multivariable Cox regression revealed that UIP pattern or probable UIP pattern of the 2018 guideline was an independent risk factor for severe acute exacerbations (grade III-Ⅴ; odds ratio, 6.81; 95% CI, 1.42-32.60) and postoperative overall survival (hazard ratio, 3.12; 95% CI, 1.70-5.73). CONCLUSIONS UIP and probable UIP patterns were risk factors for postoperative severe acute exacerbations and death. The HRCT patterns of the 2018 guidelines can stratify outcomes of lung resection.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
17
|
Alsomali H, Palmer E, Aujayeb A, Funston W. Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulm Ther 2023; 9:177-193. [PMID: 36773130 PMCID: PMC10203082 DOI: 10.1007/s41030-023-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown aetiology. Patients typically present with symptoms of chronic dyspnoea and cough over a period of months to years. IPF has a poor prognosis, with an average life expectancy of 3-5 years from diagnosis if left untreated. Two anti-fibrotic medications (nintedanib and pirfenidone) have been approved for the treatment of IPF. These drugs slow disease progression by reducing decline in lung function. Early diagnosis is crucial to ensure timely treatment selection and improve outcomes. High-resolution computed tomography (HRCT) plays a major role in the diagnosis of IPF. In this narrative review, we discuss the importance of early diagnosis, awareness among primary care physicians, lung cancer screening programmes and early IPF detection, and barriers to accessing anti-fibrotic medications.
Collapse
Affiliation(s)
- Hana Alsomali
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Evelyn Palmer
- Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK.
| | - Avinash Aujayeb
- Department of Respiratory Medicine, Northumbria Healthcare NHS Trust, Northumbria Way, Cramlington, NE23 6NZ, UK
| | - Wendy Funston
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,Department of Respiratory Medicine, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, NE1 4LP, UK
| |
Collapse
|
18
|
Hatabu H, Hata A. Time to Start Describing Fibrotic Interstitial Lung Abnormalities in the Chest CT Report. Radiology 2023; 306:e222274. [PMID: 36219118 DOI: 10.1148/radiol.222274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hiroto Hatabu
- From the Center for Pulmonary Functional Imaging and Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.); and Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan (A.H.)
| | - Akinori Hata
- From the Center for Pulmonary Functional Imaging and Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.); and Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Osaka, Japan (A.H.)
| |
Collapse
|
19
|
Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA, Corte TJ, Glassberg M, Johannson KA, Calandriello L, Felder F, Wells A, Walsh S. Machine learning in radiology: the new frontier in interstitial lung diseases. Lancet Digit Health 2023; 5:e41-e50. [PMID: 36517410 DOI: 10.1016/s2589-7500(22)00230-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Challenges for the effective management of interstitial lung diseases (ILDs) include difficulties with the early detection of disease, accurate prognostication with baseline data, and accurate and precise response to therapy. The purpose of this Review is to describe the clinical and research gaps in the diagnosis and prognosis of ILD, and how machine learning can be applied to image biomarker research to close these gaps. Machine-learning algorithms can identify ILD in at-risk populations, predict the extent of lung fibrosis, correlate radiological abnormalities with lung function decline, and be used as endpoints in treatment trials, exemplifying how this technology can be used in care for people with ILD. Advances in image processing and analysis provide further opportunities to use machine learning that incorporates deep-learning-based image analysis and radiomics. Collaboration and consistency are required to develop optimal algorithms, and candidate radiological biomarkers should be validated against appropriate predictors of disease outcomes.
Collapse
Affiliation(s)
- Hayley Barnes
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia; Centre for Occupational and Environmental Health, Monash University, Melbourne, VIC, Australia.
| | | | - Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Deborah Assayag
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Ian Glaspole
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John A Mackintosh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Marilyn Glassberg
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AR, USA
| | | | - Lucio Calandriello
- Department of Diagnostic Imaging, Oncological Radiotherapy and Haematology, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Federico Felder
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Athol Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
20
|
Marrocchio C, Lynch DA. High-Resolution Computed Tomography of Nonfibrotic Interstitial Lung Disease. Semin Respir Crit Care Med 2022; 43:780-791. [PMID: 36442473 DOI: 10.1055/s-0042-1755564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonfibrotic interstitial lung diseases include a heterogeneous group of conditions that can result in various patterns of lung involvement. When approaching the computed tomographic (CT) scan of a patient with a suspected or known interstitial lung disease, the use of the appropriate radiological terms and a systematic, structured approach to the interpretation of the imaging findings are essential to reach a confident diagnosis or to limit the list of differentials to few possibilities. The large number of conditions that cause nonfibrotic interstitial lung diseases prevents a thorough discussion of all these entities. Therefore, this article will focus on the most common chronic lung diseases that can cause these CT findings. A pattern-based approach is used, with a discussion of nodular pattern, consolidation, crazy paving, ground-glass opacities, septal thickening, and calcifications. The different clinical conditions will be described based on their predominant pattern, with particular attention to findings that can help in the differential diagnosis.
Collapse
Affiliation(s)
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| |
Collapse
|
21
|
Qin Z, Shi Y, Qiao J, Lin G, Tang B, Li X, Zhang J. CFD simulation of porous microsphere particles in the airways of pulmonary fibrosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107094. [PMID: 36087437 PMCID: PMC9436827 DOI: 10.1016/j.cmpb.2022.107094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Pulmonary fibrosis (PF) is a chronic progressive disease with an extremely high mortality rate and is a complication of COVID-19. Inhalable microspheres have been increasingly used in the treatment of lung diseases such as PF in recent years. Compared to the direct inhalation of drugs, a larger particle size is required to ensure the sustained release of microspheres. However, the clinical symptoms of PF may lead to the easier deposition of microspheres in the upper respiratory tract. Therefore, it is necessary to understand the effects of PF on the deposition of microspheres in the respiratory tract. METHODS In this study, airway models with different degrees of PF in humans and mice were established, and the transport and deposition of microspheres in the airway were simulated using computational fluid dynamics. RESULTS The simulation results showed that PF increases microsphere deposition in the upper respiratory tract and decreases bronchial deposition in both humans and mice. Porous microspheres with low density can ensure deposition in the lower respiratory tract and larger particle size. In healthy and PF humans, porous microspheres of 10 µm with densities of 700 and 400 kg/m³ were deposited most in the bronchi. Unlike in humans, microspheres larger than 4 µm are completely deposited in the upper respiratory tract of mice owing to their high inhalation velocity. For healthy and PF mice, microspheres of 6 µm with densities of and 100 kg/m³ are recommended. CONCLUSIONS The results showed that with the exacerbation of PF, it is more difficult for microsphere particles to deposit in the subsequent airway. In addition, there were significant differences in the deposition patterns among the different species. Therefore, it is necessary to process specific microspheres from different individuals. Our study can guide the processing of microspheres and achieve differentiated drug delivery in different subjects to maximize therapeutic effects.
Collapse
Affiliation(s)
- Zhilong Qin
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
22
|
Hata A, Hino T, Putman RK, Yanagawa M, Hida T, Menon AA, Honda O, Yamada Y, Nishino M, Araki T, Valtchinov VI, Jinzaki M, Honda H, Ishigami K, Johkoh T, Tomiyama N, Christiani DC, Lynch DA, San José Estépar R, Washko GR, Cho MH, Silverman EK, Hunninghake GM, Hatabu H. Traction Bronchiectasis/Bronchiolectasis on CT Scans in Relationship to Clinical Outcomes and Mortality: The COPDGene Study. Radiology 2022; 304:694-701. [PMID: 35638925 PMCID: PMC9434811 DOI: 10.1148/radiol.212584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023]
Abstract
Background The clinical impact of interstitial lung abnormalities (ILAs) on poor prognosis has been reported in many studies, but risk stratification in ILA will contribute to clinical practice. Purpose To investigate the association of traction bronchiectasis/bronchiolectasis index (TBI) with mortality and clinical outcomes in individuals with ILA by using the COPDGene cohort. Materials and Methods This study was a secondary analysis of prospectively collected data. Chest CT scans of participants with ILA for traction bronchiectasis/bronchiolectasis were evaluated and outcomes were compared with participants without ILA from the COPDGene study (January 2008 to June 2011). TBI was classified as follows: TBI-0, ILA without traction bronchiectasis/bronchiolectasis; TBI-1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; TBI-2, ILA with mild to moderate traction bronchiectasis; and TBI-3, ILA with severe traction bronchiectasis and/or honeycombing. Clinical outcomes and overall survival were compared among the TBI groups and the non-ILA group by using multivariable linear regression model and Cox proportional hazards model, respectively. Results Overall, 5295 participants (median age, 59 years; IQR, 52-66 years; 2779 men) were included, and 582 participants with ILA and 4713 participants without ILA were identified. TBI groups were associated with poorer clinical outcomes such as quality of life scores in the multivariable linear regression model (TBI-0: coefficient, 3.2 [95% CI: 0.6, 5.7; P = .01]; TBI-1: coefficient, 3.3 [95% CI: 1.1, 5.6; P = .003]; TBI-2: coefficient, 7.6 [95% CI: 4.0, 11; P < .001]; TBI-3: coefficient, 32 [95% CI: 17, 48; P < .001]). The multivariable Cox model demonstrated that ILA without traction bronchiectasis (TBI-0-1) and with traction bronchiectasis (TBI-2-3) were associated with shorter overall survival (TBI-0-1: hazard ratio [HR], 1.4 [95% CI: 1.0, 1.9; P = .049]; TBI-2-3: HR, 3.8 [95% CI: 2.6, 5.6; P < .001]). Conclusion Traction bronchiectasis/bronchiolectasis was associated with poorer clinical outcomes compared with the group without interstitial lung abnormalities; TBI-2 and 3 were associated with shorter survival. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee and Im in this issue.
Collapse
Affiliation(s)
- Akinori Hata
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Takuya Hino
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Rachel K. Putman
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Masahiro Yanagawa
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Tomoyuki Hida
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Aravind A. Menon
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Osamu Honda
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Yoshitake Yamada
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Mizuki Nishino
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Tetsuro Araki
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Vladimir I. Valtchinov
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Masahiro Jinzaki
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Hiroshi Honda
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Kousei Ishigami
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Takeshi Johkoh
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Noriyuki Tomiyama
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - David C. Christiani
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - David A. Lynch
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Raúl San José Estépar
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - George R. Washko
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Michael H. Cho
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Edwin K. Silverman
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Gary M. Hunninghake
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - Hiroto Hatabu
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| | - for the COPDGene Investigators
- From the Ctr for Pulmonary Functional Imaging, Dept of Radiology
(A.H., T. Hino, T. Hida, M.N., V.I.V., G.M.H., H. Hatabu), Pulmonary and
Critical Care Division (R.K.P., A.A.M., G.R.W., G.M.H.), Dept of Radiology
(R.S.J.E.), and Channing Division of Network Medicine (M.H.C., E.K.S.), Brigham
and Women’s Hospital and Harvard Medical School, Boston, Mass; Dept of
Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita,
Osaka 5650871, Japan (A.H., M.Y., N.T.); Dept of Clinical Radiology, Graduate
School of Medical Sciences, Kyushu University, Fukuoka, Japan (T. Hida, H.
Honda, K.I.); Dept of Radiology, Kansai Medical University, Hirakata, Japan
(O.H.); Dept of Radiology, Keio University School of Medicine, Tokyo, Japan
(Y.Y., M.J.); Dept of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (T.A.); Dept of Radiology, Kansai Rosai Hospital, Amagasaki,
Japan (T.J.); Dept of Environmental Health, Harvard TH Chan School of Public
Health, Boston, Mass (D.C.C.); and Dept of Radiology, National Jewish Health,
Denver, Colo (D.A.L.)
| |
Collapse
|
23
|
Tabe C, Dobashi M, Ishioka Y, Itoga M, Tanaka H, Taima K, Tasaka S. Morphological features of bronchiectasis in patients with non-tuberculous mycobacteriosis and interstitial pneumonia. BMC Res Notes 2022; 15:263. [PMID: 35883182 PMCID: PMC9327218 DOI: 10.1186/s13104-022-06156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
Objective To compare the morphological features of bronchiectasis between patients with different underlying diseases, we performed quantitative analysis of high-resolution computed tomography (HRCT) images of 14 patients with non-tuberculous mycobacteriosis (NTM) and 13 with idiopathic pulmonary fibrosis (IPF). A 3D image of the bronchial structure was made from HRCT data. Bronchiectasis was defined as abnormal dilatation of the bronchi with the diameter greater than that of the accompanying pulmonary artery. We measured the inner and outer diameters, wall area as %total airway cross sectional area (WA%), and wall thickness to airway diameter ratio (T/D) of the 4-8th generations of bronchi. Results In patients with IPF, the inner and outer diameters linearly decreased toward the distal bronchi. In contrast, the inner and outer diameters of NTM fluctuated. The coefficient of variation of the outer diameters of the 6-7th generations of bronchi was larger in the NTM patients than in those with IPF, whereas no significant difference was observed in the coefficient of variation of the inner diameters between the groups. In IPF patients, WA% and T/D varied between the generation of bronchi, but the coefficient of variation of WA% and T/D was relatively small in those with NTM.
Collapse
Affiliation(s)
- Chiori Tabe
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Masaki Dobashi
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Yoshiko Ishioka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Masamichi Itoga
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Kageaki Taima
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| |
Collapse
|
24
|
Tomassetti S, Poletti V, Ravaglia C, Sverzellati N, Piciucchi S, Cozzi D, Luzzi V, Comin C, Wells AU. Incidental discovery of interstitial lung disease: diagnostic approach, surveillance and perspectives. Eur Respir Rev 2022; 31:31/164/210206. [PMID: 35418487 PMCID: PMC9488620 DOI: 10.1183/16000617.0206-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
The incidental discovery of pre-clinical interstitial lung disease (ILD) has led to the designation of interstitial lung abnormalities (ILA), a radiological entity defined as the incidental finding of computed tomography (CT) abnormalities affecting more than 5% of any lung zone. Two recent documents have redefined the borders of this entity and made the recommendation to monitor patients with ILA at risk of progression. In this narrative review, we will focus on some of the limits of the current approach, underlying the potential for progression to full-blown ILD of some patients with ILA and the numerous links between subpleural fibrotic ILA and idiopathic pulmonary fibrosis (IPF). Considering the large prevalence of ILA in the general population (7%), restricting monitoring only to cases considered at risk of progression appears a reasonable approach. However, this suggestion should not prevent pulmonary physicians from pursuing an early diagnosis of ILD and timely treatment where appropriate. In cases of suspected ILD, whether found incidentally or not, the pulmonary physician is still required to make a correct ILD diagnosis according to current guidelines, and eventually treat the patient accordingly. In patients with interstitial lung abnormalities (ILA), monitoring of those at risk of progression is currently recommended, and pulmonary physicians should pursue an early diagnosis when ILA become clinically significant to facilitate timely treatment https://bit.ly/3HKOQc8
Collapse
Affiliation(s)
- Sara Tomassetti
- Dept of Experimental and Clinical Medicine, Florence University, Florence, Italy .,Interventional Pneumology, Careggi University Hospital, Florence, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | | | | | - Diletta Cozzi
- Dept of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Valentina Luzzi
- Interventional Pneumology, Careggi University Hospital, Florence, Italy
| | - Camilla Comin
- Dept of Experimental and Clinical Medicine, Florence University, Florence, Italy
| | - Athol U Wells
- Royal Brompton and Harefield NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
25
|
Lee KS, Im Y. Traction Bronchiectasis and Bronchiolectasis at CT Predicts Survival in Individuals with Interstitial Lung Abnormalities: The COPDGene Study. Radiology 2022; 304:702-703. [PMID: 35638933 DOI: 10.1148/radiol.220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyung Soo Lee
- From the Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158 Paryong-Ro, Masanhoewon-Gu, Changwon-Si 51353, Republic of Korea (K.S.L.); and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.I.)
| | - Yunjoo Im
- From the Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158 Paryong-Ro, Masanhoewon-Gu, Changwon-Si 51353, Republic of Korea (K.S.L.); and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Y.I.)
| |
Collapse
|
26
|
Interstitial lung abnormalities and interstitial lung diseases associated with cigarette smoking in a rural cohort undergoing surgical resection. BMC Pulm Med 2022; 22:172. [PMID: 35488260 PMCID: PMC9055776 DOI: 10.1186/s12890-022-01961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking is a risk factor for interstitial lung abnormalities (ILAs) and interstitial lung diseases (ILDs). Investigation defining the relationships between ILAs/ILDs and clinical, radiographic, and pathologic findings in smokers have been incomplete. Employing a cohort undergoing surgical resection for lung nodules/masses, we (1) define the prevalence of ILAs/ILDs, (2) delineate their clinical, radiographic and pathologic predictors, and (3) determine their associations with mortality. Methods Patients undergoing resection of lung nodules/masses between 2017 and 2020 at a rural Appalachian, tertiary medical center were retrospectively investigated. Predictors for ILAs/ILDs and mortality were assessed using multivariate logistic regression analysis. Results In the total study cohort of 352 patients, radiographic ILAs and ILDs were observed in 35.2% and 17.6%, respectively. Among ILA patterns, subpleural reticular changes (14.8%), non-emphysematous cysts, centrilobular (CL) ground glass opacities (GGOs) (8% each), and mixed CL-GGO and subpleural reticular changes (7.4%) were common. ILD patterns included combined pulmonary fibrosis emphysema (CPFE) (3.1%), respiratory bronchiolitis (RB)-ILD (3.1%), organizing pneumonitis (2.8%) and unclassifiable (4.8%). The group with radiographic ILAs/ILDs had a significantly higher proportion of ever smokers (49% vs. 39.9%), pack years of smoking (44.57 ± 36.21 vs. 34.96 ± 26.22), clinical comorbidities of COPD (35% vs. 26.5%) and mildly reduced diffusion capacity (% predicated 66.29 ± 20.55 vs. 71.84 ± 23). Radiographic centrilobular and paraseptal emphysema (40% vs. 22.2% and 17.6% vs. 9.6%, respectively) and isolated traction bronchiectasis (10.2% vs. 4.2%) were associated with ILAs/ILDs. Pathological variables of emphysema (34.9% vs. 18.5%), any fibrosis (15.9% vs. 4.6%), peribronchiolar metaplasia (PBM, 8% vs. 1.1%), RB (10.3% vs. 2.5%), and anthracosis (21.6% vs. 14.5%) were associated with ILAs/ILDs. Histologic emphysema showed positive correlations with any fibrosis, RB, anthracosis and ≥ 30 pack year of smoking. The group with ILAs/ILDs had significantly higher mortality (9.1% vs. 2.2%, OR 4.13, [95% CI of 1.84–9.25]). Conclusions In a rural cohort undergoing surgical resection, radiographic subclinical ILAs/ILDs patterns were highly prevalent and associated with ever smoking and intensity of smoking. The presence of radiographic ILA/ILD patterns and isolated honeycomb changes were associated with increased mortality. Subclinical ILAs/ILDs and histologic fibrosis correlated with clinical COPD as well as radiographic and pathologic emphysema emphasizing the co-existence of these pulmonary injuries in a heavily smoking population. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01961-9.
Collapse
|
27
|
Zhang Y, Wan H, Richeldi L, Zhu M, Huang Y, Xiong X, Liao J, Zhu W, Mao L, Xu L, Ye D, Chen L, Liu J, Fu L, Li L, Lan L, Li P, Wang L, Tang X, Luo F. Reticulation is a Risk Factor of Progressive Subpleural non-Fibrotic Interstitial Lung Abnormalities. Am J Respir Crit Care Med 2022; 206:178-185. [PMID: 35426779 DOI: 10.1164/rccm.202110-2412oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yuchen Zhang
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Luca Richeldi
- Universita Cattolica del Sacro Cuore Sede di Roma, 96983, Pulmonary Medicine, Roma, Italy
| | - Min Zhu
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Huang
- Department of Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Xiong
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Junzhe Liao
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjun Zhu
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingli Mao
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Linrui Xu
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Dongfan Ye
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Chen
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Liu
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Linxi Fu
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Liangyuan Li
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Lan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Li
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Lixia Wang
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- West China Hospital, Sichuan University, Department of Respiratory Medicine, Chengdu, China
| |
Collapse
|
28
|
Pinsky PF, Lynch DA, Gierada DS. Incidental Findings on Low-Dose CT Scan Lung Cancer Screenings and Deaths From Respiratory Diseases. Chest 2022; 161:1092-1100. [PMID: 34838524 PMCID: PMC9005861 DOI: 10.1016/j.chest.2021.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Incidental respiratory disease-related findings are frequently observed on low-dose CT (LDCT) lung cancer screenings. This study analyzed data from the National Lung Screening Trial (NLST) to assess the relationship between such findings and respiratory disease mortality (RDM), excluding lung cancer. RESEARCH QUESTION Are incidental respiratory findings on LDCT scanning associated with increased RDM? STUDY DESIGN AND METHODS Subjects in the NLST LDCT arm received three annual screens. Trial radiologists noted findings related to possible lung cancer, as well as respiratory-related incidental findings. Demographic characteristics, smoking history, and medical history were captured in a baseline questionnaire. Kaplan-Meier curves were used to assess cumulative RDM. Multivariate proportional hazards models were used to assess risk factors for RDM; in addition to incidental CT scan findings, variables included respiratory disease history (COPD/emphysema, and asthma), smoking history, and demographic factors (age, race, sex, and BMI). RESULTS Of 26,722 subjects in the NLST LDCT arm, 25,002 received the baseline screen and a subsequent LDCT screen. Overall, 59% were male, 26.5% were aged ≥ 65 years at baseline, and 10.6% reported a history of COPD/emphysema. Emphysema on LDCT scanning was reported in 30.7% of subjects at baseline and in 44.2% at any screen. Of those with emphysema on baseline LDCT scanning, 18% reported a history of COPD/emphysema. Median mortality follow-up was 10.3 years. There were 3,639 deaths, and 708 were from respiratory diseases. Among subjects with no history of COPD/emphysema, 10-year cumulative RDM ranged from 3.9% for subjects with emphysema and reticular opacities to 1.1% for those with neither condition; the corresponding range among subjects with a COPD/emphysema history was 17.3% (both) to 3.7% (neither). Emphysema on LDCT imaging was associated with a significantly elevated RDM hazard ratio (2.27; 95% CI, 1.92-2.7) in the multivariate model. Reticular opacities (including honeycombing/fibrosis/scar) also had a significantly elevated hazard ratio (1.39; 95% CI, 1.19-1.62). INTERPRETATION Incidental respiratory disease-related findings observed on NLST LDCT screens were frequent and associated with increased mortality from respiratory diseases.
Collapse
Affiliation(s)
- Paul F Pinsky
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - David S Gierada
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Hu Q, Liu Y, Chen C, Sun Z, Wang Y, Xiang M, Guan H, Xia L. Reversible Bronchiectasis in COVID-19 Survivors With Acute Respiratory Distress Syndrome: Pseudobronchiectasis. Front Med (Lausanne) 2021; 8:739857. [PMID: 34917630 PMCID: PMC8669592 DOI: 10.3389/fmed.2021.739857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
To retrospectively analyze whether traction bronchiectasis was reversible in coronavirus disease 2019 (COVID-19) survivors with acute respiratory distress syndrome (ARDS), and whether computed tomography (CT) findings were associated with the reversibility, 41 COVID-19 survivors with ARDS were followed-up for more than 4 months. Demographics, clinical data, and all chest CT images were collected. The follow-up CT images were compared with the previous CT scans. There were 28 (68%) patients with traction bronchiectasis (Group I) and 13 (32%) patients without traction bronchiectasis (Group II) on CT images. Traction bronchiectasis disappeared completely in 21 of the 28 (75%) patients (Group IA), but did not completely disappear in seven of the 28 (25%) patients (Group IB). In the second week after onset, the evaluation score on CT images in Group I was significantly higher than that in Group II (p = 0.001). The proportion of reticulation on the last CT images in Group IB was found higher than that in Group IA (p < 0.05). COVID-19 survivors with ARDS might develop traction bronchiectasis, which can be absorbed completely in most patients. Traction bronchiectasis in a few patients did not disappear completely, but bronchiectasis was significantly relieved. The long-term follow-up is necessary to further assess whether traction bronchiectasis represents irreversible fibrosis.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujin Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanxiong Guan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Hata A, Schiebler ML, Lynch DA, Hatabu H. Interstitial Lung Abnormalities: State of the Art. Radiology 2021; 301:19-34. [PMID: 34374589 DOI: 10.1148/radiol.2021204367] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The clinical importance of interstitial lung abnormality (ILA) is increasingly recognized. In July 2020, the Fleischner Society published a position paper about ILA. The purposes of this article are to summarize the definition, existing evidence, clinical management, and unresolved issues for ILA from a radiologic standpoint and to provide a practical guide for radiologists. ILA is a common incidental finding at CT and is often progressive and associated with worsened clinical outcomes. The hazard ratios for mortality range from 1.3 to 2.7 in large cohorts. Risk factors for ILA include age, smoking status, other inhalational exposures, and genetic factors (eg, gene encoding mucin 5B variant). Radiologists should systematically record the presence, morphologic characteristics, distribution, and subcategories of ILA (ie, nonsubpleural, subpleural nonfibrotic, and subpleural fibrotic), as these are informative for predicting progression and mortality. Clinically significant interstitial lung disease should not be considered ILA. Individuals with ILA are triaged into higher- and lower-risk groups depending on their risk factors for progression, and systematic follow-up, including CT, should be considered for the higher-risk group. Artificial intelligence-based automated analysis for ILA may be helpful, but further validation and improvement are needed. Radiologists have a central role in clinical management and research on ILA.
Collapse
Affiliation(s)
- Akinori Hata
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Mark L Schiebler
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - David A Lynch
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| | - Hiroto Hatabu
- From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (A.H., H.H.); Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan (A.H.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.)
| |
Collapse
|
31
|
Hino T, Lee KS, Yoo H, Han J, Franks TJ, Hatabu H. Interstitial lung abnormality (ILA) and nonspecific interstitial pneumonia (NSIP). Eur J Radiol Open 2021; 8:100336. [PMID: 33796637 PMCID: PMC7995484 DOI: 10.1016/j.ejro.2021.100336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
This review article aims to address mysteries existing between Interstitial Lung Abnormality (ILA) and Nonspecific Interstitial Pneumonia (NSIP). The concept and definition of ILA are based upon CT scans from multiple large-scale cohort studies, whereas the concept and definition of NSIP originally derived from pathology with evolution to multi-disciplinary diagnosis. NSIP is the diagnosis as Interstitial Lung Disease (ILD) with clinical significance, whereas only a part of subjects with ILA have clinically significant ILD. Eventually, both ILA and NSIP must be understood in the context of chronic fibrosing ILD and progressive ILD, which remains to be further investigated.
Collapse
Key Words
- AIP, acute interstitial pneumonia
- ATS/ERS, American Thoracic Society/European Respiratory Society
- BIP, bronchiolitis obliterans with interstitial pneumonia
- BOOP, bronchiolitis obliterans organizing pneumonia
- CT
- CTD, connective tissue disease
- Connective tissue disease (CTD)
- DIP, desquamative interstitial pneumonia
- GGO, ground-glass opacities
- GIP, giant cell interstitial pneumonia
- HRCT
- HRCT, high-resolution CT
- IIP, idiopathic interstitial pneumonia
- ILA, interstitial lung abnormality
- ILD, interstitial lung disease
- Interstitial lung abnormality (ILA)
- Interstitial lung disease (ILD)
- LIP, lymphoid interstitial pneumonia
- NSIP, nonspecific interstitial pneumonia
- Nonspecific interstitial pneumonia (NSIP)
- Pulmonary fibrosis
- RB-ILD, respiratory bronchiolitis-associated interstitial lung disease
- UIP, usual interstitial pneumonia
- fNSIP, fibrosing nonspecific interstitial pneumonia
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Hongseok Yoo
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Republic of Korea
| | - Teri J Franks
- Pulmonary & Mediastinal Pathology, Department of Defense, The Joint Pathology Center, Silver Spring, MD, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Zhang D, Zhang C, Li X, Zhao J, An C, Peng C, Wang L. Thin-section computed tomography findings and longitudinal variations of the residual pulmonary sequelae after discharge in patients with COVID-19: a short-term follow-up study. Eur Radiol 2021; 31:7172-7183. [PMID: 33704519 PMCID: PMC7950423 DOI: 10.1007/s00330-021-07799-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study analyzed and compared CT findings and longitudinal variations after discharge between severe and non-severe coronavirus disease (COVID-19) patients who had residual pulmonary sequelae at pre-discharge. METHODS A total of 310 patients were included and stratified into severe and non-severe COVID-19 groups. Cross-sectional CT features across different time periods (T0: pre-discharge, T1: 1-4 weeks after discharge, T2: 5-8 weeks after discharge, T3: 9-12 weeks after discharge, T4: > 12 weeks after discharge) were compared, and the longitudinal variations of CT findings were analyzed and compared in both groups. RESULTS The cumulative absorption rate of fibrosis-like findings in the severe and non-severe groups at T4 was 24.3% (17/70) and 52.0% (53/102), respectively. In both groups, ground-glass opacity (GGO) with consolidation showed a clear decreasing trend at T1, after which they maintained similar lower levels. The GGO in the severe group showed an increasing trend first at T1 and then decreasing at T4; however, the incidence decreased gradually in the non-severe group. Most fibrosis-like findings showed a tendency to decrease rapidly and then remained stable. Bronchial dilatation in the severe group persisted at an intermediate level. CONCLUSIONS After discharge, the characteristics and changing trends of pulmonary sequelae caused by COVID-19 were significantly different between the two groups. Pulmonary sequelae were more serious and recovery was slower in patients with severe/critical disease than in patients with moderate disease. A portion of the fibrosis-like findings were completely absorbed in patients with moderate and severe/critical diseases. KEY POINTS • Lung sequelae were more serious and recovery was slower in severe/critical COVID-19 patients. • Complete absorption of fibrosis-like findings after a short-term follow-up was observed in at least 17/70 (24.3%) of COVID-19 patients with severe/critical disease and 53/102 (52.0%) of COVID-19 patients with moderate disease. • The most common fibrosis-like findings was a parenchymal band; irregular interface was a nonspecific sign of COVID-19, and the percentage of bronchial dilatation in patients with severe/critical disease remained at a relatively stable medium level (range, 31.6 to 47.8%) at all stages.
Collapse
Affiliation(s)
- Die Zhang
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Chen Zhang
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Xiaohe Li
- Department of Infectious Disease, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Jing Zhao
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Chao An
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Cheng Peng
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China
| | - Lifei Wang
- Department of Radiology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine Southern University of Science and Technology, 29 Bulan Road, Longgang District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
33
|
Hino T, Hida T, Nishino M, Lu J, Putman RK, Gudmundsson EF, Hata A, Araki T, Valtchinov VI, Honda O, Yanagawa M, Yamada Y, Kamitani T, Jinzaki M, Tomiyama N, Ishigami K, Honda H, San Jose Estepar R, Washko GR, Johkoh T, Christiani DC, Lynch DA, Gudnason V, Gudmundsson G, Hunninghake GM, Hatabu H. Progression of traction bronchiectasis/bronchiolectasis in interstitial lung abnormalities is associated with increased all-cause mortality: Age Gene/Environment Susceptibility-Reykjavik Study. Eur J Radiol Open 2021; 8:100334. [PMID: 33748349 PMCID: PMC7960545 DOI: 10.1016/j.ejro.2021.100334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study is to assess the role of traction bronchiectasis/bronchiolectasis and its progression as a predictor for early fibrosis in interstitial lung abnormalities (ILA). METHODS Three hundred twenty-seven ILA participants out of 5764 in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study who had undergone chest CT twice with an interval of approximately five-years were enrolled in this study. Traction bronchiectasis/bronchiolectasis index (TBI) was classified on a four-point scale: 0, ILA without traction bronchiectasis/bronchiolectasis; 1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; 2, ILA with mild to moderate traction bronchiectasis; 3, ILA and severe traction bronchiectasis and/or honeycombing. Traction bronchiectasis (TB) progression was classified on a five-point scale: 1, Improved; 2, Probably improved; 3, No change; 4, Probably progressed; 5, Progressed. Overall survival (OS) among participants with different TB Progression Score and between the TB progression group and No TB progression group was also investigated. Hazard radio (HR) was estimated with Cox proportional hazards model. RESULTS The higher the TBI at baseline, the higher TB Progression Score (P < 0.001). All five participants with TBI = 3 at baseline progressed; 46 (90 %) of 51 participants with TBI = 2 progressed. TB progression was also associated with shorter OS with statistically significant difference (adjusted HR = 1.68, P < 0.001). CONCLUSION TB progression was visualized on chest CT frequently and clearly. It has the potential to be the predictor for poorer prognosis of ILA.
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Corresponding author.
| | - Tomoyuki Hida
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Junwei Lu
- Department of Biostatistics, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Rachel K. Putman
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tetsuro Araki
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vladimir I. Valtchinov
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Osamu Honda
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 5731010, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 8128582, Japan
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - George R. Washko
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Takeshi Johkoh
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan,Department of Radiology, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo, 6608511, Japan
| | - David C. Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Hjartavernd, Holtasmári 1, 201, Kópavogur, Iceland,University of Iceland, Faculty of Medicine, Vatnsmyrarvegur 16, 101, Reykjavík, Iceland
| | - Gunnar Gudmundsson
- University of Iceland, Faculty of Medicine, Vatnsmyrarvegur 16, 101, Reykjavík, Iceland,Department of Respiratory Medicine, Landspitali University Hospital, Fossvogur 108, Reykjavík, Iceland
| | - Gary M. Hunninghake
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,Pulmonary and Critical Care Division, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| |
Collapse
|
34
|
Selman M, Pardo A. When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur Respir J 2021; 58:13993003.04507-2020. [PMID: 33542060 DOI: 10.1183/13993003.04507-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) comprise a large and heterogeneous group of disorders of known and unknown aetiology characterised by diffuse damage of the lung parenchyma. In recent years it has become evident that patients with different types of ILD are at risk of developing progressive pulmonary fibrosis, known as progressive fibrosing ILD (PF-ILD). This is a phenotype that behaves similar to idiopathic pulmonary fibrosis, the archetypical example of progressive fibrosis. PF-ILD is not a distinct clinical entity but describes a group of ILDs with similar clinical behaviour. This phenotype may occur in diseases displaying distinct aetiologies and different biopathology during their initiation and development. Importantly, these entities may have the potential for improvement or stabilisation prior to entering the progressive fibrosing phase. The crucial questions are: 1) why does a subset of patients develop a progressive and irreversible fibrotic phenotype even with appropriate treatment? and 2) what are the possible pathogenic mechanisms driving progression? Here, we provide a framework highlighting putative mechanisms underlying progression, including genetic susceptibility, ageing, epigenetics, structural fibrotic distortion, aberrant composition and stiffness of the extracellular matrix, and the emergence of distinct pro-fibrotic cell subsets. Understanding the cellular and molecular mechanisms behind PF-ILD will provide the basis for identifying risk factors and appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
35
|
Hino T, Lee KS, Han J, Hata A, Ishigami K, Hatabu H. Spectrum of Pulmonary Fibrosis from Interstitial Lung Abnormality to Usual Interstitial Pneumonia: Importance of Identification and Quantification of Traction Bronchiectasis in Patient Management. Korean J Radiol 2020; 22:811-828. [PMID: 33543848 PMCID: PMC8076826 DOI: 10.3348/kjr.2020.1132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Following the introduction of a novel pathological concept of usual interstitial pneumonia (UIP) by Liebow and Carrington in 1969, diffuse interstitial pneumonia has evolved into UIP, nonspecific interstitial pneumonia (NSIP), and interstitial lung abnormality (ILA); the histopathological and CT findings of these conditions reflect the required multidisciplinary team approach, involving pulmonologists, radiologists, and pathologists, for their diagnosis and management. Concomitantly, traction bronchiectasis and bronchiolectasis have been recognized as the most persistent and important indices of the severity and prognosis of fibrotic lung diseases. The traction bronchiectasis index (TBI) can stratify the prognoses of patients with ILAs. In this review, the evolutionary concepts of UIP, NSIP, and ILAs are summarized in tables and figures, with a demonstration of the correlation between CT findings and pathologic evaluation. The CT-based UIP score is being proposed to facilitate a better understanding of the spectrum of pulmonary fibrosis, from ILAs to UIP, with emphasis on traction bronchiectasis/bronchiolectasis.
Collapse
Affiliation(s)
- Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea
| | - Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Lynch DA, Oh AS. High-Spatial-Resolution CT Offers New Opportunities for Discovery in the Lung. Radiology 2020; 297:472-473. [DOI: 10.1148/radiol.2020203473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David A. Lynch
- From the Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206
| | - Andrea S. Oh
- From the Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206
| |
Collapse
|
37
|
Hatabu H, Hunninghake GM, Richeldi L, Brown KK, Wells AU, Remy-Jardin M, Verschakelen J, Nicholson AG, Beasley MB, Christiani DC, San José Estépar R, Seo JB, Johkoh T, Sverzellati N, Ryerson CJ, Graham Barr R, Goo JM, Austin JHM, Powell CA, Lee KS, Inoue Y, Lynch DA. Interstitial lung abnormalities detected incidentally on CT: a Position Paper from the Fleischner Society. THE LANCET RESPIRATORY MEDICINE 2020; 8:726-737. [PMID: 32649920 DOI: 10.1016/s2213-2600(20)30168-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
The term interstitial lung abnormalities refers to specific CT findings that are potentially compatible with interstitial lung disease in patients without clinical suspicion of the disease. Interstitial lung abnormalities are increasingly recognised as a common feature on CT of the lung in older individuals, occurring in 4-9% of smokers and 2-7% of non-smokers. Identification of interstitial lung abnormalities will increase with implementation of lung cancer screening, along with increased use of CT for other diagnostic purposes. These abnormalities are associated with radiological progression, increased mortality, and the risk of complications from medical interventions, such as chemotherapy and surgery. Management requires distinguishing interstitial lung abnormalities that represent clinically significant interstitial lung disease from those that are subclinical. In particular, it is important to identify the subpleural fibrotic subtype, which is more likely to progress and to be associated with mortality. This multidisciplinary Position Paper by the Fleischner Society addresses important issues regarding interstitial lung abnormalities, including standardisation of the definition and terminology; predisposing risk factors; clinical outcomes; options for initial evaluation, monitoring, and management; the role of quantitative evaluation; and future research needs.
Collapse
Affiliation(s)
- Hiroto Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gary M Hunninghake
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Richeldi
- Unitá Operativa Complessa di Pneumologia, Universitá Cattolica del Sacro Cuore, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| | - Kevin K Brown
- Department of Medicine, Denver, CO, USA; National Jewish Health, Denver, CO, USA
| | - Athol U Wells
- Department of Respiratory Medicine, Royal Brompton and Hospital NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Martine Remy-Jardin
- Department of Thoracic Imaging, Hospital Calmette, University Centre of Lille, Lille, France
| | | | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton and Hospital NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Mary B Beasley
- Department of Pathology, Icahn School of Medicine at Mount, New York, NY, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raúl San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon Beom Seo
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | | | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovations, St Paul's Hospital, Vancouver, BC, Canada
| | - R Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - John H M Austin
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Charles A Powell
- Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount, New York, NY, USA
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | | |
Collapse
|